In vivo dendritic calcium imaging with a fiberoptic periscope system

In vivo dendritic calcium imaging with a fiberoptic periscope system


Play all audios:


ABSTRACT Dendritic recordings in freely moving animals present great challenges using the current approaches. Here we present in detail a microendoscopic technique (the 'periscope'


method) for measuring intracellular calcium activity directly from the apical dendrites of L5 pyramidal neurons from the pia down to depths of ∼700 μm in anesthetized and freely moving


rats. This method gives high signal-to-noise dendritic fluorescence responses to sensory stimuli, and has been proven to be inexpensive, straightforward and reliable, allowing essentially


unrestricted behavior. We describe refinements and practical optimizations of procedures aimed at achieving dendritic Ca2+ imaging in freely moving animals. The periscope imaging technique


presented here is also ideal for combining with other _in vivo_ recording techniques. The protocol, from the beginning of anesthesia to starting dendritic imaging, can be completed in 5 h.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS TWO-PHOTON CALCIUM IMAGING OF NEURONAL ACTIVITY Article 01 September 2022 FIBER PHOTOMETRY IN STRIATUM REFLECTS PRIMARILY NONSOMATIC CHANGES IN


CALCIUM Article 30 August 2022 SUB-CELLULAR POPULATION IMAGING TOOLS REVEAL STABLE APICAL DENDRITES IN HIPPOCAMPAL AREA CA3 Article Open access 28 January 2025 REFERENCES * Davie, J.T. et


al. Dendritic patch-clamp recording. _Nat. Protoc._ 1, 1235–1247 (2006). Article  CAS  Google Scholar  * Stuart, G.J. & Sakmann, B. Active propagation of somatic action-potentials into


neocortical pyramidal cell dendrites. _Nature_ 367, 69–72 (1994). Article  CAS  Google Scholar  * Waters, J. & Helmchen, F. Boosting of action potential backpropagation by neocortical


network activity _in vivo_ . _J. Neurosci._ 24, 11127–11136 (2004). Article  CAS  Google Scholar  * Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic


responses of neurons in the rat barrel cortex. _J. Neurophysiol._ 81, 1171–1183 (1999). Article  CAS  Google Scholar  * Larkum, M.E. & Zhu, J.J. Signaling of layer 1 and whisker-evoked


Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons _in vitro_ and _in vivo_ . _J. Neurosci._ 22, 6991–7005 (2002). Article  CAS  Google


Scholar  * Tank, D.W., Sugimori, M., Connor, J.A. & Llinas, R.R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. _Science_ 242, 773–777 (1988).


Article  CAS  Google Scholar  * Sugimori, M. & Llinas, R.R. Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells _in vitro_ . _Proc. Natl. Acad. Sci. USA_ 87,


5084–5088 (1990). Article  CAS  Google Scholar  * Lasser-Ross, N., Miyakawa, H., Lev-Ram, V., Young, S.R. & Ross, W.N. High time resolution fluorescence imaging with a CCD camera. _J.


Neurosci. Methods_ 36, 253–261 (1991). Article  CAS  Google Scholar  * Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. _Science_ 248, 73–76


(1990). Article  CAS  Google Scholar  * Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. _In vivo_ dendritic calcium dynamics in neocortical pyramidal neurons. _Nature_ 385, 161–165


(1997). Article  CAS  Google Scholar  * Borst, A. & Egelhaaf, M. _In vivo_ imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. _Proc. Natl.


Acad. Sci. USA_ 89, 4139–4143 (1992). Article  CAS  Google Scholar  * Lee, A.K., Manns, I.D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. _Neuron_ 51, 399–407


(2006). Article  CAS  Google Scholar  * Göbel, W., Kerr, J.N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a


gradient-index lens objective. _Opt. Lett._ 29, 2521–2523 (2004). Article  Google Scholar  * Engelbrecht, C.J., Johnston, R.S., Seibel, E.J. & Helmchen, F. Ultra-compact fiber-optic


two-photon microscope for functional fluorescence imaging _in vivo_ . _Opt. Express_ 16, 5556–5564 (2008). Article  CAS  Google Scholar  * Fee, M.S. & Leonardo, A. Miniature motorized


microdrive and commutator system for chronic neural recording in small animals. _J. Neurosci. Methods_ 112, 83–94 (2001). Article  CAS  Google Scholar  * Flusberg, B.A. et al. High-speed,


miniaturized fluorescence microscopy in freely moving mice. _Nat. Methods_ 5, 935–938 (2008). Article  CAS  Google Scholar  * Nagayama, S. et al. _In vivo_ simultaneous tracing and Ca(2+)


imaging of local neuronal circuits. _Neuron_ 53, 789–803 (2007). Article  CAS  Google Scholar  * Nevian, T. & Helmchen, F. Calcium indicator loading of neurons using single-cell


electroporation. _Pflugers Arch._ 454, 675–688 (2007). Article  CAS  Google Scholar  * Griesbeck, O. Fluorescent proteins as sensors for cellular functions. _Curr. Opin. Neurobiol._ 14,


636–641 (2004). Article  CAS  Google Scholar  * Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. _Chem. Rev._ 108, 1550–1564 (2008). Article  CAS  Google Scholar  *


Hasan, M.T. et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. _PLoS. Biol._ 2, e163 (2004). Article  Google Scholar  * Helmchen, F., Svoboda, K.,


Denk, W. & Tank, D.W. _In vivo_ dendritic calcium dynamics in deep-layer cortical pyramidal neurons. _Nat. Neurosci._ 2, 989–996 (1999). Article  CAS  Google Scholar  * Waters, J.,


Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons _in vitro_ and _in vivo_ . _J. Neurosci._ 23, 8558–8567


(2003). Article  CAS  Google Scholar  * Gobel, W. & Helmchen, F. New angles on neuronal dendrites _in vivo_ . _J. Neurophysiol._ 98, 3770–3779 (2007). Article  Google Scholar  * Dombeck,


D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. _Neuron_ 56, 43–57 (2007). Article  CAS


  Google Scholar  * Kudo, Y. et al. A single optical fiber fluorometric device for measurement of intracellular Ca2+ concentration: its application to hippocampal neurons _in vitro_ and _in


vivo_ . _Neuroscience_ 50, 619–625 (1992). Article  CAS  Google Scholar  * Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. _In vivo_ two-photon calcium imaging of neuronal


networks. _Proc. Natl. Acad. Sci. USA_ 100, 7319–7324 (2003). Article  CAS  Google Scholar  * Adelsberger, H., Garaschuk, O. & Konnerth, A. Cortical calcium waves in resting newborn


mice. _Nat. Neurosci._ 8, 988–990 (2005). Article  CAS  Google Scholar  * Knittel, J., Schnieder, L., Buess, G., Messerschmidt, B. & Possner, T. Endoscope-compatible confocal microscope


using a gradient index-lens system. _Opt. Commun._ 188, 267–273 (2001). Article  CAS  Google Scholar  * Flusberg, B.A. et al. Fiber-optic fluorescence imaging. _Nat. Methods_ 2, 941–950


(2005). Article  CAS  Google Scholar  * Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving


animals. _Neuron_ 31, 903–912 (2001). Article  CAS  Google Scholar  * Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R. & Schnitzer, M.J. _In vivo_ mammalian brain imaging using one- and


two-photon fluorescence microendoscopy. _J. Neurophysiol._ 92, 3121–3133 (2004). Article  Google Scholar  * Murayama, M., Pérez-Garci, E., Lüscher, H.R. & Larkum, M.E. Fiberoptic system


for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. _J. Neurophysiol._ 98, 1791–1805 (2007). Article  Google Scholar  * Murayama, M. et al.


Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. _Nature_ 457, 1137–1141 (2009). Article  CAS  Google Scholar  * Kerr, J.N., Greenberg, D. & Helmchen, F.


Imaging input and output of neocortical networks _in vivo_ . _Proc. Natl. Acad. Sci. USA_ 102, 14063–14068 (2005). Article  CAS  Google Scholar  * Larkum, M.E., Zhu, J.J. & Sakmann, B. A


new cellular mechanism for coupling inputs arriving at different cortical layers. _Nature_ 398, 338–341 (1999). Article  CAS  Google Scholar  * Larkum, M.E., Zhu, J.J. & Sakmann, B.


Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. _J. Physiol. (Lond.)_ 533, 447–466


(2001). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank H.-R. Lüscher and J.J. Letzkus for their helpful comments on the manuscript, and D. Limoges and J.


Burkhalter for their expert technical support. This work was supported by the Swiss National Science Foundation (Grant Nr. PP00A-102721/1) and SystemsX.ch (NEUROCHOICE). AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Physiologisches Institut, Universität Bern, Bern, Switzerland Masanori Murayama & Matthew E Larkum Authors * Masanori Murayama View author publications You can


also search for this author inPubMed Google Scholar * Matthew E Larkum View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR


Correspondence to Matthew E Larkum. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Murayama, M., Larkum, M. _In vivo_ dendritic calcium imaging with a


fiberoptic periscope system. _Nat Protoc_ 4, 1551–1559 (2009). https://doi.org/10.1038/nprot.2009.142 Download citation * Published: 01 October 2009 * Issue Date: October 2009 * DOI:


https://doi.org/10.1038/nprot.2009.142 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative