Regulation and function of the cgas–sting pathway of cytosolic dna sensing

Regulation and function of the cgas–sting pathway of cytosolic dna sensing


Play all audios:


ABSTRACT The recognition of microbial nucleic acids is a major mechanism by which the immune system detects pathogens. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that


activates innate immune responses through production of the second messenger cGAMP, which activates the adaptor STING. The cGAS–STING pathway not only mediates protective immune defense


against infection by a large variety of DNA-containing pathogens but also detects tumor-derived DNA and generates intrinsic antitumor immunity. However, aberrant activation of the cGAS


pathway by self DNA can also lead to autoimmune and inflammatory disease. Thus, the cGAS pathway must be properly regulated. Here we review the recent advances in understanding of the


cGAS–STING pathway, focusing on the regulatory mechanisms and roles of this pathway in heath and disease. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CROSSTALK BETWEEN CGAS–STING SIGNALING


AND CELL DEATH Article 18 September 2020 CYTOSOLIC DNA SENSING BY CGAS: REGULATION, FUNCTION, AND HUMAN DISEASES Article Open access 30 April 2021 CGAMP-ACTIVATED CGAS–STING SIGNALING: ITS


BACTERIAL ORIGINS AND EVOLUTIONARY ADAPTATION BY METAZOANS Article 09 March 2023 REFERENCES * Pandey, S., Kawai, T. & Akira, S. Microbial sensing by Toll-like receptors and intracellular


nucleic acid sensors. _Cold Spring Harb. Perspect. Biol._ 7, a016246 (2014). PubMed  Google Scholar  * Broz, P. & Dixit, V.M. Inflammasomes: mechanism of assembly, regulation and


signalling. _Nat. Rev. Immunol._ 16, 407–420 (2016). CAS  PubMed  Google Scholar  * Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. & Fujita, T. Viral RNA detection by RIG-I-like


receptors. _Curr. Opin. Immunol._ 32, 48–53 (2015). CAS  PubMed  Google Scholar  * Cai, X., Chiu, Y.H. & Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling.


_Mol. Cell_ 54, 289–296 (2014). CAS  PubMed  Google Scholar  * Land, W.G. _Innate Alloimmunity, Part 1: Innate Immunity and Host Defense_ (Pabst Science Publishers, 2011). Google Scholar  *


Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. _Science_ 339, 786–791 (2013). CAS  PubMed


  Google Scholar  * Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. _Cell Rep._


6, 421–430 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Li, X. et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. _Immunity_ 39, 1019–1031


(2013). CAS  PubMed  Google Scholar  * Kranzusch, P.J., Lee, A.S., Berger, J.M. & Doudna, J.A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate


immunity. _Cell Reports_ 3, 1362–1368 (2013). CAS  PubMed  Google Scholar  * Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic


GMP-AMP synthase. _Cell_ 153, 1094–1107 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. _Nature_ 498, 332–337


(2013). CAS  PubMed  PubMed Central  Google Scholar  * Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. _Science_ 339, 826–830


(2013). CAS  PubMed  Google Scholar  * Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. _Mol. Cell_ 51, 226–235


(2013). CAS  PubMed  Google Scholar  * Diner, E.J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. _Cell Reports_ 3,


1355–1361 (2013). CAS  PubMed  Google Scholar  * Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. _Nature_ 498, 380–384 (2013). CAS


  PubMed  PubMed Central  Google Scholar  * Ishikawa, H. & Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. _Nature_ 455, 674–678 (2008).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. _Immunity_ 29,


538–550 (2008). CAS  PubMed  Google Scholar  * Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. _Proc. Natl. Acad. Sci. USA_ 106,


20842–20846 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate


immunity. _Nature_ 461, 788–792 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and


autoinflammatory disease. _Cell Host Microbe_ 18, 157–168 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Tanaka, Y. & Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in


the cytosolic DNA signaling pathway. _Sci. Signal._ 5, ra20 (2012). PubMed  PubMed Central  Google Scholar  * Fitzgerald, K.A. et al. IKKe and TBK1 are essential components of the IRF3


signaling pathway. _Nat. Immunol._ 4, 491–496 (2003). CAS  PubMed  Google Scholar  * Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. _Science_


300, 1148–1151 (2003). CAS  PubMed  Google Scholar  * Herzner, A.-M. et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. _Nat.


Immunol._ 16, 1025–1033 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and


potentiates STING-dependent immune sensing. _Immunity_ 39, 482–495 (2013). CAS  PubMed  Google Scholar  * Seo, G.J. et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. _Cell


Rep._ 13, 440–449 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Xia, P. et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral


immunity. _Nat. Immunol._ 17, 369–378 (2016). CAS  PubMed  Google Scholar  * Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral


response. _Nature_ 472, 481–485 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Ma, F. et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor


cGAS. _J. Immunol._ 194, 1545–1554 (2015). CAS  PubMed  Google Scholar  * Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons


through the RIG-I pathway. _Cell_ 138, 576–591 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Xia, T., Konno, H., Ahn, J. & Barber, G.N. Deregulation of STING signaling in


colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. _Cell Rep._ 14, 282–297 (2016). CAS  PubMed  Google Scholar  * Thomsen, M.K. et al. Lack of


immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. _Hepatology_ 64, 746–759 (2016). CAS  PubMed  Google Scholar  * Berg, R.K. et al. T cells detect


intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication. _PLoS One_ 9, e84513 (2014). PubMed  PubMed Central  Google Scholar  * Li, L. et


al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. _Nat. Chem. Biol._ 10, 1043–1048 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Ablasser, A. et al. Cell


intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. _Nature_ 503, 530–534 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Gentili, M. et al.


Transmission of innate immune signaling by packaging of cGAMP in viral particles. _Science_ 349, 1232–1236 (2015). CAS  PubMed  Google Scholar  * Bridgeman, A. et al. Viruses transfer the


antiviral second messenger cGAMP between cells. _Science_ 349, 1228–1232 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Gao, P. et al. Structure-function analysis of STING activation


by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. _Cell_ 154, 748–762 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Yin, Q. et al. Cyclic di-GMP sensing via the innate


immune signaling protein STING. _Mol. Cell_ 46, 735–745 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Shu, C., Yi, G., Watts, T., Kao, C.C. & Li, P. Structure of STING bound to


cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. _Nat. Struct. Mol. Biol._ 19, 722–724 (2012). CAS  PubMed  PubMed Central  Google Scholar  *


Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. _Nat. Struct. Mol. Biol._ 19, 725–727 (2012). CAS  PubMed  Google Scholar  * Ouyang, S. et


al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. _Immunity_ 36, 1073–1086 (2012). CAS  PubMed  Google Scholar  *


Tsuchiya, Y., Jounai, N., Takeshita, F., Ishii, K.J. & Mizuguchi, K. Ligand-induced ordering of the C-terminal tail primes STING for phosphorylation by TBK1. _EBioMedicine_ 9, 87–96


(2016). PubMed  PubMed Central  Google Scholar  * Shi, H., Wu, J., Chen, Z.J. & Chen, C. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune


adaptor protein STING. _Proc. Natl. Acad. Sci. USA_ 112, 8947–8952 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Kim, S. et al. Anticancer flavonoids are mouse-selective STING


agonists. _ACS Chem. Biol._ 8, 1396–1401 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Conlon, J. et al. Mouse, but not human STING, binds and signals in response to the vascular


disrupting agent 5,6-dimethylxanthenone-4-acetic acid. _J. Immunol._ 190, 5216–5225 (2013). CAS  PubMed  Google Scholar  * Cavlar, T., Deimling, T., Ablasser, A., Hopfner, K.P. &


Hornung, V. Species-specific detection of the antiviral small-molecule compound CMA by STING. _EMBO J._ 32, 1440–1450 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Liu, S. et al.


Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. _Science_ 347, aaa2630 (2015). PubMed  Google Scholar  * Konno, H., Konno, K. & Barber,


G.N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. _Cell_ 155, 688–698 (2013). CAS  PubMed  Google Scholar  * Zhang, J., Hu,


M.M., Wang, Y.Y. & Shu, H.B. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. _J.


Biol. Chem._ 287, 28646–28655 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular


double-stranded DNA. _Immunity_ 33, 765–776 (2010). CAS  PubMed  Google Scholar  * Wang, Q. et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying


the adaptor STING. _Immunity_ 41, 919–933 (2014). CAS  PubMed  Google Scholar  * Zhong, B. et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the


adaptor protein MITA. _Immunity_ 30, 397–407 (2009). CAS  PubMed  Google Scholar  * Wang, Y. et al. TRIM30a Is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered


response by targeting STING. _PLoS Pathog._ 11, e1005012 (2015). PubMed  PubMed Central  Google Scholar  * Mukai, K. et al. Activation of STING requires palmitoylation at the Golgi. _Nat.


Commun._ 7, 11932 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Paludan, S.R. & Bowie, A.G. Immune sensing of DNA. _Immunity_ 38, 870–880 (2013). CAS  PubMed  PubMed Central 


Google Scholar  * Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. _Nature_ 451, 725–729 (2008). CAS  PubMed  Google Scholar  * Gray,


E.E. et al. The AIM2-like receptors are dispensable for the interferon response to intracellular DNA. _Immunity_ 45, 255–266 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Yoh, S.M.


et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. _Cell_ 161, 1293–1305 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Liang, Q. et al. Crosstalk


between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. _Cell Host Microbe_ 15, 228–238 (2014). CAS  PubMed  PubMed Central  Google Scholar 


* Paijo, J. et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. _PLoS Pathog._ 12, e1005546 (2016). PubMed  PubMed Central 


Google Scholar  * Lio, C.W. et al. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. _J. Virol._ 90, 7789–7797 (2016). CAS  PubMed  PubMed Central  Google


Scholar  * Zhang, G. et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. _Proc. Natl. Acad. Sci. USA_ 113, E1034–E1043


(2016). CAS  PubMed  PubMed Central  Google Scholar  * Wu, J.J. et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. _Cell Host Microbe_ 18, 333–344 (2015). CAS  PubMed 


PubMed Central  Google Scholar  * Ma, Z. et al. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. _Proc. Natl. Acad. Sci. USA_ 112, E4306–E4315 (2015). CAS  PubMed 


PubMed Central  Google Scholar  * Li, X.D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. _Science_ 341, 1390–1394 (2013). CAS  PubMed  Google


Scholar  * Schoggins, J.W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. _Nature_ 505, 691–695 (2014). CAS  PubMed  Google Scholar  *


Holm, C.K. et al. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. _Nat. Immunol._ 13, 737–743 (2012). CAS  PubMed  PubMed Central  Google Scholar  *


Rasaiyaah, J. et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. _Nature_ 503, 402–405 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Lahaye, X. et


al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. _Immunity_ 39, 1132–1142 (2013). CAS  PubMed  Google Scholar  *


Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. _Science_ 341, 903–906 (2013). CAS  PubMed  Google Scholar  * Zeng, M. et al. MAVS, cGAS, and


endogenous retroviruses in T-independent B cell responses. _Science_ 346, 1486–1492 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Portnoy, D.A., Auerbuch, V. & Glomski, I.J.


The cell biology of _Listeria monocytogenes_ infection: the intersection of bacterial pathogenesis and cell-mediated immunity. _J. Cell Biol._ 158, 409–414 (2002). CAS  PubMed  PubMed


Central  Google Scholar  * Watson, R.O. et al. The cytosolic sensor cGAS detects _Mycobacterium tuberculosis_ DNA to induce type I interferons and activate autophagy. _Cell Host Microbe_ 17,


811–819 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Wassermann, R. et al. _Mycobacterium tuberculosis_ differentially activates cGAS- and inflammasome-dependent intracellular


immune responses through ESX-1. _Cell Host Microbe_ 17, 799–810 (2015). CAS  PubMed  Google Scholar  * Collins, A.C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for


_Mycobacterium tuberculosis_. _Cell Host Microbe_ 17, 820–828 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Hansen, K. et al. _Listeria monocytogenes_ induces IFNb expression


through an IFI16-, cGAS- and STING-dependent pathway. _EMBO J._ 33, 1654–1666 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Storek, K.M., Gertsvolf, N.A., Ohlson, M.B. & Monack,


D.M. cGAS and Ifi204 cooperate to produce type I IFNs in response to _Francisella_ infection. _J. Immunol._ 194, 3236–3245 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y.


et al. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-b during _Chlamydia trachomatis_ infection. _J. Immunol._ 193, 2394–2404 (2014). CAS  PubMed  Google Scholar


  * Andrade, W.A. et al. Type I interferon induction by _Neisseria gonorrhoeae_: dual requirement of cyclic GMP-AMP synthase and Toll-like receptor 4. _Cell Rep._ 15, 2438–2448 (2016). CAS 


PubMed  PubMed Central  Google Scholar  * Andrade, W.A. et al. Group B streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. _Cell Host Microbe_ 20,


49–59 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Christensen, M.H. et al. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression.


_EMBO J._ 35, 1385–1399 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Lau, L., Gray, E.E., Brunette, R.L. & Stetson, D.B. DNA tumor virus oncogenes antagonize the cGAS-STING


DNA-sensing pathway. _Science_ 350, 568–571 (2015). CAS  PubMed  Google Scholar  * Crow, Y.J. Type I interferonopathies: mendelian type I interferon up-regulation. _Curr. Opin. Immunol._ 32,


7–12 (2015). CAS  PubMed  Google Scholar  * Gray, E.E., Treuting, P.M., Woodward, J.J. & Stetson, D.B. Cutting edge: cGAS is required for lethal autoimmune disease in the


Trex1-deficient mouse model of Aicardi-Goutières syndrome. _J. Immunol._ 195, 1939–1943 (2015). CAS  PubMed  Google Scholar  * Gao, D. et al. Activation of cyclic GMP-AMP synthase by


self-DNA causes autoimmune diseases. _Proc. Natl. Acad. Sci. USA_ 112, E5699–E5705 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Gall, A. et al. Autoimmunity initiates in


nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. _Immunity_ 36, 120–131 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Pokatayev,


V. et al. RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. _J. Exp. Med._ 213, 329–336 (2016). CAS  PubMed  PubMed


Central  Google Scholar  * Mackenzie, K.J. et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. _EMBO J._ 35, 831–844 (2016). CAS  PubMed  PubMed Central 


Google Scholar  * Lindahl, T., Barnes, D.E., Yang, Y.G. & Robins, P. Biochemical properties of mammalian TREX1 and its association with DNA replication and inherited inflammatory


disease. _Biochem. Soc. Trans._ 37, 535–538 (2009). CAS  PubMed  Google Scholar  * Yang, Y.G., Lindahl, T. & Barnes, D.E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint


activation and autoimmune disease. _Cell_ 131, 873–886 (2007). CAS  PubMed  Google Scholar  * Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal


liver. _Science_ 292, 1546–1549 (2001). CAS  PubMed  Google Scholar  * Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-beta produced in


mouse embryos carrying undigested DNA. _Nat. Immunol._ 6, 49–56 (2005). CAS  PubMed  Google Scholar  * Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like


receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. _J. Exp. Med._ 202, 1333–1339 (2005). CAS  PubMed  PubMed Central  Google


Scholar  * Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. _N. Engl. J. Med._ 371, 507–518 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Dunn, G.P., Koebel,


C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. _Nat. Rev. Immunol._ 6, 836–848 (2006). CAS  PubMed  Google Scholar  * Fuertes, M.B., Woo, S.R., Burnett, B., Fu,


Y.X. & Gajewski, T.F. Type I interferon response and innate immune sensing of cancer. _Trends Immunol._ 34, 67–73 (2013). CAS  PubMed  Google Scholar  * Corrales, L. & Gajewski, T.F.


Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy. _Cytokine_ 77, 245–247 (2016). PubMed  Google Scholar  * Woo, S.R. et al. STING-dependent cytosolic DNA


sensing mediates innate immune recognition of immunogenic tumors. _Immunity_ 41, 830–842 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Deng, L. et al. STING-dependent cytosolic DNA


sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. _Immunity_ 41, 843–852 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Liu, X.


et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. _Nat. Med._ 21, 1209–1215 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Demaria, O. et al. STING


activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. _Proc. Natl. Acad. Sci. USA_ 112, 15408–15413 (2015). CAS  PubMed  PubMed Central  Google


Scholar  * Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. _Cell Rep._ 11, 1018–1030 (2015). CAS 


PubMed  PubMed Central  Google Scholar  * Huang, L. et al. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. _J. Immunol._ 191,


3509–3513 (2013). CAS  PubMed  Google Scholar  * Lemos, H. et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. _Cancer Res._ 76, 2076–2081


(2016). CAS  PubMed  PubMed Central  Google Scholar  * Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. _Nature_ 533, 493–498 (2016). CAS  PubMed


  PubMed Central  Google Scholar  Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center


of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China Qi Chen * Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas,


USA Lijun Sun & Zhijian J Chen * Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA Lijun Sun & Zhijian J Chen Authors * Qi Chen


View author publications You can also search for this author inPubMed Google Scholar * Lijun Sun View author publications You can also search for this author inPubMed Google Scholar *


Zhijian J Chen View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Zhijian J Chen. ETHICS DECLARATIONS COMPETING


INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chen, Q., Sun, L. & Chen, Z.


Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. _Nat Immunol_ 17, 1142–1149 (2016). https://doi.org/10.1038/ni.3558 Download citation * Received: 18 July 2016 *


Accepted: 16 August 2016 * Published: 20 September 2016 * Issue Date: October 2016 * DOI: https://doi.org/10.1038/ni.3558 SHARE THIS ARTICLE Anyone you share the following link with will be


able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative