Strong atom–field coupling for bose–einstein condensates in an optical cavity on a chip

Strong atom–field coupling for bose–einstein condensates in an optical cavity on a chip


Play all audios:


ABSTRACT An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom–photon coupling can be made larger than all decoherence rates of the system. For


single atoms, this ‘strong coupling regime’ of cavity quantum electrodynamics1,2 has been the subject of many experimental advances. Efforts have been made to control the coupling rate by


trapping3,4 the atom and cooling5,6 it towards the motional ground state; the latter has been achieved in one dimension so far5. For systems of many atoms, the three-dimensional ground state


of motion is routinely achieved7 in atomic Bose–Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently8,9, coupling BECs to


cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity10 with


atom-chip technology11. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is


identically and strongly coupled to the cavity mode12. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the


standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function


of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms–cavity system, which we map out over a wide range of atom numbers and


cavity–atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We


anticipate that the system will be suitable as a light–matter quantum interface for quantum information13. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS LARGE ARRAY OF SCHRÖDINGER CAT STATES


FACILITATED BY AN OPTICAL WAVEGUIDE Article Open access 20 October 2020 OPTOMECHANICALLY INDUCED GAIN USING A TRAPPED INTERACTING BOSE-EINSTEIN CONDENSATE Article Open access 04 March 2023


ENTANGLEMENT-ENHANCED MATTER-WAVE INTERFEROMETRY IN A HIGH-FINESSE CAVITY Article Open access 19 October 2022 REFERENCES * Kimble, H. J. Strong interactions of single atoms and photons in


cavity QED. _Phys. Scr._ T76, 127–137 (1998) Article  CAS  ADS  Google Scholar  * Haroche, S. & Raimond, J.-M. _Exploring the Quantum: Atoms, Cavities and Photons_ (Oxford Univ. Press,


Oxford, UK, 2006) Book  Google Scholar  * Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. _Phys. Rev. Lett._ 83, 4987–4990 (1999) Article  CAS  ADS  Google


Scholar  * Pinkse, P. W. H., Fischer, T., Maunz, P. & Rempe, G. Trapping an atom with single photons. _Nature_ 404, 365–368 (2000) Article  CAS  ADS  Google Scholar  * Boozer, A. D.,


Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. _Phys. Rev. Lett._ 97, 083602 (2006)


Article  CAS  ADS  Google Scholar  * Maunz, P. et al. Cavity cooling of a single atom. _Nature_ 428, 50–52 (2004) Article  CAS  ADS  Google Scholar  * Anglin, J. R. & Ketterle, W.


Bose–Einstein condensation of atomic gases. _Nature_ 416, 211–218 (2002) Article  CAS  ADS  Google Scholar  * Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting


statistics of an atom laser. _Phys. Rev. Lett._ 95, 090404 (2005) Article  ADS  Google Scholar  * Slama, S., Bux, S., Krenz, C., Zimmermann, C. & Courteille, P. W. Superradiant Rayleigh


scattering and collective atomic recoil lasing in a ring cavity. _Phys. Rev. Lett._ 98, 053603 (2007) Article  CAS  ADS  Google Scholar  * Steinmetz, T. et al. A stable fiber-based


Fabry–Perot cavity. _Appl. Phys. Lett._ 89, 111110 (2006) Article  ADS  Google Scholar  * Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. _Rev. Mod. Phys._ 79,


235–289 (2007) Article  ADS  Google Scholar  * Brennecke, F. et al. Cavity QED with a Bose–Einstein condensate. _Nature_ doi: 10.1038/nature06120 (this issue). * Duan, L. M., Lukin, M. D.,


Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. _Nature_ 414, 413–418 (2001) Article  CAS  ADS  Google Scholar  * Dicke, R. H.


Coherence in spontaneous radiation processes. _Phys. Rev._ 93, 99–110 (1954) Article  CAS  ADS  Google Scholar  * Sherson, J., Julsgaard, B. & Polzik, E. S. Deterministic atom–light


quantum interface. _Adv. At. Mol. Opt. Phys._ 54, 81–130 (2006) Article  ADS  Google Scholar  * Simon, J., Tanji, H., Thompson, J. K. & Vuletic, V. Interfacing collective atomic


excitations and single photons. _Phys. Rev. Lett._ 98, 183601 (2007) Article  ADS  Google Scholar  * Tavis, M. & Cummings, F. W. Approximate solutions for an N-molecule–radiation-field


Hamiltonian. _Phys. Rev._ 188, 692–695 (1969) Article  ADS  Google Scholar  * Ketterle, W. & Inouye, S. Does matter wave amplification work for fermions? _Phys. Rev. Lett._ 86, 4203–4206


(2001) Article  CAS  ADS  Google Scholar  * Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate. _Science_ 285, 571–574 (1999) Article  CAS  Google Scholar  *


Morice, O., Castin, Y. & Dalibard, J. Refractive index of a dilute Bose gas. _Phys. Rev. A_ 51, 3896–3901 (1995) Article  CAS  ADS  Google Scholar  * Mekhov, I. B., Maschler, C. &


Ritsch, H. Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity quantum electrodynamics. _Nature Phys._ 3, 319–323 (2007) Article  CAS  ADS  Google


Scholar  * Treutlein, P. et al. Quantum information processing in optical lattices and magnetic microtraps. _Fortschr. Phys._ 54, 702–718 (2006) Article  CAS  Google Scholar  * Aoki, T. et


al. Observation of strong coupling between one atom and a monolithic microresonator. _Nature_ 443, 671–674 (2006) Article  CAS  ADS  Google Scholar  * Gerbier, F. Quasi-1D Bose–Einstein


condensates in the dimensional crossover regime. _Europhys. Lett._ 66, 771–777 (2004) Article  CAS  ADS  Google Scholar  * Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of


normal-mode splitting for an atom in an optical cavity. _Phys. Rev. Lett._ 68, 1132–1135 (1992) Article  CAS  Google Scholar  * Fischer, T., Maunz, P., Puppe, T., Pinkse, P. W. H. &


Rempe, G. Collective light forces on atoms in a high-finesse cavity. _N. J. Phys._ 3, 11 (2001) Google Scholar  * Murch, K. W., Moore, K. L., Gupta, S. & Stamper-Kurn, D. M. Measurement


of intracavity quantum fluctuations of light using an atomic fluctuation bolometer. Preprint at 〈http://arxiv.org/abs/0706.1005〉 (2007) * Lye, J. E., Hope, J. J. & Close, J. D.


Nondestructive dynamic detectors for Bose–Einstein condensates. _Phys. Rev. A_ 67, 043609 (2003) Article  ADS  Google Scholar  * Greiner, M., Mandel, O., Hänsch, T. W. & Bloch, I.


Collapse and revival of the matter wave field of a Bose–Einstein condensate. _Nature_ 419, 51–54 (2002) Article  CAS  ADS  Google Scholar  * Mohring, B. et al. Extracting atoms on demand


with lasers. _Phys. Rev. A_ 71, 053601 (2005) Article  ADS  Google Scholar  * Du, S. W. et al. Atom-chip Bose–Einstein condensation in a portable vacuum cell. _Phys. Rev. A_ 70, 053606


(2004) Article  ADS  Google Scholar  * Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose–Einstein condensation on a microelectronic chip. _Nature_ 413, 498–501 (2001) Article


  ADS  Google Scholar  * Reichel, J., Hänsel, W. & Hänsch, T. W. Atomic micromanipulation with magnetic surface traps. _Phys. Rev. Lett._ 83, 3398–3401 (1999) Article  CAS  ADS  Google


Scholar  * Harber, D. M., McGuirk, J. M., Obrecht, J. M. & Cornell, E. A. Thermally induced losses in ultra-cold atoms magnetically trapped near room-temperature surfaces. _J. Low Temp.


Phys._ 133, 229–238 (2003) Article  CAS  ADS  Google Scholar  * Reichel, J. Microchip traps and Bose–Einstein condensation. _Appl. Phys. B_ 74, 469–487 (2002) Article  CAS  ADS  Google


Scholar  Download references ACKNOWLEDGEMENTS We thank J. Hare and F. Orucevic for support in producing the fibre mirror surfaces, and F. Gerbier for the calculation of condensate size in


the crossover regime. We acknowledge discussions with Y. Castin and J. Dalibard about atom–light interaction in BECs, as well as with T. W. Hänsch, I. Cirac, P. Treutlein and R. Long. This


work was supported by a European Young Investigator Award (EURYI), a Chaire d’Excellence of the French Ministry for Research, and by the EU (‘Atom Chips’ Research Training Network and


‘SCALA’ Integrated Programme). The Atom Chip team at Laboratoire Kastler Brossel is part of the Institut Francilien de Recherche sur les Atomes Froids (IFRAF). AUTHOR INFORMATION Author


notes * Felix Linke Present address: Present address: BMW Group, Abt. Instrumentierung und Displays, Knorrstr. 147, D-80788 München, Germany., * Yves Colombe and Tilo Steinmetz: These


authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Laboratoire Kastler Brossel, ENS/UPMC-Paris 6/CNRS, 24 rue Lhomond, 75005 Paris, France , Yves Colombe, Tilo Steinmetz, 


Guilhem Dubois, Felix Linke & Jakob Reichel * Max-Planck-Institut für Quantenoptik/LMU, Schellingstr. 4, 80799 München, Germany , Tilo Steinmetz & David Hunger Authors * Yves Colombe


View author publications You can also search for this author inPubMed Google Scholar * Tilo Steinmetz View author publications You can also search for this author inPubMed Google Scholar *


Guilhem Dubois View author publications You can also search for this author inPubMed Google Scholar * Felix Linke View author publications You can also search for this author inPubMed Google


Scholar * David Hunger View author publications You can also search for this author inPubMed Google Scholar * Jakob Reichel View author publications You can also search for this author


inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Jakob Reichel. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY NOTES This file contains Supplementary Notes with additional information on collective atom-field interaction and describes two models that we refer to in the


letter: the multilevel coupling model that predicts an anticrossing in the vacuum-Rabi spectrum, and the momentum-diffusion model for cavity field-induced heating of the atom cloud. (PDF 616


kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Colombe, Y., Steinmetz, T., Dubois, G. _et al._ Strong atom–field coupling for Bose–Einstein


condensates in an optical cavity on a chip. _Nature_ 450, 272–276 (2007). https://doi.org/10.1038/nature06331 Download citation * Received: 01 June 2007 * Accepted: 26 September 2007 * Issue


Date: 08 November 2007 * DOI: https://doi.org/10.1038/nature06331 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative