Regulatory t cells impede acute and long-term immunity to blood-stage malaria through ctla-4

Regulatory t cells impede acute and long-term immunity to blood-stage malaria through ctla-4


Play all audios:


ABSTRACT Malaria, caused by the protozoan _Plasmodium_, is a devastating mosquito-borne disease with the potential to affect nearly half the world's population1. Despite mounting


substantial T and B cell responses, humans fail to efficiently control blood-stage malaria or develop sterilizing immunity to reinfections2. Although forkhead box P3 (FOXP3)+CD4+ regulatory


T (Treg) cells form a part of these responses3,4,5, their influence remains disputed and their mode of action is unknown. Here we show that Treg cells expand in both humans and mice in


blood-stage malaria and interfere with conventional T helper cell responses and follicular T helper (TFH)–B cell interactions in germinal centers. Mechanistically, Treg cells function in a


critical temporal window to impede protective immunity through cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Targeting Treg cells or CTLA-4 in this precise window accelerated


parasite clearance and generated species-transcending immunity to blood-stage malaria in mice. Our study uncovers a critical mechanism of immunosuppression associated with blood-stage


malaria that delays parasite clearance and prevents development of potent adaptive immunity to reinfection. These data also reveal a temporally discrete and potentially therapeutically


amenable functional role for Treg cells and CTLA-4 in limiting antimalarial immunity. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days


cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE IMPACT OF _PLASMODIUM_-DRIVEN IMMUNOREGULATORY NETWORKS ON IMMUNITY TO MALARIA Article 11


June 2024 AGE-DEPENDENT CHANGES IN CIRCULATING TFH CELLS INFLUENCE DEVELOPMENT OF FUNCTIONAL MALARIA ANTIBODIES IN CHILDREN Article Open access 18 July 2022 INTERFERON-Γ SIGNAL DRIVES


DIFFERENTIATION OF T-BETHI ATYPICAL MEMORY B CELLS INTO PLASMA CELLS FOLLOWING _PLASMODIUM VIVAX_ INFECTION Article Open access 22 March 2022 REFERENCES * World Health Organization. _World


Malaria Report 2014_ (World Health Organization, 2014). * Tran, T.M. et al. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to


_Plasmodium falciparum_ infection. _Clin. Infect. Dis._ 57, 40–47 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ho, M. et al. Antigen-specific immunosuppression in human


malaria due to _Plasmodium falciparum_. _J. Infect. Dis._ 153, 763–771 (1986). Article  CAS  PubMed  Google Scholar  * Crompton, P.D. et al. Malaria immunity in man and mosquito: insights


into unsolved mysteries of a deadly infectious disease. _Annu. Rev. Immunol._ 32, 157–187 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Van Braeckel-Budimir, N., Kurup,


S.P. & Harty, J.T. Regulatory issues in immunity to liver and blood-stage malaria. _Curr. Opin. Immunol._ 42, 91–97 (2016). Article  CAS  PubMed  Google Scholar  * Perez-Mazliah, D.


& Langhorne, J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. _Front. Immunol._ 5, 671 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Butler, N.S. et al. Therapeutic


blockade of PD-L1 and LAG-3 rapidly clears established blood-stage _Plasmodium_ infection. _Nat. Immunol._ 13, 188–195 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Finney, O.C., Riley, E.M. & Walther, M. Regulatory T cells in malaria—friend or foe? _Trends Immunol._ 31, 63–70 (2010). Article  CAS  PubMed  Google Scholar  * Hansen, D.S. &


Schofield, L. Natural regulatory T cells in malaria: host or parasite allies? _PLoS Pathog._ 6, e1000771 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hisaeda, H. et al.


Escape of malaria parasites from host immunity requires CD4+CD25+ regulatory T cells. _Nat. Med._ 10, 29–30 (2004). Article  CAS  PubMed  Google Scholar  * Amante, F.H. et al. A role for


natural regulatory T cells in the pathogenesis of experimental cerebral malaria. _Am. J. Pathol._ 171, 548–559 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Randall, L.M.


et al. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities. _Infect. Immun._ 76, 3312–3320 (2008). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Nie, C.Q. et al. CD4+CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of _Plasmodium berghei_–specific TH1 responses


involved in cerebral malaria pathogenesis. _Infect. Immun._ 75, 2275–2282 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cambos, M., Bélanger, B., Jacques, A., Roulet, A.


& Scorza, T. Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during _Plasmodium chabaudi adami_ infection and do not contribute to immune


evasion. _Int. J. Parasitol._ 38, 229–238 (2008). Article  CAS  PubMed  Google Scholar  * Couper, K.N. et al. IL-10 from CD4+CD25−Foxp3−CD127− adaptive regulatory T cells modulates parasite


clearance and pathology during malaria infection. _PLoS Pathog._ 4, e1000004 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Abel, S. et al. Strong impact of CD4+Foxp3+


regulatory T cells and limited effect of T cell–derived IL-10 on pathogen clearance during _Plasmodium yoelii_ infection. _J. Immunol._ 188, 5467–5477 (2012). Article  CAS  PubMed  Google


Scholar  * Haque, A. et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded _in vivo_. _PLoS Pathog._ 6, e1001221 (2010). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Linterman, M.A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. _Nat. Med._ 17, 975–982 (2011). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Aloulou, M. et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. _Nat. Commun._ 7, 10579 (2016).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Setiady, Y.Y., Coccia, J.A. & Park, P.U. _In vivo_ depletion of CD4+FOXP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is


mediated by FcγRIII+ phagocytes. _Eur. J. Immunol._ 40, 780–786 (2010). Article  CAS  PubMed  Google Scholar  * Penaloza-MacMaster, P. et al. Interplay between regulatory T cells and PD-1


in modulating T cell exhaustion and viral control during chronic LCMV infection. _J. Exp. Med._ 211, 1905–1918 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Boyman, O.


& Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. _Nat. Rev. Immunol._ 12, 180–190 (2012). Article  CAS  PubMed  Google Scholar  * Schmidt,


A., Oberle, N. & Krammer, P.H. Molecular mechanisms of Treg-mediated T cell suppression. _Front. Immunol._ 3, 51 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Sebastian, M. et


al. Helios controls a limited subset of regulatory T cell functions. _J. Immunol._ 196, 144–155 (2016). Article  CAS  PubMed  Google Scholar  * Kim, H.J. et al. Stable inhibitory activity of


regulatory T cells requires the transcription factor Helios. _Science_ 350, 334–339 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wei, Y., Feng, J., Hou, Z., Wang, X.M.


& Yu, D. Flow cytometric analysis of circulating follicular helper T (TFH) and follicular regulatory T (TFR) populations in human blood. _Methods Mol. Biol._ 1291, 199–207 (2015).


Article  CAS  PubMed  Google Scholar  * Maceiras, A.R. & Graca, L. Identification of Foxp3+ T follicular regulatory (TFR) cells by flow cytometry. _Methods Mol. Biol._ 1291, 143–150


(2015). Article  CAS  PubMed  Google Scholar  * Boyle, M.J. et al. Human antibodies fix complement to inhibit _Plasmodiumfalciparum_ invasion of erythrocytes and are associated with


protection against malaria. _Immunity_ 42, 580–590 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cohen, S., McGREGOR, I.A. & Carrington, S. γ-globulin and acquired


immunity to human malaria. _Nature_ 192, 733–737 (1961). Article  CAS  PubMed  Google Scholar  * Sage, P.T. et al. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T


follicular helper, T follicular regulatory, and T regulatory cells. _Immunity_ 41, 1026–1039 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yadav, M., Stephan, S. &


Bluestone, J.A. Peripherally induced Tregs—role in immune homeostasis and autoimmunity. _Front. Immunol._ 4, 232 (2013). Article  PubMed  PubMed Central  Google Scholar  * Walker, L.S. &


Sansom, D.M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. _Nat. Rev. Immunol._ 11, 852–863 (2011). Article  CAS  PubMed  Google Scholar  * Yusuf, I. et al.


Germinal center B cell depletion diminishes CD4+ follicular T helper cells in autoimmune mice. _PLoS One_ 9, e102791 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hannani,


D. et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. _Cell Res._ 25, 208–224 (2015). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Ahlborg, N., Ling, I.T., Howard, W., Holder, A.A. & Riley, E.M. Protective immune responses to the 42-kilodalton (kDa) region of _Plasmodium


yoelii_ merozoite surface protein 1 are induced by the C-terminal 19-kDa region but not by the adjacent 33-kDa region. _Infect. Immun._ 70, 820–825 (2002). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Hafalla, J.C. et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to _Plasmodium_-induced acute immune pathology. _PLoS


Pathog._ 8, e1002504 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zander, R.A. et al. PD-1 co-inhibitory and OX40 co-stimulatory crosstalk regulates helper T cell


differentiation and anti-_Plasmodium_ humoral immunity. _Cell Host Microbe_ 17, 628–641 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * McKenzie, F.E. & Bossert, W.H.


Multispecies _Plasmodium_ infections of humans. _J. Parasitol._ 85, 12–18 (1999). Article  CAS  PubMed  Google Scholar  * Topalian, S.L., Drake, C.G. & Pardoll, D.M. Immune checkpoint


blockade: a common denominator approach to cancer therapy. _Cancer Cell_ 27, 450–461 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Korman, A.J., Peggs, K.S. & Allison,


J.P. Checkpoint blockade in cancer immunotherapy. _Adv. Immunol._ 90, 297–339 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, Y. et al. Th2 lymphoproliferative disorder


of _Lat_Y136F mutant mice unfolds independently of TCR–MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells. _J. Immunol._ 180, 1565–1575 (2008). Article  CAS 


PubMed  Google Scholar  * Liu, X. et al. Bcl6 expression specifies the T follicular helper cell program _in vivo_. _J. Exp. Med._ 209, 1841–1852 (2012). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Brundage, R.A. et al. Expression and phosphorylation of the _Listeria_ monocytogenes ActA protein in mammalian cells. _Proc. Natl. Acad. Sci. USA_ 90, 11890–11894 (1993).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Obeng-Adjei, N. et al. Circulating Th1-cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during


acute malaria in children. _Cell Rep._ 13, 425–439 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Villarino, N.F. et al. Composition of the gut microbiota modulates the


severity of malaria. _Proc. Natl. Acad. Sci. USA_ 113, 2235–2240 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, M.T., Kurup, S.P., Starbeck-Miller, G.R. & Harty,


J.T. Manipulating memory CD8 T cell numbers by timed enhancement of IL-2 signals. _J. Immunol._ 197, 1754–1761 (2016). Article  CAS  PubMed  Google Scholar  * Qureshi, O.S. et al.


Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. _Science_ 332, 600–603 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Fulton, R.B., Meyerholz, D.K. & Varga, S.M. Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus


infection. _J. Immunol._ 185, 2382–2392 (2010). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank L. Epping and S. Hartwig for assistance; S. Varga


(University of Iowa, PC61.5 antibody), T. Waldschmidt (University of Iowa, MR-1 antibody), and D.A.A. Vignali (University of Pittsburgh, hybridoma clone C9B7W) for reagents; S. Perlman and


V. Badovinac for constructive comments; the University of Iowa Central Microscopy Research Facility; and the New York University Insectary Core Facility. Support for these studies was


provided by grants from the National Institute of Allergy and Infectious Disease of the National Institutes of Health (NIAID/NIH) (AI42767, AI85515, AI95178, and AI100527 to J.T.H.). Support


for the laboratory of N.S.B. was provided by grants from NIAID/NIH (AI125446 and AI127481) and the National Institute of General Medical Science of the NIH (GM103447). The Malian study and


the analysis of human samples were funded by the Division of Intramural Research, NIAID/NIH. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Microbiology and Immunology,


University of Iowa Carver College of Medicine, Iowa City, Iowa, USA Samarchith P Kurup, Scott M Anthony, Noah S Butler & John T Harty * Laboratory of Immunogenetics, National Institute


of Allergy and Infectious Diseases, US National Institutes of Health, Rockville, Maryland, USA Nyamekye Obeng-Adjei & Peter D Crompton * Department of Epidemiology of Parasitic Diseases,


Malaria Research and Training Centre, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali Boubacar Traore & Ogobara


K Doumbo * Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA Noah S Butler & John T Harty * Department of Pathology, University


of Iowa Carver College of Medicine, Iowa City, Iowa, USA John T Harty Authors * Samarchith P Kurup View author publications You can also search for this author inPubMed Google Scholar *


Nyamekye Obeng-Adjei View author publications You can also search for this author inPubMed Google Scholar * Scott M Anthony View author publications You can also search for this author


inPubMed Google Scholar * Boubacar Traore View author publications You can also search for this author inPubMed Google Scholar * Ogobara K Doumbo View author publications You can also search


for this author inPubMed Google Scholar * Noah S Butler View author publications You can also search for this author inPubMed Google Scholar * Peter D Crompton View author publications You


can also search for this author inPubMed Google Scholar * John T Harty View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.P.K., N.O.-A.,


S.M.A., and N.S.B. designed, performed, analyzed, and interpreted experiments. S.P.K., N.S.B., P.D.C., and J.T.H. wrote the paper. B.T., O.K.D., and P.D.C. supervised the human studies and


designed, analyzed, and interpreted experiments. J.T.H. supervised the project and designed and interpreted experiments. CORRESPONDING AUTHOR Correspondence to John T Harty. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURES AND TABLE Supplementary Figures 1–14 and Supplementary


Table 1 (PDF 2025 kb) LIFE SCIENCES REPORTING SUMMARY (PDF 130 KB) CD4+ T–CELL CLUSTERS IN SPLENIC GCS OF _P. YOELLI_–INFECTED MICE. (MOV 23484 KB) TFH–B–TFR CELL CLUSTERS IN SPLENIC GCS OF


_P. YOELLI_–INFECTED MICE. (MOV 13157 KB) CLOSE APPOSITION OF B CELLS AND TFR CELLS IN GCS OF _P. YOELLI_–INFECTED MICE. (MOV 3831 KB) CTLA-4 ON THE B CELL SURFACE PROXIMAL TO A TFR CELL IN


A TFH–B–TFR CELL CLUSTER. (MOV 1481 KB) TFR CELLS TRANSIENTLY INTERACT WITH B CELLS IN THE SPLENIC GCS OF _P. YOELLI_–INFECTED MICE. (MOV 6442 KB) RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Kurup, S., Obeng-Adjei, N., Anthony, S. _et al._ Regulatory T cells impede acute and long-term immunity to blood-stage malaria through


CTLA-4. _Nat Med_ 23, 1220–1225 (2017). https://doi.org/10.1038/nm.4395 Download citation * Received: 28 April 2017 * Accepted: 05 July 2017 * Published: 11 September 2017 * Issue Date: 01


October 2017 * DOI: https://doi.org/10.1038/nm.4395 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link


is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative