Belowground biodiversity and ecosystem functioning

Belowground biodiversity and ecosystem functioning


Play all audios:


ABSTRACT Evidence is mounting that the immense diversity of microorganisms and animals that live belowground contributes significantly to shaping aboveground biodiversity and the functioning


of terrestrial ecosystems. Our understanding of how this belowground biodiversity is distributed, and how it regulates the structure and functioning of terrestrial ecosystems, is rapidly


growing. Evidence also points to soil biodiversity as having a key role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental


change. Here we review recent progress and propose avenues for further research in this field. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn


more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS


OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CONTRASTING RESPONSES OF ABOVE- AND BELOWGROUND


DIVERSITY TO MULTIPLE COMPONENTS OF LAND-USE INTENSITY Article Open access 24 June 2021 DECOUPLED RESPONSES OF PLANTS AND SOIL BIOTA TO GLOBAL CHANGE ACROSS THE WORLD’S LAND ECOSYSTEMS


Article Open access 29 November 2024 SOIL COMMUNITY HISTORY STRENGTHENS BELOWGROUND MULTITROPHIC FUNCTIONING ACROSS PLANT DIVERSITY LEVELS IN A GRASSLAND EXPERIMENT Article Open access 19


November 2024 REFERENCES * Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. _Nature_ 486, 59–67 (2012) ADS  CAS  PubMed  Google Scholar  * Decaëns, T. Macroecological


patterns in soil communities. _Glob. Ecol. Biogeogr._ 19, 287–302 (2010) Google Scholar  * Wardle, D. A. _Communities and Ecosystems: Linking the Aboveground and Belowground Components_


(Princeton Univ. Press, 2002) Google Scholar  * Wall D. H., et al. (eds) _Soil Ecology and Ecosystem Services_ (Oxford Univ. Press, 2012) * Fierer, N. & Lennon, J. T. The generation and


maintenance of diversity in microbial communities. _Am. J. Bot._ 98, 439–448 (2011) PubMed  Google Scholar  * Finlay, B. J. Global dispersal of free-living microbial eukaryote species.


_Science_ 296, 1061–1063 (2002) ADS  CAS  PubMed  Google Scholar  * Callaway, R. M. & Maron, J. L. What have exotic plant invasions taught us over the past 20 years? _Trends Ecol. Evol._


21, 369–374 (2006) PubMed  Google Scholar  * Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. _ISME J._ 7, 652–659 (2013) CAS  PubMed  Google Scholar


  * Tedersoo, L. et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. _Mol. Ecol._ 21, 4160–4170 (2012) PubMed  Google Scholar  * Öpik, M.,


Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. _J. Ecol._ 94, 778–790 (2006) Google


Scholar  * Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. _Proc. Natl Acad. Sci. USA_ 108,


17720–17725 (2011)THIS STUDY OF SOILS TAKEN FROM A RANGE OF BIOMES AND LATITUDES SHOWED THAT COSMOPOLITAN SOIL ANIMALS ARE EXTREMELY RARE, AND THAT THERE IS A LACK OF COUPLING BETWEEN


ABOVEGROUND AND SOIL ANIMAL DIVERSITY AT A GLOBAL SCALE. ADS  CAS  PubMed  PubMed Central  Google Scholar  * Gaston, K. J. Global patterns in biodiversity. _Nature_ 405, 220–227 (2000) CAS 


PubMed  Google Scholar  * Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. _Ecol. Lett._ 12, 1238–1249 (2009)


PubMed  Google Scholar  * Eggleton, P. & Bignell, D. E. in _Insects in a Changing Environment_ (eds Harrington, R. & Stork, N. E. ) 473–497 (Academic Press, 1995) Google Scholar  *


Nielsen, U. N. et al. Global-scale patterns of soil nematode assemblage structure in relation to climate and ecosystem properties. _Glob. Ecol. Biogeogr._ 23, 968–978 (2014) Google Scholar 


* Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. _Nature_ 403, 853–858 (2000) ADS  CAS  PubMed 


Google Scholar  * Ettema, C. H. & Wardle, D. A. Spatial soil ecology. _Trends Ecol. Evol._ 17, 177–183 (2002) Google Scholar  * Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D.


K. & Vivanco, J. M. Root exudates regulate soil fungal community composition and diversity. _Appl. Environ. Microbiol._ 74, 738–744 (2008) CAS  PubMed  Google Scholar  * Pollierer, M.


M., Langel, R., Körner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. _Ecol. Lett._ 10, 729–736 (2007) PubMed 


Google Scholar  * Henry, S. et al. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. _Environ. Microbiol._ 10, 3082–3092


(2008) CAS  PubMed  Google Scholar  * Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. _Plant Cell Environ._ 32, 666–681 (2009) CAS  PubMed  Google Scholar  *


Rasmann, S. et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. _Nature_ 434, 732–737 (2005) ADS  CAS  PubMed  Google Scholar  * Mendes, R. et al. Deciphering the


rhizosphere microbiome for disease-suppressive bacteria. _Science_ 332, 1097–1100 (2011) ADS  CAS  PubMed  Google Scholar  * Fierer, N. & Jackson, R. B. The diversity and biogeography


of soil bacterial communities. _Proc. Natl Acad. Sci. USA_ 103, 626–631 (2006)THIS STUDY SHOWED THAT CONTINENTAL SCALE PATTERNS OF SOIL BACTERIAL DIVERSITY AND RICHNESS ARE LARGELY EXPLAINED


BY SOIL PH, DIVERSITY AND RICHNESS BEING GREATER IN NEUTRAL THAN ACIDIC SOILS. ADS  CAS  PubMed  PubMed Central  Google Scholar  * Saetre, P. & Bååth, E. Spatial variation and patterns


of soil microbial community structure in a mixed spruce–birch stand. _Soil Biol. Biochem._ 32, 909–917 (2000) CAS  Google Scholar  * Delgado-Baquerizo, M., Covelo, F., Maestre, F. T. &


Gallardo, A. Biological soil crusts affect small-scale spatial patterns of inorganic N in a semiarid Mediterranean grassland. _J. Arid Environ._ 91, 147–150 (2013) ADS  Google Scholar  *


Robertson, G. P. & Freckman, D. W. The spatial distribution of nematode trophic groups across a cultivated ecosystem. _Ecology_ 76, 1425–1432 (1995) Google Scholar  * Courtright, E. M.,


Wall, D. H. & Virginia, R. A. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. _Antarct. Sci._ 13, 9–17 (2001) ADS 


Google Scholar  * Placella, S. A., Brodie, E. L. & Firestone, M. K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial


groups. _Proc. Natl Acad. Sci. USA_ 109, 10931–10936 (2012)THIS STUDY SHOWED THAT SUDDEN INCREASES IN SOIL WATER AVAILABILITY FOLLOWING RAINFALL EVENTS AFTER PROLONGED DROUGHT CAUSE RAPID


AND SEQUENTIAL RESURRECTION OF DISTINCT, PHYLOGENETICALLY CLUSTERED GROUPS OF MICROORGANISMS, AND THAT THESE RAPID MICROBIAL RESPONSES ARE ASSOCIATED WITH SIGNIFICANT PULSES OF CO 2


PRODUCTION FROM SOIL. ADS  CAS  PubMed  PubMed Central  Google Scholar  * Placella, S. A. & Firestone, M. K. Transcriptional response of nitrifying communities to wetting of dry soil.


_Appl. Environ. Microbiol._ 79, 3294–3302 (2013) CAS  PubMed  PubMed Central  Google Scholar  * Bahn, M., Schmitt, M., Siegwolf, R., Richter, A. & Brüggemann, N. Does photosynthesis


affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? _New Phytol._ 182, 451–460 (2009) CAS  PubMed  PubMed Central  Google Scholar  * Högberg, M. N.


et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. _New Phytol._


187, 485–493 (2010) PubMed  Google Scholar  * Hamilton, E. W. & Frank, D. A. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass.


_Ecology_ 82, 2397–2402 (2001) Google Scholar  * Ayres, E., Dromph, K. M., Cook, R., Ostle, N. & Bardgett, R. D. The influence of below-ground herbivory and defoliation of a legume on


nitrogen transfer to neighbouring plants. _Funct. Ecol._ 21, 256–263 (2007) Google Scholar  * Guitian, R. & Bardgett, R. D. Plant and soil microbial responses to defoliation in temperate


semi-natural grassland. _Plant Soil_ 220, 271–277 (2000) CAS  Google Scholar  * Mikola, J. et al. Defoliation and patchy nutrient return drive grazing effects on plant and soil properties


in a dairy cow pasture. _Ecol. Monogr._ 79, 221–244 (2009) Google Scholar  * Schadt, C. W., Martin, A. P., Lipson, D. A. & Schmidt, S. K. Seasonal dynamics of previously unknown fungal


lineages in tundra soils. _Science_ 301, 1359–1361 (2003) ADS  CAS  PubMed  Google Scholar  * Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J. & Fierer, N. Temporal variability in


soil microbial communities across land-use types. _ISME J._ 7, 1641–1650 (2013) CAS  PubMed  PubMed Central  Google Scholar  * Yeates, G. W., Hawke, M. F. & Rijkse, W. C. Changes in


soil fauna and soil conditions under _Pinus radiata_ agroforestry regimes during a 25-year tree rotation. _Biol. Fertil. Soils_ 31, 391–406 (2000) Google Scholar  * Neutel, A. M.,


Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. _Science_ 296, 1120–1123 (2002) ADS  CAS  PubMed  Google Scholar  * Kardol, P., Bezemer,


T. M. & van der Putten, W. H. Temporal variation in plant–soil feedback controls succession. _Ecol. Lett._ 9, 1080–1088 (2006) PubMed  Google Scholar  * Walker, L. R., Wardle, D. A.,


Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. _J. Ecol._ 98, 725–736 (2010) Google Scholar  * Anderson, J. M.,


Ineson, P. & Huish, S. A. Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic-matter from deciduous woodlands. _Soil Biol. Biochem._ 15, 463–467 (1983)


Google Scholar  * Clarholm, M. Interactions of bacteria, protozoa and plants leading to mineralization of soil-nitrogen. _Soil Biol. Biochem._ 17, 181–187 (1985) CAS  Google Scholar  *


Ingham, R. E., Trofymow, J. A., Ingham, E. R. & Coleman, D. C. Interactions of bacteria, fungi, and their nematode grazers - effects on nutrient cycling and plant-growth. _Ecol. Monogr._


55, 119–140 (1985) Google Scholar  * Alphei, J., Bonkowski, M. & Scheu, S. Protozoa, Nematoda and Lumbricidae in the rhizosphere of _Hordelymus europaeus_ (Poaceae): Faunal


interactions, response of microorganisms and effects on plant growth. _Oecologia_ 106, 111–126 (1996) ADS  PubMed  Google Scholar  * Laakso, J. & Setälä, H. Sensitivity of primary


production to changes in the architecture of belowground food webs. _Oikos_ 87, 57–64 (1999) Google Scholar  * Hedlund, K. & Öhrn, M. S. Tritrophic interactions in a soil community


enhance decomposition rates. _Oikos_ 88, 585–591 (2000) Google Scholar  * Hunt, H. W. & Wall, D. H. Modelling the effects of loss of soil biodiversity on ecosystem function. _Glob.


Change Biol._ 8, 33–50 (2002) ADS  Google Scholar  * de Ruiter, P. C., Neutel, A. M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems.


_Science_ 269, 1257–1260 (1995) ADS  CAS  PubMed  Google Scholar  * Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity.


_Science_ 306, 1019–1020 (2004)THIS STUDY SHOWED THAT FUNCTIONAL DISSIMILARITY AMONG DETRITIVOROUS SPECIES, NOT SPECIES NUMBER, DRIVES COMMUNITY COMPOSITIONAL EFFECTS ON DECOMPOSITION AND


SOIL RESPIRATION. ADS  CAS  PubMed  Google Scholar  * Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: a review and synthesis of studies


examining diversity-function relationships. _Eur. J. Soil Sci._ 62, 105–116 (2011) CAS  Google Scholar  * Setälä, H., Berg, M. P. & Jones, T. H. in _Biological Diversity and Function in


Soils_ (eds Bardgett, R. D., Usher, M. B. & Hopkins, D. W. ) 236–249 (Cambridge Univ. Press, 2005) Google Scholar  * Handa, I. T. et al. Consequences of biodiversity loss for litter


decomposition across biomes. _Nature_ 509, 218–221 (2014) ADS  CAS  PubMed  Google Scholar  * de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land


use systems. _Proc. Natl Acad. Sci. USA_ 110, 14296–14301 (2013)THIS STUDY SHOWED THAT SOIL FOOD WEB PROPERTIES STRONGLY AND CONSISTENTLY PREDICT PROCESSES OF CARBON AND NITROGEN CYCLING


ACROSS LAND USE SYSTEMS AND GEOGRAPHIC LOCATIONS, AND THEY WERE A BETTER PREDICTOR OF THESE PROCESSES THAN AGRICULTURAL LAND USE INTENSITY. ADS  CAS  PubMed  PubMed Central  Google Scholar 


* de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. _Nature Clim. Change_ 2, 276–280 (2012) ADS  Google Scholar  * Zhou, J., Deng, Y., Luo,


F., He, Z. L. & Yang, Y. F. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2 . _MBio_ 2, e00122–11 (2011) PubMed  PubMed Central 


Google Scholar  * Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. _Science_ 339, 1615–1618 (2013) ADS  CAS  PubMed  Google Scholar


  * Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. _Proc. Natl Acad. Sci. USA_ 109, 21390–21395 (2012) ADS  CAS  PubMed 


PubMed Central  Google Scholar  * Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. _Science_ 304, 1629–1633 (2004) ADS  CAS  PubMed  Google Scholar  *


Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. _J. Ecol._ 85, 561–573 (1997) Google


Scholar  * Gange, A. C., Brown, V. K. & Sinclair, G. S. Vesicular–arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. _Funct. Ecol._ 7, 616–622


(1993) Google Scholar  * Van der Putten, W. H., van Dijk, C. & Peters, B. A. M. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. _Nature_ 362, 53–56


(1993) ADS  Google Scholar  * Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. _Nature_ 417, 67–70 (2002) ADS  CAS  PubMed  Google


Scholar  * Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. _Ecol. Lett._ 14, 36–41


(2011) PubMed  Google Scholar  * Packer, A. & Clay, K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. _Nature_ 404, 278–281 (2000) ADS  CAS  PubMed 


Google Scholar  * Eisenhauer, N. & Scheu, S. Invasibility of experimental grassland communities: the role of earthworms, plant functional group identity and seed size. _Oikos_ 117,


1026–1036 (2008) Google Scholar  * van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. _Nature_ 396, 69–72


(1998) ADS  CAS  Google Scholar  * Wagg, C., Jansa, J., Stadler, M., Schmid, B. & van der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant–plant competition.


_Ecology_ 92, 1303–1313 (2011) PubMed  Google Scholar  * Bradford, M. A. et al. Impacts of soil faunal community composition on model grassland ecosystems. _Science_ 298, 615–618 (2002) ADS


  CAS  PubMed  Google Scholar  * Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality.


_Proc. Natl Acad. Sci. USA_ 111, 5266–5270 (2014) ADS  CAS  PubMed  PubMed Central  Google Scholar  * Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via


induced plant defenses. _Trends Ecol. Evol._ 20, 617–624 (2005) PubMed  Google Scholar  * Biere, A. & Bennett, A. E. Three-way interactions between plants, microbes and insects. _Funct.


Ecol._ 27, 567–573 (2013) Google Scholar  * Soler, R. et al. Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. _J. Chem. Ecol._ 38,


755–767 (2012) CAS  PubMed  PubMed Central  Google Scholar  * Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack.


_Ecol. Lett._ 16, 835–843 (2013)THIS STUDY SHOWED THAT PLANTS THAT WERE NOT ATTACKED BY ABOVEGROUND APHIDS INDUCED DEFENCE RESPONSES WHEN CONNECTED BY ARBUSCULAR MYCORRHIZAL FUNGI TO PLANTS


THAT WERE ATTACKED BY APHIDS, SUGGESTING THAT MYCORRHIZAL NETWORKS MAY ENABLE PLANTS TO ANTICIPATE INSECT ATTACK BY DEFENCE INDUCTION. PubMed  Google Scholar  * Kostenko, O., van de Voorde,


T. F. J., Mulder, P. P. J., van der Putten, W. H. & Bezemer, T. M. Legacy effects of aboveground–belowground interactions. _Ecol. Lett._ 15, 813–821 (2012)THIS STUDY SHOWED THAT FEEDING


ON PLANTS BY ABOVEGROUND INSECTS CHANGED SOIL FUNGAL COMMUNITY COMPOSITION, WHICH INFLUENCED BOTH PLANT-FEEDING AND CARNIVOROUS INSECTS ON PLANTS THAT COLONIZED THIS SOIL; INDICATING THAT


ABOVEGROUND MULTITROPHIC INTERACTIONS ARE AFFECTED BY THOSE OF THE PAST THROUGH A LEGACY EFFECT ON SOIL BIOTA. PubMed  Google Scholar  * Garbeva, P., Hol, W. H. G., Termorshuizen, A. J.,


Kowalchuk, G. A. & de Boer, W. Fungistasis and general soil biostasis – a new synthesis. _Soil Biol. Biochem._ 43, 469–477 (2011) CAS  Google Scholar  * Kiers, E. T. et al. Reciprocal


rewards stabilize cooperation in the mycorrhizal symbiosis. _Science_ 333, 880–882 (2011)THIS STUDY SHOWED THAT BOTH PLANTS AND MYCORRHIZAL FUNGI HAVE CONTROL OVER MUTUAL INTERACTIONS AND


THAT PLANTS MAY FAVOUR COOPERATING FUNGI OVER CHEATERS; FINDINGS SUGGEST THAT THE RHIZOSPHERE IS A MARKET PLACE WHERE GOODS ARE EXCHANGED BY EQUAL PARTNERS, RATHER THAN WHERE GOODS ARE


STOLEN. ADS  CAS  PubMed  Google Scholar  * Gange, A. C., Gange, E. G., Sparks, T. H. & Boddy, L. Rapid and recent changes in fungal fruiting patterns. _Science_ 316, 71 (2007) ADS  CAS


  PubMed  Google Scholar  * Kauserud, H. et al. Mushroom fruiting and climate change. _Proc. Natl Acad. Sci. USA_ 105, 3811–3814 (2008) ADS  CAS  PubMed  PubMed Central  Google Scholar  *


Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. _Ecol. Lett._ 16, 469–477 (2013) PubMed  Google Scholar  * Cameron, T. C., O’Sullivan,


D., Reynolds, A., Piertney, S. B. & Benton, T. G. Eco-evolutionary dynamics in response to selection on life-history. _Ecol. Lett._ 16, 754–763 (2013) PubMed  PubMed Central  Google


Scholar  * Philippot, L., Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. _Nature Rev. Microbiol._ 11,


789–799 (2013) CAS  Google Scholar  * Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. _Proc. Natl Acad. Sci. USA_ 109,


14058–14062 (2012)THIS STUDY SHOWED THAT ADAPTIVE PLANT RESPONSES TO DROUGHT STRESS ARE GOVERNED BY RAPID RESPONSES OF SOIL MICROBIAL COMMUNITIES AND SUGGESTS THAT PLANTS MAY BENEFIT FROM


ASSOCIATIONS WITH DIVERSE SOIL MICROBIAL COMMUNITIES WHEN FACED WITH RAPID ENVIRONMENTAL CHANGE. ADS  CAS  PubMed  PubMed Central  Google Scholar  * Ayres, E. et al. Home-field advantage


accelerates leaf litter decomposition in forests. _Soil Biol. Biochem._ 41, 606–610 (2009) CAS  Google Scholar  * Veen, G. F., Freschet, G. T., Ordonez, A. & Wardle, D. A. Litter quality


and environmental controls of home-field advantage effects on litter decomposition. _Oikos_ http://dx.doi.org/10.1111/oik.01374 (1 July 2014) * Gundale, M. J. et al. Interactions with soil


biota shift from negative to positive when a tree species is moved outside its native range. _New Phytol._ 202, 415–421 (2014) PubMed  Google Scholar  * Diez, J. M. et al. Negative soil


feedbacks accumulate over time for non-native plant species. _Ecol. Lett._ 13, 803–809 (2010)THIS STUDY SHOWED THAT NON-NATIVE PLANT SPECIES INTRODUCED LONGER AGO IN NEW ZEALAND INDUCE MORE


SOIL PATHOGENIC ACTIVITY THAN SPECIES INTRODUCED MORE RECENTLY, INDICATING THAT NEGATIVE SOIL FEEDBACK TOWARD INTRODUCED PLANT SPECIES INCREASES WITH TIME SINCE INTRODUCTION, WHICH MAY


ULTIMATELY CONTRIBUTE TO THEIR CONTROL. PubMed  Google Scholar  * Dostál, P., Müllerová, J., Pyšek, P., Pergl, J. & Klinerová, T. The impact of an invasive plant changes over time.


_Ecol. Lett._ 16, 1277–1284 (2013) PubMed  Google Scholar  * Reinhart, K. O., Tytgat, T., Van der Putten, W. H. & Clay, K. Virulence of soil-borne pathogens and invasion by _Prunus


serotina_. _New Phytol._ 186, 484–495 (2010) PubMed  Google Scholar  * Lankau, R. A., Nuzzo, V., Spyreas, G. & Davis, A. S. Evolutionary limits ameliorate the negative impact of an


invasive plant. _Proc. Natl Acad. Sci. USA_ 106, 15362–15367 (2009)THIS STUDY SHOWED THAT INTRODUCED EXOTIC PLANT SPECIES PRODUCE LESS PHYTOTOXINS WITH INCREASING TIME SINCE INTRODUCTION,


WHICH HAD STRONG IMPACTS ON SOIL COMMUNITY FUNCTIONING; RESULTS SUGGEST THAT EFFECTS OF INVASIVE SPECIES ON SOIL BIODIVERSITY MAY CHANGE OVER TIME DUE TO EVOLUTIONARY PROCESSES IN THE


PLANTS. ADS  CAS  PubMed  PubMed Central  Google Scholar  * Lankau, R. A. Resistance and recovery of soil microbial communities in the face of _Alliaria petiolata_ invasions. _New Phytol._


189, 536–548 (2011) PubMed  Google Scholar  * Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial


communities. _ISME J._ 6, 343–351 (2012) PubMed  Google Scholar  * Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs.


_Nature_ 442, 265–269 (2006) ADS  CAS  PubMed  Google Scholar  * Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity–magnitude, dynamics, and controlling factors. _Science_


296, 1064–1066 (2002) ADS  CAS  PubMed  Google Scholar  * Dykhuizen, D. E. Santa Rosalia revisited: why are there so many species of bacteria? _Antonie van Leeuwenhoek_ 73, 25–33 (1998) CAS


  PubMed  Google Scholar  * Fierer, N. et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. _Appl. Environ.


Microbiol._ 73, 7059–7066 (2007) CAS  PubMed  PubMed Central  Google Scholar  * Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale


niche partitioning. _Ecol. Monogr._ 84, 3–20 (2014) Google Scholar  * Öpik, M. et al. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal


fungi. _Mycorrhiza_ 23, 411–430 (2013) PubMed  Google Scholar  * Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. _Mol. Ecol._ 22, 5271–5277 (2013)


PubMed  Google Scholar  * Kivlin, S. N., Hawkes, C. V. & Treseder, K. K. Global diversity and distribution of arbuscular mycorrhizal fungi. _Soil Biol. Biochem._ 43, 2294–2303 (2011) CAS


  Google Scholar  * Miller, R. M., Reinhardt, D. R. & Jastrow, J. D. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities.


_Oecologia_ 103, 17–23 (1995) ADS  CAS  PubMed  Google Scholar  * Neher, D. A., Wu, J., Barbercheck, M. E. & Anas, O. Ecosystem type affects interpretation of soil nematode community


measures. _Appl. Soil Ecol._ 30, 47–64 (2005) Google Scholar  * Yeates, G. W. & Bongers, T. Nematode diversity in agroecosystems. _Agric. Ecosyst. Environ._ 74, 113–135 (1999) Google


Scholar  * Noordijk J., Kleukers R. M. J. C., van Nieukerken E. J., van Loon A. J., eds. _De Nederlandse biodiversiteit – Nederlandse Fauna 10_ (Nederlands Centrum voor Biodiversiteit


Naturalis & European Invertebrate Survey, 2010) * Briones, M. J. I., Ineson, P. & Heinemeyer, A. Predicting potential impacts of climate change on the geographical distribution of


enchytraeids: a meta-analysis approach. _Glob. Change Biol._ 13, 2252–2269 (2007) ADS  Google Scholar  * Norton, R. A. & Behan-Pelletier, V. M. in _A Manual of Acarology_ (eds Krantz, G.


W. & Walter, D. E. ) 430–564 (Texas Tech Univ. Press, 2009) Google Scholar  * Richard, B. et al. Spatial organization of earthworm assemblages in pastures of northwestern France. _Eur.


J. Soil Biol._ 53, 62–69 (2012) Google Scholar  * Lavelle, P. & Lapied, E. Endangered earthworms of Amazonia: an homage to Gilberto Righi. _Pedobiologia_ 47, 419–427 (2003) Google


Scholar  Download references ACKNOWLEDGEMENTS This work was conceived as part of a symposium on Soil Biodiversity and Ecosystem Functioning at INTECOL, London 2013, which was supported by


the British Ecological Society. The work was supported by the European Commission through the project Ecological Function and Biodiversity Indicators in European Soils (EcoFINDERS)


(FP7-264465) and an ERC-ADV grant to W.H.v.d.P. We are grateful to P. Brinkman for logistical support, and A. Jones from the Joint Research Centre, Ispra, for providing photographs, and A.


Bardgett for compiling Fig. 1. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester M13 9PT, United


Kingdom, Richard D. Bardgett * Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands, Wim H. van der Putten *


Laboratory of Nematology, Wageningen University, PO Box 8123, 6700 ES Wageningen, The Netherlands, Wim H. van der Putten Authors * Richard D. Bardgett View author publications You can also


search for this author inPubMed Google Scholar * Wim H. van der Putten View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS R.D.B and W.H.v.d.P


contributed equally to the planning and writing of the manuscript. CORRESPONDING AUTHOR Correspondence to Richard D. Bardgett. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Bardgett, R., van der Putten, W. Belowground biodiversity and ecosystem functioning. _Nature_ 515, 505–511 (2014). https://doi.org/10.1038/nature13855 Download citation * Received: 29 July


2014 * Accepted: 09 September 2014 * Published: 26 November 2014 * Issue Date: 27 November 2014 * DOI: https://doi.org/10.1038/nature13855 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative