Attosecond electron wave packet interferometry

Attosecond electron wave packet interferometry


Play all audios:


ABSTRACT Acomplete quantum-mechanical description of matter and its interaction with the environment requires detailed knowledge of a number of complex parameters. In particular, information


about the phase of wavefunctions is important for predicting the behaviour of atoms, molecules or larger systems. In optics, information about the evolution of the phase of light in time1


and space2 is obtained by interferometry. To obtain similar information for atoms and molecules, it is vital to develop analogous techniques. Here we present an interferometric method for


determining the phase variation of electronic wave packets in momentum space, and demonstrate its applicability to the fundamental process of single-photon ionization. We use a sequence of


extreme-ultraviolet attosecond pulses3,4 to ionize argon atoms and an infrared laser field, which induces a momentum shear5 between consecutive electron wave packets. The interferograms that


result from the interaction of these wave packets provide useful information about their phase. This technique opens a promising new avenue for reconstructing the wavefunctions6,7 of atoms


and molecules and for following the ultrafast dynamics of electronic wave packets. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ATTOSECOND-RESOLVED NON-DIPOLE PHOTOIONIZATION DYNAMICS Article 10


January 2024 ATTOSECOND TRANSIENT INTERFEROMETRY Article Open access 01 November 2024 PHOTON BUNCHING IN HIGH-HARMONIC EMISSION CONTROLLED BY QUANTUM LIGHT Article 13 May 2025 REFERENCES *


Iaconis, C., Wong, V. & Walmsley, I. A. Direct interferometric techniques for characterizing ultrashort optical pulses. _IEEE J. Sel. Top. Quantum Electron._ 4, 285–294 (1998). Article 


ADS  Google Scholar  * Bates, W. J. A wavefront shearing interferometer. _Proc. R. Phys. Soc._ 59, 940–950 (1947). Article  ADS  Google Scholar  * Paul, P. M. et al. Observation of a train


of attosecond pulses from high harmonic generation. _Science_ 292, 1689–1692 (2001). Article  ADS  Google Scholar  * Hentschel, M. et al. Attosecond metrology. _Nature_ 414, 509–513 (2001).


Article  ADS  Google Scholar  * Quéré, F. et al. Attosecond spectral shearing interferometry. _Phys. Rev. Lett._ 90, 073902 (2003). Article  ADS  Google Scholar  * Weinacht, T. C., Ahn, J.


& Bucksbaum, P. H. Measurement of the amplitude and phase of a sculpted Rydberg wave packet. _Phys. Rev. Lett._ 80, 5508–5511 (1998). Article  ADS  Google Scholar  * Itatani, J. et al.


Tomographic imaging of molecular orbitals. _Nature_ 432, 867–872 (2004). Article  ADS  Google Scholar  * Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order


harmonic generation from aligned molecules. _Nature_ 435, 470–474 (2005). Article  ADS  Google Scholar  * Wollenhaupt, M. et al. Interferences of ultrashort free electron wave packets.


_Phys. Rev. Lett._ 89, 173001 (2002). Article  ADS  Google Scholar  * Manson, S. T. & Cooper, J. W. Angular distribution of photoelectrons: Outer shells of noble gases. _Phys. Rev. A_ 2,


2170–2171 (1970). Article  ADS  Google Scholar  * Kienberger, R. et al. Steering attosecond electron wave packets with light. _Science_ 297, 1144–1148 (2002). Article  ADS  Google Scholar 


* Johnsson, P. et al. Attosecond electron wave packet dynamics in strong laser fields. _Phys. Rev. Lett._ 95, 013001 (2005). Article  ADS  Google Scholar  * Kienberger, R. et al. Atomic


transient recorder. _Nature_ 427, 817–821 (2004). Article  ADS  Google Scholar  * Goulielmakis, E. et al. Direct measurement of light waves. _Science_ 305, 1267–1269 (2004). Article  ADS 


Google Scholar  * Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. _Phys. Rev. A_ 49,


2117–2132 (1994). Article  ADS  Google Scholar  * Quéré, F., Mairesse, Y. & Itatani, I. Temporal characterization of attosecond XUV pulses. _J. Mod. Opt._ 52, 339–353 (2005). Article 


ADS  Google Scholar  * Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. _J. Opt. Soc. Am._ 72,


156–160 (1982). Article  ADS  Google Scholar  * López-Martens, R. et al. Amplitude and phase control of attosecond pulses. _Phys. Rev. Lett._ 94, 033001 (2005). Article  ADS  Google Scholar


  * Aseyev, S. A., Ni, Y., Frasinski, L. J., Muller, H. G. & Vrakking, M. J. J. Attosecond angle-resolved photoelectron spectroscopy. _Phys. Rev. Lett._ 91, 223902 (2003). Article  ADS 


Google Scholar  * Vrakking, M. J. J. An iterative procedure for the inversion of two-dimensional ion/photoelectron imaging experiments. _Rev. Sci. Instrum._ 72, 4084–4089 (2001). Article 


ADS  Google Scholar  * Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. _Phys. Rep._ 330, 95–192 (2000). Article 


ADS  Google Scholar  * Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses. Application in photoelectron and photofragment ion


imaging of molecular oxygen. _Rev. Sci. Instrum._ 68, 3477–3484 (1997). Article  ADS  Google Scholar  * Agostini, P., Fabre, F., Petite, G. & Rahman, N. K. Free-free transitions


following six-photon ionization of xenon atoms. _Phys. Rev. Lett._ 42, 1127–1130 (1979). Article  ADS  Google Scholar  * Lindner, F. et al. Attosecond double slit experiment. _Phys. Rev.


Lett._ 95, 040401 (2005). Article  ADS  Google Scholar  Download references ACKNOWLEDGEMENTS This research was supported by Marie Curie Intra-European Fellowships (MEIF-CT-2004-009268,


MEIF-CT-2003-500947), the Marie Curie Research Training Networks XTRA (MRTN-CT-2003-505138) and PICNIC (HPRN-2002-00183), the Integrated Initiative of Infrastructure LASERLAB-EUROPE


(RII3-CT-2003-506350) within the 6th European Community Framework Programme, the Knut and Alice Wallenberg Foundation, the Swedish Science Council and the National Science Foundation through


grant PHY-0401625. K.V. is on leave from the Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary. The research of Y.N., F.L., M.K., J.K. and M.J.J.V. is part


of the research program of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’, which is financially supported by the ‘Nederlandse organisatie voor Wetenschappelijk Onderzoek


(NWO)’. We thank T. Ruchon and M. Lewenstein for fruitful discussions. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Physics, Lund University, SE-221 00 Lund, PO Box 118,


Sweden T. Remetter, P. Johnsson, K. Varjú, E. Gustafsson & A. L’Huillier * Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001, USA J.


Mauritsson & K. J. Schafer * FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands Y. Ni, F. Lépine, M. Kling, J. Khan & M. J. J. Vrakking * Laboratoire d’Optique


Appliquée, Ecole Nationale Supérieure des Techniques Avancées (ENSTA) - Ecole Polytechnique CNRS UMR 7639, 91761 Palaiseau Cedex, France R. López-Martens Authors * T. Remetter View author


publications You can also search for this author inPubMed Google Scholar * P. Johnsson View author publications You can also search for this author inPubMed Google Scholar * J. Mauritsson


View author publications You can also search for this author inPubMed Google Scholar * K. Varjú View author publications You can also search for this author inPubMed Google Scholar * Y. Ni


View author publications You can also search for this author inPubMed Google Scholar * F. Lépine View author publications You can also search for this author inPubMed Google Scholar * E.


Gustafsson View author publications You can also search for this author inPubMed Google Scholar * M. Kling View author publications You can also search for this author inPubMed Google


Scholar * J. Khan View author publications You can also search for this author inPubMed Google Scholar * R. López-Martens View author publications You can also search for this author


inPubMed Google Scholar * K. J. Schafer View author publications You can also search for this author inPubMed Google Scholar * M. J. J. Vrakking View author publications You can also search


for this author inPubMed Google Scholar * A. L’Huillier View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to A.


L’Huillier. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION ATTOSECOND ELECTRON WAVE PACKET


(PDF 150 KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Remetter, T., Johnsson, P., Mauritsson, J. _et al._ Attosecond electron wave packet


interferometry. _Nature Phys_ 2, 323–326 (2006). https://doi.org/10.1038/nphys290 Download citation * Received: 24 November 2005 * Accepted: 22 March 2006 * Published: 30 April 2006 * Issue


Date: May 2006 * DOI: https://doi.org/10.1038/nphys290 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative