
In vivo dendritic calcium imaging with a fiberoptic periscope system
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:

ABSTRACT Dendritic recordings in freely moving animals present great challenges using the current approaches. Here we present in detail a microendoscopic technique (the 'periscope'
method) for measuring intracellular calcium activity directly from the apical dendrites of L5 pyramidal neurons from the pia down to depths of ∼700 μm in anesthetized and freely moving
rats. This method gives high signal-to-noise dendritic fluorescence responses to sensory stimuli, and has been proven to be inexpensive, straightforward and reliable, allowing essentially
unrestricted behavior. We describe refinements and practical optimizations of procedures aimed at achieving dendritic Ca2+ imaging in freely moving animals. The periscope imaging technique
presented here is also ideal for combining with other _in vivo_ recording techniques. The protocol, from the beginning of anesthesia to starting dendritic imaging, can be completed in 5 h.
Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this
journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now
Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer
support SIMILAR CONTENT BEING VIEWED BY OTHERS TWO-PHOTON CALCIUM IMAGING OF NEURONAL ACTIVITY Article 01 September 2022 FIBER PHOTOMETRY IN STRIATUM REFLECTS PRIMARILY NONSOMATIC CHANGES IN
CALCIUM Article 30 August 2022 SUB-CELLULAR POPULATION IMAGING TOOLS REVEAL STABLE APICAL DENDRITES IN HIPPOCAMPAL AREA CA3 Article Open access 28 January 2025 REFERENCES * Davie, J.T. et
al. Dendritic patch-clamp recording. _Nat. Protoc._ 1, 1235–1247 (2006). Article CAS Google Scholar * Stuart, G.J. & Sakmann, B. Active propagation of somatic action-potentials into
neocortical pyramidal cell dendrites. _Nature_ 367, 69–72 (1994). Article CAS Google Scholar * Waters, J. & Helmchen, F. Boosting of action potential backpropagation by neocortical
network activity _in vivo_ . _J. Neurosci._ 24, 11127–11136 (2004). Article CAS Google Scholar * Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic
responses of neurons in the rat barrel cortex. _J. Neurophysiol._ 81, 1171–1183 (1999). Article CAS Google Scholar * Larkum, M.E. & Zhu, J.J. Signaling of layer 1 and whisker-evoked
Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons _in vitro_ and _in vivo_ . _J. Neurosci._ 22, 6991–7005 (2002). Article CAS Google
Scholar * Tank, D.W., Sugimori, M., Connor, J.A. & Llinas, R.R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. _Science_ 242, 773–777 (1988).
Article CAS Google Scholar * Sugimori, M. & Llinas, R.R. Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells _in vitro_ . _Proc. Natl. Acad. Sci. USA_ 87,
5084–5088 (1990). Article CAS Google Scholar * Lasser-Ross, N., Miyakawa, H., Lev-Ram, V., Young, S.R. & Ross, W.N. High time resolution fluorescence imaging with a CCD camera. _J.
Neurosci. Methods_ 36, 253–261 (1991). Article CAS Google Scholar * Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. _Science_ 248, 73–76
(1990). Article CAS Google Scholar * Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. _In vivo_ dendritic calcium dynamics in neocortical pyramidal neurons. _Nature_ 385, 161–165
(1997). Article CAS Google Scholar * Borst, A. & Egelhaaf, M. _In vivo_ imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. _Proc. Natl.
Acad. Sci. USA_ 89, 4139–4143 (1992). Article CAS Google Scholar * Lee, A.K., Manns, I.D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. _Neuron_ 51, 399–407
(2006). Article CAS Google Scholar * Göbel, W., Kerr, J.N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a
gradient-index lens objective. _Opt. Lett._ 29, 2521–2523 (2004). Article Google Scholar * Engelbrecht, C.J., Johnston, R.S., Seibel, E.J. & Helmchen, F. Ultra-compact fiber-optic
two-photon microscope for functional fluorescence imaging _in vivo_ . _Opt. Express_ 16, 5556–5564 (2008). Article CAS Google Scholar * Fee, M.S. & Leonardo, A. Miniature motorized
microdrive and commutator system for chronic neural recording in small animals. _J. Neurosci. Methods_ 112, 83–94 (2001). Article CAS Google Scholar * Flusberg, B.A. et al. High-speed,
miniaturized fluorescence microscopy in freely moving mice. _Nat. Methods_ 5, 935–938 (2008). Article CAS Google Scholar * Nagayama, S. et al. _In vivo_ simultaneous tracing and Ca(2+)
imaging of local neuronal circuits. _Neuron_ 53, 789–803 (2007). Article CAS Google Scholar * Nevian, T. & Helmchen, F. Calcium indicator loading of neurons using single-cell
electroporation. _Pflugers Arch._ 454, 675–688 (2007). Article CAS Google Scholar * Griesbeck, O. Fluorescent proteins as sensors for cellular functions. _Curr. Opin. Neurobiol._ 14,
636–641 (2004). Article CAS Google Scholar * Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. _Chem. Rev._ 108, 1550–1564 (2008). Article CAS Google Scholar *
Hasan, M.T. et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. _PLoS. Biol._ 2, e163 (2004). Article Google Scholar * Helmchen, F., Svoboda, K.,
Denk, W. & Tank, D.W. _In vivo_ dendritic calcium dynamics in deep-layer cortical pyramidal neurons. _Nat. Neurosci._ 2, 989–996 (1999). Article CAS Google Scholar * Waters, J.,
Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons _in vitro_ and _in vivo_ . _J. Neurosci._ 23, 8558–8567
(2003). Article CAS Google Scholar * Gobel, W. & Helmchen, F. New angles on neuronal dendrites _in vivo_ . _J. Neurophysiol._ 98, 3770–3779 (2007). Article Google Scholar * Dombeck,
D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. _Neuron_ 56, 43–57 (2007). Article CAS
Google Scholar * Kudo, Y. et al. A single optical fiber fluorometric device for measurement of intracellular Ca2+ concentration: its application to hippocampal neurons _in vitro_ and _in
vivo_ . _Neuroscience_ 50, 619–625 (1992). Article CAS Google Scholar * Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. _In vivo_ two-photon calcium imaging of neuronal
networks. _Proc. Natl. Acad. Sci. USA_ 100, 7319–7324 (2003). Article CAS Google Scholar * Adelsberger, H., Garaschuk, O. & Konnerth, A. Cortical calcium waves in resting newborn
mice. _Nat. Neurosci._ 8, 988–990 (2005). Article CAS Google Scholar * Knittel, J., Schnieder, L., Buess, G., Messerschmidt, B. & Possner, T. Endoscope-compatible confocal microscope
using a gradient index-lens system. _Opt. Commun._ 188, 267–273 (2001). Article CAS Google Scholar * Flusberg, B.A. et al. Fiber-optic fluorescence imaging. _Nat. Methods_ 2, 941–950
(2005). Article CAS Google Scholar * Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving
animals. _Neuron_ 31, 903–912 (2001). Article CAS Google Scholar * Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R. & Schnitzer, M.J. _In vivo_ mammalian brain imaging using one- and
two-photon fluorescence microendoscopy. _J. Neurophysiol._ 92, 3121–3133 (2004). Article Google Scholar * Murayama, M., Pérez-Garci, E., Lüscher, H.R. & Larkum, M.E. Fiberoptic system
for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. _J. Neurophysiol._ 98, 1791–1805 (2007). Article Google Scholar * Murayama, M. et al.
Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. _Nature_ 457, 1137–1141 (2009). Article CAS Google Scholar * Kerr, J.N., Greenberg, D. & Helmchen, F.
Imaging input and output of neocortical networks _in vivo_ . _Proc. Natl. Acad. Sci. USA_ 102, 14063–14068 (2005). Article CAS Google Scholar * Larkum, M.E., Zhu, J.J. & Sakmann, B. A
new cellular mechanism for coupling inputs arriving at different cortical layers. _Nature_ 398, 338–341 (1999). Article CAS Google Scholar * Larkum, M.E., Zhu, J.J. & Sakmann, B.
Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. _J. Physiol. (Lond.)_ 533, 447–466
(2001). Article CAS Google Scholar Download references ACKNOWLEDGEMENTS We thank H.-R. Lüscher and J.J. Letzkus for their helpful comments on the manuscript, and D. Limoges and J.
Burkhalter for their expert technical support. This work was supported by the Swiss National Science Foundation (Grant Nr. PP00A-102721/1) and SystemsX.ch (NEUROCHOICE). AUTHOR INFORMATION
AUTHORS AND AFFILIATIONS * Physiologisches Institut, Universität Bern, Bern, Switzerland Masanori Murayama & Matthew E Larkum Authors * Masanori Murayama View author publications You can
also search for this author inPubMed Google Scholar * Matthew E Larkum View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR
Correspondence to Matthew E Larkum. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Murayama, M., Larkum, M. _In vivo_ dendritic calcium imaging with a
fiberoptic periscope system. _Nat Protoc_ 4, 1551–1559 (2009). https://doi.org/10.1038/nprot.2009.142 Download citation * Published: 01 October 2009 * Issue Date: October 2009 * DOI:
https://doi.org/10.1038/nprot.2009.142 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative