Directed emission of cdse nanoplatelets originating from strongly anisotropic 2d electronic structure

Directed emission of cdse nanoplatelets originating from strongly anisotropic 2d electronic structure


Play all audios:


ABSTRACT Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new


route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence.


Analysis of the two-dimensional _k_-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the


electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the


optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic.


These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of


semiconductor-based emitters. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal


Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS BRIGHT SINGLE PHOTON EMITTERS WITH ENHANCED QUANTUM EFFICIENCY IN A TWO-DIMENSIONAL SEMICONDUCTOR COUPLED WITH DIELECTRIC NANO-ANTENNAS Article Open


access 18 October 2021 LOCALIZATION-LIMITED EXCITON OSCILLATOR STRENGTH IN COLLOIDAL CDSE NANOPLATELETS REVEALED BY THE OPTICALLY INDUCED STARK EFFECT Article Open access 31 May 2021 DIRECT


LINEARLY POLARIZED ELECTROLUMINESCENCE FROM PEROVSKITE NANOPLATELET SUPERLATTICES Article Open access 23 February 2024 REFERENCES * Basu, B. K. _Theory of Optical Processes in


Semiconductors_ (Oxford Univ. Press, 1997). Google Scholar  * Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. _J. Am.


Chem. Soc._ 130, 16504–16505 (2008). Article  CAS  Google Scholar  * Achtstein, A. W. et al. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets.


_Nano Lett._ 12, 3151–3157 (2012). Article  CAS  Google Scholar  * Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well


structured CdSe nanoribbons. _J. Am. Chem. Soc._ 128, 5632–5633 (2006). Article  CAS  Google Scholar  * Wang, Q., Kalantar-Zadeh, K., Kis, A., Coleman, J. & Strano, M. Electronics and


optoelectronics of two-dimensional transition metal dichalcogenides. _Nat. Nanotech._ 7, 699–712 (2012). Article  CAS  Google Scholar  * Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W.


Phonon-limited mobility in n-type single-layer MoS2 from first principles. _Phys. Rev. B_ 85, 115317 (2012). Article  Google Scholar  * Perera, M. M. et al. Improved carrier mobility in


few-layer MoS2 field-effect transistors with ionic-liquid gating. _ACS Nano_ 7, 4449–4458 (2013). Article  CAS  Google Scholar  * Benchamekh, R. et al. Tight-binding calculations of


image-charge effects in colloidal nanoscale platelets of CdSe. _Phys. Rev. B_ 89, 035307 (2014). Article  Google Scholar  * Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle


band structure calculation of monolayer, bilayer, and bulk MoS2 . _Phys. Rev. B_ 85, 205302 (2012). Article  Google Scholar  * Scott, R. et al. Time-resolved stark spectroscopy in CdSe


nanoplatelets: exciton binding energy, polarizability, and field-dependent radiative rates. _Nano Lett._ 16, 6576–6583 (2016). Article  CAS  Google Scholar  * Chernikov, A. et al. Exciton


binding energy and nonhydrogenic Rydberg series in monolayer _WS_2 . _Phys. Rev. Lett._ 113, 076802 (2014). Article  Google Scholar  * Naeem, A. et al. Giant exciton oscillator strength and


radiatively limited dephasing in two-dimensional platelets. _Phys. Rev. B_ 91, 121302 (2015). Article  Google Scholar  * Achtstein, A. W. et al. p-State luminescence in CdSe nanoplatelets:


role of lateral confinement and a longitudinal optical phonon bottleneck. _Phys. Rev. Lett._ 116, 116802 (2016). Article  Google Scholar  * Poellmann, C. et al. Resonant internal quantum


transitions and femtosecond radiative decay of excitons in monolayer WSe2 . _Nat. Mater._ 14, 889–893 (2016). Article  Google Scholar  * Wang, H. et al. Radiative lifetimes of excitons and


trions in monolayers of the metal dichalcogenide MoS2 . _Phys. Rev. B_ 93, 045407 (2016). Article  Google Scholar  * Schuller, J. A. et al. Orientation of luminescent excitons in layered


nanomaterials. _Nat. Nanotech._ 8, 271–276 (2013). Article  CAS  Google Scholar  * Brown, S. J., Schlitz, R. A., Chabinyc, M. L. & Schuller, J. A. Morphology-dependent optical


anisotropies in the n-type polymer P(NDI2OD-T2). _Phys. Rev. B_ 94, 165105 (2016). Article  Google Scholar  * Pukhov, K. K., Basiev, T. T. & Orlovskii, Y. V. Spontaneous emission in


dielectric nanoparticles. _JETP Lett._ 88, 12–18 (2008). Article  CAS  Google Scholar  * Chuang, S. L. & Chang, C. S. k·p method for strained wurtzite semiconductors. _Phys. Rev. B_ 54,


2491 (1996). Article  CAS  Google Scholar  * Empedocles, S., Neuhauser, R. & Bawendi, M. Three-dimensional orientation measurements of symmetric single chromophores using polarization


microscopy. _Nature_ 399, 126–130 (1999). Article  CAS  Google Scholar  * Koberling, F. et al. Fluorescence anisotropy and crystal structure of individual semiconductor nanocrystals. _J.


Phys. Chem. B_ 107, 7463–7471 (2003). Article  CAS  Google Scholar  * Rodina, A. & Efros, A. Effect of dielectric confinement on optical properties of colloidal nanostructures. _JETP


Lett._ 149, 641–655 (2016). Google Scholar  * Lieb, M. A., Zavislan, J. M. & Novotny, L. Single-molecule orientations determined by direct emission pattern imaging. _J. Opt. Soc. Am. B_


21, 1210–1215 (2004). Article  CAS  Google Scholar  * Kim, D. Y. et al. Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by


utilizing transverse-magnetic-dominant emission. _Light Sci. Appl._ 4, e263 (2015). Article  CAS  Google Scholar  * Brütting, W., Frischeisen, J., Schmidt, T. D., Scholz, B. J. & Mayr,


C. Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. _Phys. Status Solidi (A)_ 210, 44–65 (2013). Article  Google Scholar  * Schmidt, T. D. et al.


Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter's radiative quantum efficiency.


_Appl. Phys. Lett._ 99, 163302 (2011). Article  Google Scholar  * Chen, X. et al. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN


deep-ultraviolet light-emitting diodes. _Opt. Express_ 24, A935–A942 (2016). Article  CAS  Google Scholar  * Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic


structure. _Nat. Mater._ 10, 936–941 (2011). Article  CAS  Google Scholar  * The Merck Index Online, https://www.rsc.org/Merck-Index. * Achtstein, A. W. et al. Linear absorption in CdSe


nanoplates: thickness and lateral size dependency of the intrinsic absorption. _J. Phys. Chem. C_ 119, 20156–20161 (2015). Article  CAS  Google Scholar  * Dolgaleva, K. & Boyd, R. W.


Local-field effects in nanostructured photonic materials. _Adv. Opt. Photon._ 4, 1–77 (2012). Article  Google Scholar  * Taminiau, T. H., Karaveli, S., van Hulst, N. F. & Zia, R.


Quantifying the magnetic nature of light emission. _Nat. Commun._ 3, 979 (2012). Article  Google Scholar  * Adachi, S. _Handbook on Physical Properties of Semiconductors_ (Kluwer Academic,


2004). Google Scholar  * Yu, P. & Cardona, M. _Fundamentals of Semiconductors_ (Springer, 1996). Book  Google Scholar  * Novotny, L. & Hecht, B. _Principles of Nano-Optics_


(Cambridge Univ. Press, 2006). * Mooney, J. & Kambhampati, P. Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra. _J.


Phys. Chem. Lett._ 4, 3316–3318 (2013). Article  CAS  Google Scholar  * Sihvola, A. & Kong, J. Effective permittivity of dielectric mixtures. _IEEE Trans. Geosci. Remote Sens._ 26,


420–429 (1988). Article  Google Scholar  * Loudon, R. _The Quantum Theory of Light_ 3rd edn (Oxford Univ. Press, 2000). Google Scholar  * Cunningham, P. D., Boercker, J. E., Placencia, D.


& Tischler, J. G. Anisotropic absorption in PbSe nanorods. _ACS Nano_ 8, 581–590 (2014). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS R.S., U.W. and A.W.A


acknowledge DFG grants WO477–1/32 and AC290-1/1 and 2/1. J.I.C. acknowledges support from MINECO project CTQ2014-60178-P and UJI project P1-1B2014-24, M.A. from the CHEMREAGENTS program and


A.A. from BRFFI grant no. X16M-020. AUTHOR INFORMATION Author notes * Riccardo Scott and Jan Heckmann: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Institute of


Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, Berlin, 10623, Germany Riccardo Scott, Jan Heckmann, Nina Owschimikow, Ulrike Woggon, Nicolai B. Grosse 


& Alexander W. Achtstein * Research Institute for Physical Chemical Problems of Belarusian State University, Minsk, 220006, Belarus Anatol V. Prudnikau, Artsiom Antanovich, Aleksandr


Mikhailov & Mikhail Artemyev * Departament de Química Física i Analítica, Universitat Jaume I, Castelló de la Plana, E-12080, Spain Juan I. Climente Authors * Riccardo Scott View author


publications You can also search for this author inPubMed Google Scholar * Jan Heckmann View author publications You can also search for this author inPubMed Google Scholar * Anatol V.


Prudnikau View author publications You can also search for this author inPubMed Google Scholar * Artsiom Antanovich View author publications You can also search for this author inPubMed 


Google Scholar * Aleksandr Mikhailov View author publications You can also search for this author inPubMed Google Scholar * Nina Owschimikow View author publications You can also search for


this author inPubMed Google Scholar * Mikhail Artemyev View author publications You can also search for this author inPubMed Google Scholar * Juan I. Climente View author publications You


can also search for this author inPubMed Google Scholar * Ulrike Woggon View author publications You can also search for this author inPubMed Google Scholar * Nicolai B. Grosse View author


publications You can also search for this author inPubMed Google Scholar * Alexander W. Achtstein View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS J.H., R.S., A.V.P. and N.G. performed measurements. A.V.P., A.A., A.M. and M.A. made samples. J.H., R.S., N.B.G. and A.W.A. analysed, modelled and interpreted the data. J.I.C.


contributed theoretical interpretation. J.H., R.S., N.B.G, J.I.C., N.O. and A.W.A wrote the manuscript. U.W. contributed to discussions. CORRESPONDING AUTHOR Correspondence to Alexander W.


Achtstein. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary information (PDF


580 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Scott, R., Heckmann, J., Prudnikau, A. _et al._ Directed emission of CdSe nanoplatelets


originating from strongly anisotropic 2D electronic structure. _Nature Nanotech_ 12, 1155–1160 (2017). https://doi.org/10.1038/nnano.2017.177 Download citation * Received: 25 January 2017 *


Accepted: 26 July 2017 * Published: 18 September 2017 * Issue Date: 01 December 2017 * DOI: https://doi.org/10.1038/nnano.2017.177 SHARE THIS ARTICLE Anyone you share the following link with


will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative