Cancer cachexia: understanding the molecular basis

Cancer cachexia: understanding the molecular basis


Play all audios:


ABSTRACT Cancer cachexia is a devastating, multifactorial and often irreversible syndrome that affects around 50–80% of cancer patients, depending on the tumour type, and that leads to


substantial weight loss, primarily from loss of skeletal muscle and body fat. Since cachexia may account for up to 20% of cancer deaths, understanding the underlying molecular mechanisms is


essential. The occurrence of cachexia in cancer patients is dependent on the patient response to tumour progression, including the activation of the inflammatory response and energetic


inefficiency involving the mitochondria. Interestingly, crosstalk between different cell types ultimately seems to result in muscle wasting. Some of the recent progress in understanding the


molecular mechanisms of cachexia may lead to new therapeutic approaches. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS UNDERSTANDING THE COMMON MECHANISMS OF HEART AND SKELETAL MUSCLE


WASTING IN CANCER CACHEXIA Article Open access 08 January 2021 CANCER-ASSOCIATED CACHEXIA — UNDERSTANDING THE TUMOUR MACROENVIRONMENT AND MICROENVIRONMENT TO IMPROVE MANAGEMENT Article 20


February 2023 CANCER CACHEXIA: MULTILEVEL METABOLIC DYSFUNCTION Article 22 November 2024 REFERENCES * Evans, W. J. et al. Cachexia: a new definition. _Clin. Nutr._ 27, 793–799 (2008).


Article  CAS  PubMed  Google Scholar  * Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. _Lancet Oncol._ 12, 489–495 (2011). Article  PubMed 


Google Scholar  * Argilés, J. M. et al. Consensus on cachexia definitions. _J. Am. Med. Dir. Assoc._ 11, 229–230 (2010). Article  PubMed  Google Scholar  * Warren, S. The inmediate cause of


death in cancer. _Am. J. Med. Sci._ 184, 610–613 (1932). Article  Google Scholar  * Dewys, W. D. et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern


Cooperative Oncology Group. _Am. J. Med._ 69, 491–497 (1980). Article  CAS  PubMed  Google Scholar  * Teunissen, S. C. C. M. et al. Symptom prevalence in patients with incurable cancer: a


systematic review. _J. Pain Symptom Manage._ 34, 94–104 (2007). Article  PubMed  Google Scholar  * Blum, D. et al. Validation of the Consensus-Definition for Cancer Cachexia and evaluation


of a classification model—a study based on data from an international multicentre project (EPCRC-CSA). _Ann. Oncol._ 25, 1635–1642 (2014). Article  CAS  PubMed  Google Scholar  * Blum, D. et


al. Evolving classification systems for cancer cachexia: ready for clinical practice? _Support Care Cancer_ 18, 273–279 (2010). Article  PubMed  Google Scholar  * Bozzetti, F. &


Mariani, L. Defining and classifying cancer cachexia: a proposal by the SCRINIO Working Group. _JPEN. J. Parenter. Enteral Nutr._ 33, 361–367. * Vigano, A. L. et al. The Abridged


Patient-Generated Subjective Global Assessment Is a Useful Tool for Early Detection and Characterization of Cancer Cachexia. _J. Acad. Nutr. Diet._ 114, 1088–1098 (2014). Article  PubMed 


Google Scholar  * Argilés, J. M. et al. The cachexia score (CASCO): a new tool for staging cachectic cancer patients. _J. Cachexia. Sarcopenia Muscle_ 2, 87–93 (2011). Article  PubMed 


PubMed Central  Google Scholar  * Busquets, S. et al. Staging cachectic cancer patients using the cachexia score (CASCO). Communication 3-03. Abstracts of the 7th cachexia conference,


kobe/osaka, Japan, december 9–11, 2013. _J. Cachexia. Sarcopenia Muscle_ 4, 295–343 (2013). Article  Google Scholar  * Tisdale, M. J. Catabolic mediators of cancer cachexia. _Curr. Opin.


Support. Palliat. Care_ 2, 256–261 (2008). Article  PubMed  Google Scholar  * Argilés, J. M., Busquets, S., Toledo, M. & López-Soriano, F. J. The role of cytokines in cancer cachexia.


_Curr. Opin. Support. Palliat. Care_ 3, 263–268 (2009). Article  PubMed  Google Scholar  * Scheede-Bergdahl, C. et al. Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of


cancer cachexia? _Clin. Nutr._ 31, 85–88 (2012). Article  CAS  PubMed  Google Scholar  * Punzi, T. et al. C-reactive protein levels and vitamin d receptor polymorphisms as markers in


predicting cachectic syndrome in cancer patients. _Mol. Diagn. Ther._ 16, 115–124 (2012). Article  CAS  PubMed  Google Scholar  * Weber, M.-A. et al. Myoglobin plasma level related to muscle


mass and fiber composition: a clinical marker of muscle wasting? _J. Mol. Med._ 85, 887–896 (2007). Article  CAS  PubMed  Google Scholar  * Argilés, J. M. et al. Targets in clinical


oncology: the metabolic environment of the patient. _Front. Biosci._ 12, 3024–3051 (2007). Article  PubMed  Google Scholar  * Evans, W. K. et al. Limited impact of total parenteral nutrition


on nutritional status during treatment for small cell lung cancer. _Cancer Res._ 45, 3347–3353 (1985). CAS  PubMed  Google Scholar  * Constantinou, C. et al. Nuclear magnetic resonance in


conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. _Int. J. Mol. Med._ 27, 15–24 (2011). CAS  PubMed  Google Scholar  * Sanders, P.


M. & Tisdale, M. J. Effect of zinc-α2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue. _Cancer Lett._ 212, 71–81 (2004). Article  CAS 


PubMed  Google Scholar  * Busquets, S. et al. Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in


a model of mouse cancer cachexia. _FEBS Lett._ 579, 717–722 (2005). Article  CAS  PubMed  Google Scholar  * Collins, P., Bing, C., McCulloch, P. & Williams, G. Muscle UCP-3 mRNA levels


are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans. _Br. J. Cancer_ 86, 372–375 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tzika, A.


A. et al. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model. _Int. J. Oncol._ 43, 886–894 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Antunes, D.


et al. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting. _Biochim. Biophys. Acta_ 1841, 896–905 (2014). Article  CAS  PubMed  Google Scholar  * Fermoselle,


C. et al. Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice. _Exp. Physiol._ 98, 1349–1365 (2013). Article  CAS  PubMed  Google


Scholar  * Shum, A. M. et al. Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting. _Aging (Albany NY)_ 4, 133–143


(2012). Article  CAS  Google Scholar  * Padrão, A. I. et al. Bladder cancer-induced skeletal muscle wasting: disclosing the role of mitochondria plasticity. _Int. J. Biochem. Cell Biol._ 45,


1399–1409 (2013). Article  CAS  PubMed  Google Scholar  * Fuster, G. et al. Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer


cachexia? Role of β2-adrenergic agonists. _Cancer Res._ 67, 6512–6519 (2007). Article  CAS  PubMed  Google Scholar  * Kang, C., Chung, E., Diffee, G. & Ji, L. L. Exercise training


attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α. _Exp. Gerontol._ 48, 1343–1350 (2013). Article  CAS  PubMed  Google Scholar  * Puigserver, P. et


al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. _Mol. Cell_ 8, 971–982 (2001). Article  CAS  PubMed  Google Scholar  * Miura, S. et


al. Overexpression of peroxisome proliferator-activated receptor γ co-activator-1α leads to muscle atrophy with depletion of ATP. _Am. J. Pathol._ 169, 1129–1139 (2006). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Dirksen, R. T. Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle. _Appl. Physiol. Nutr. Metab._ 34, 389–395 (2009). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Rossi, A. E., Boncompagni, S. & Dirksen, R. T. Sarcoplasmic reticulum-mitochondrial symbiosis: bidirectional signaling in skeletal muscle.


_Exerc. Sport Sci. Rev._ 37, 29–35 (2009). Article  PubMed  PubMed Central  Google Scholar  * Fontes-Oliveira, C. C. et al. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer


cachexia: Altered energetic efficiency? _Biochim. Biophys. Acta_ 1830, 2770–2778 (2013). Article  CAS  PubMed  Google Scholar  * Zorzano, A. Regulation of mitofusin-2 expression in skeletal


muscle. _Appl. Physiol. Nutr. Metab._ 34, 433–439 (2009). Article  CAS  PubMed  Google Scholar  * Cosper, P. F. & Leinwand, L. A. Myosin heavy chain is not selectively decreased in


murine cancer cachexia. _Int. J. Cancer_ 130, 2722–2727 (2012). Article  CAS  PubMed  Google Scholar  * Martin, L. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is


a powerful prognostic factor, independent of body mass index. _J. Clin. Oncol._ 31, 1539–1547 (2013). Article  PubMed  Google Scholar  * Fearon, K., Arends, J. & Baracos, V.


Understanding the mechanisms and treatment options in cancer cachexia. _Nature Rev. Clin. Oncol._ 10, 90–99 (2013). Article  CAS  Google Scholar  * Le Bricon, T., Gugins, S., Cynober, L.


& Baracos, V. E. Negative impact of cancer chemotherapy on protein metabolism in healthy and tumor-bearing rats. _Metabolism._ 44, 1340–1348 (1995). Article  CAS  PubMed  Google Scholar


  * Argilés, J. M. & López-Soriano, F. J. The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states. _Trends Pharmacol. Sci._ 17, 223–226 (1996).


Article  PubMed  Google Scholar  * Hasselgren, P.-O., Wray, C. & Mammen, J. Molecular regulation of muscle cachexia: it may be more than the proteasome. _Biochem. Biophys. Res. Commun._


290, 1–10 (2002). Article  CAS  PubMed  Google Scholar  * Smith, I. J. et al. Calpain activity is increased in skeletal muscle from gastric cancer patients with no or minimal weight loss.


_Muscle Nerve_ 43, 410–414 (2011). Article  CAS  PubMed  Google Scholar  * Tardif, N., Klaude, M., Lundell, L., Thorell, A. & Rooyackers, O. Autophagic-lysosomal pathway is the main


proteolytic system modified in the skeletal muscle of esophageal cancer patients. _Am. J. Clin. Nutr._ 98, 1485–1492 (2013). Article  CAS  PubMed  Google Scholar  * Krawiec, B. J., Frost, R.


A., Vary, T. C., Jefferson, L. S. & Lang, C. H. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. _Am. J. Physiol.


Endocrinol. Metab._ 289, E969–E980 (2005). Article  CAS  PubMed  Google Scholar  * Mammucari, C. et al. FOXO3 controls autophagy in skeletal muscle _in vivo_. _Cell. Metab._ 6, 458–471


(2007). Article  CAS  PubMed  Google Scholar  * Egerman, M. A. & Glass, D. J. Signaling pathways controlling skeletal muscle mass. _Crit. Rev. Biochem. Mol. Biol._ 49, 59–68. * Glass, D.


J. Signaling pathways perturbing muscle mass. _Curr. Opin. Clin. Nutr. Metab. Care_ 13, 225–229 (2010). Article  CAS  PubMed  Google Scholar  * Clarke, B. A. et al. The E3 Ligase MuRF1


degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. _Cell. Metab._ 6, 376–385 (2007). Article  CAS  PubMed  Google Scholar  * Cohen, S. et al. During muscle


atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. _J. Cell Biol._ 185, 1083–1095 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Cai, D. et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. _Cell_ 119, 285–298 (2004). Article  CAS  PubMed  Google Scholar  * Moore-Carrasco, R. et al. The AP-1/NF-κB


double inhibitor SP100030 can revert muscle wasting during experimental cancer cachexia. _Int. J. Oncol._ 30, 1239–1245 (2007). CAS  PubMed  Google Scholar  * He, W. A. et al. NF-κB-mediated


Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. _J. Clin. Invest._ 123, 4821–4835 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rommel, C. et


al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/AKT/mTOR and PI(3)K/AKT/GSK3 pathways. _Nature Cell Biol._ 3, 1009–1013 (2001). Article  CAS  PubMed  Google Scholar  *


Sandri, M. et al. FOXO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. _Cell_ 117, 399–412 (2004). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Argilés, J. M., Orpí, M., Busquets, S. & López-Soriano, F. J. Myostatin: more than just a regulator of muscle mass. _Drug Discov. Today_ 17, 702–709 (2012).


Article  CAS  PubMed  Google Scholar  * Hitachi, K. & Tsuchida, K. Role of microRNAs in skeletal muscle hypertrophy. _Front. Physiol._ 4, 408 (2013). PubMed  Google Scholar  * He, W. A.


et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. _Proc. Natl Acad. Sci. USA_ 111, 4525–4529 (2014). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Kulyté, A. et al. MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. _Am. J. Physiol. Endocrinol. Metab._ 306, E267–E274 (2014). Article 


CAS  PubMed  Google Scholar  * Argilés, J. M., López-Soriano, J., Almendro, V., Busquets, S. & López-Soriano, F. J. Cross-talk between skeletal muscle and adipose tissue: a link with


obesity? _Med. Res. Rev._ 25, 49–65 (2005). Article  PubMed  Google Scholar  * Dalamaga, M. Interplay of adipokines and myokines in cancer pathophysiology: Emerging therapeutic implications.


_World J. Exp. Med._ 3, 26–33 (2013). Article  PubMed  PubMed Central  Google Scholar  * Argilés, J. M., López-Soriano, F. J. & Busquets, S. Mechanisms to explain wasting of muscle and


fat in cancer cachexia. _Curr. Opin. Support. Pal. Care._ 1, 293–298 (2007). Article  Google Scholar  * Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated


cachexia. _Science._ 333, 233–238 (2011). Article  CAS  PubMed  Google Scholar  * Stephens, N. A. et al. Intramyocellular lipid droplets increase with progression of cachexia in cancer


patients. _J. Cachexia. Sarcopenia Muscle_ 2, 111–117 (2011). Article  PubMed  PubMed Central  Google Scholar  * Petruzzelli, M. et al. A Switch from White to Brown Fat Increases Energy


Expenditure in Cancer-Associated Cachexia. _Cell. Metab._ 20, 433–447 (2014). Article  CAS  PubMed  Google Scholar  * Kir, S. et al. Tumour-derived PTH-related protein triggers adipose


tissue browning and cancer cachexia. _Nature._ 513, 100–104 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsoli, M. et al. Activation of thermogenesis in brown adipose


tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. _Cancer Res._ 72, 4372–4382 (2012). Article  CAS  PubMed  Google Scholar  * Bing, C. et al. Increased gene


expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. _Cancer Res._ 60, 2405–2410 (2000). CAS  PubMed  Google Scholar  *


Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. _N. Engl. J. Med._ 360, 1518–1525 (2009). Article  CAS  PubMed  Google Scholar  * Bauwens, M. et al. Molecular


imaging of brown adipose tissue in health and disease. _Eur. J. Nucl. Med. Mol. Imaging_ 41, 776–791 (2014). Article  CAS  PubMed  Google Scholar  * Argiles, J. M., Lopez-Soriano, F. J.


& Busquets, S. Counteracting inflammation: a promising therapy in cachexia. _Crit. Rev. Oncog._ 17, 253–262 (2012). Article  PubMed  Google Scholar  * Klein, G. L., Petschow, B. W.,


Shaw, A. L. & Weaver, E. Gut barrier dysfunction and microbial translocation in cancer cachexia: a new therapeutic target. _Curr. Opin. Support. Palliat. Care_ 7, 361–367 (2013). Article


  PubMed  PubMed Central  Google Scholar  * Tisdale, M. J. Are tumoral factors responsible for host tissue wasting in cancer cachexia? _Future Oncol._ 6, 503–513 (2010). Article  CAS  PubMed


  Google Scholar  * Chen, J. L. et al. Elevated expression of activins promotes muscle wasting and cachexia. _FASEB J._ 28, 1711–1723 (2014). Article  CAS  PubMed  Google Scholar  *


Lokireddy, S. et al. Myostatin is a novel tumoral factor that induces cancer cachexia. _Biochem. J._ 446, 23–36 (2012). Article  CAS  PubMed  Google Scholar  * Zhou, X. et al. Reversal of


cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. _Cell_ 142, 531–543 (2010). Article  CAS  PubMed  Google Scholar  * Busquets, S. et al. Myostatin


blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. _J. Cachexia. Sarcopenia Muscle_ 3, 37–43


(2012). Article  PubMed  Google Scholar  * Braun, T. P. et al. Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. _FASEB J._ 27, 3572–3582


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Molfino, A., Laviano, A. & Rossi Fanelli, F. Contribution of anorexia to tissue wasting in cachexia. _Curr. Opin. Support


Palliat Care_ 4, 249–253 (2010). Article  PubMed  Google Scholar  * McGreevy, J. et al. Characteristics of taste and smell alterations reported by patients after starting treatment for lung


cancer. _Support. Care Cancer_ 22, 2635–2644 (2014). Article  PubMed  Google Scholar  * Ramos, E. J. B. et al. Cancer anorexia-cachexia syndrome: cytokines and neuropeptides. _Curr. Opin.


Clin. Nutr. Metab. Care_ 7, 427–434 (2004). Article  CAS  PubMed  Google Scholar  * Suzuki, H., Asakawa, A., Amitani, H., Nakamura, N. & Inui, A. Cancer cachexia—pathophysiology and


management. _J. Gastroenterol._ 48, 574–594 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Prado, C. M. M., Antoun, S., Sawyer, M. B. & Baracos, V. E. Two faces of drug


therapy in cancer: drug-related lean tissue loss and its adverse consequences to survival and toxicity. _Curr. Opin. Clin. Nutr. Metab. Care_ 14, 250–254 (2011). Article  CAS  PubMed  Google


Scholar  * Oberholzer, R. et al. Psychosocial effects of cancer cachexia: a systematic literature search and qualitative analysis. _J. Pain Symptom Manage._ 46, 77–95 (2013). Article 


PubMed  Google Scholar  * Joppa, M. A., Gogas, K. R., Foster, A. C. & Markison, S. Central infusion of the melanocortin receptor antagonist agouti-related peptide (AgRP(83-132)) prevents


cachexia-related symptoms induced by radiation and colon-26 tumors in mice. _Peptides_ 28, 636–642 (2007). Article  CAS  PubMed  Google Scholar  * Cheung, W. W. & Mak, R. H.


Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease. _Am. J. Physiol. Renal Physiol._ 303, F1315–F1324 (2012). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Bindels, L. B. et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. _PLoS ONE_ 7, e37971


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bindels, L. B. & Delzenne, N. M. Muscle wasting: the gut microbiota as a new therapeutic target? _Int. J. Biochem. Cell


Biol._ 45, 2186–2190 (2013). Article  CAS  PubMed  Google Scholar  * Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. _Nature_


439, 484–489 (2006). Article  CAS  PubMed  Google Scholar  * Wang, H. S., Oh, D. S., Ohning, G. V. & Pisegna, J. R. Elevated serum ghrelin exerts an orexigenic effect that may maintain


body mass index in patients with metastatic neuroendocrine tumors. _J. Mol. Neurosci._ 33, 225–231 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kerem, M. et al. Adipokines


and ghrelin in gastric cancer cachexia. _World J. Gastroenterol._ 14, 3633–3641 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Takahashi, M. et al. Ghrelin and leptin


levels in cachectic patients with cancer of the digestive organs. _Int. J. Clin. Oncol._ 14, 315–320 (2009). Article  CAS  PubMed  Google Scholar  * Karapanagiotou, E. M. et al. Increased


serum levels of ghrelin at diagnosis mediate body weight loss in non-small cell lung cancer (NSCLC) patients. _Lung Cancer_ 66, 393–398 (2009). Article  PubMed  Google Scholar  * Sheriff, S.


et al. Des-acyl ghrelin exhibits pro-anabolic and anti-catabolic effects on C2C12 myotubes exposed to cytokines and reduces burn-induced muscle proteolysis in rats. _Mol. Cell. Endocrinol._


351, 286–295 (2012). Article  CAS  PubMed  Google Scholar  * Reano, S., Graziani, A. & Filigheddu, N. Acylated and unacylated ghrelin administration to blunt muscle wasting. _Curr.


Opin. Clin. Nutr. Metab. Care_ 17, 236–240 (2014). Article  CAS  PubMed  Google Scholar  * Yu, A. P. et al. Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal


muscle. _Acta Physiol._ 211, 201–213 (2014). Article  CAS  Google Scholar  * Roxburgh, C. S. & McMillan, D. C. Role of systemic inflammatory response in predicting survival in patients


with primary operable cancer. _Futur. Oncol._ 6, 149–163 (2010). Article  CAS  Google Scholar  * Proctor, M. J. et al. An inflammation-based prognostic score (mGPS) predicts cancer survival


independent of tumour site: a Glasgow Inflammation Outcome Study. _Br. J. Cancer_ 104, 726–734 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dumas, J. F. et al. Efficiency


of oxidative phosphorylation in liver mitochondria is decreased in a rat model of peritoneal carcinosis. _J. Hepatol._ 54, 320–327 (2011). Article  CAS  PubMed  Google Scholar  *


Eschenhagen, T. et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. _Eur. J. Heart Fail._


13, 1–10 (2011). Article  PubMed  Google Scholar  * Olivan, M. et al. Theophylline is able to partially revert cachexia in tumour-bearing rats. _Nutr. Metab._ 9, 76 (2012). Article  CAS 


Google Scholar  * Tian, M. et al. Cardiac alterations in cancer-induced cachexia in mice. _Int. J. Oncol._ 37, 347–353 (2010). CAS  PubMed  Google Scholar  * Drott, C. & Lundholm, K.


Glucose uptake and amino acid metabolism in perfused hearts from tumor-bearing rats. _J. Surg. Res._ 49, 62–68 (1990). Article  CAS  PubMed  Google Scholar  * Mühlfeld, C. et al. Cancer


induces cardiomyocyte remodeling and hypoinnervation in the left ventricle of the mouse heart. _PLoS ONE._ 6, e20424 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Hyltander, A., Drott, C., Körner, U., Sandström, R. & Lundholm, K. Elevated energy expenditure in cancer patients with solid tumours. _Eur. J. Cancer._ 27, 9–15 (1991). Article  CAS 


PubMed  Google Scholar  * Isenring, E. A. & Teleni, L. Nutritional counseling and nutritional supplements: a cornerstone of multidisciplinary cancer care for cachectic patients. _Curr.


Opin. Support. Palliat. Care_ 7, 390–395 (2013). Article  PubMed  Google Scholar  * Currow, D. C. & Abernethy, A. P. Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia


syndrome. _Future Oncol._ 10, 789–802 (2014). Article  CAS  PubMed  Google Scholar  * Dalton, J. T., Taylor, R. P., Mohler, M. L. & Steiner, M. S. Selective androgen receptor modulators


for the prevention and treatment of muscle wasting associated with cancer. _Curr. Opin. Support. Palliat. Care_ 7, 345–351 (2013). Article  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS This work was supported by a grant from the Ministerio de Ciencia yTecnología (SAF-26091-2011). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Cancer Research Group,


Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain Josep M. Argilés, Sílvia Busquets & Francisco J. López-Soriano *


Institut de Biomedicina de la Universitat de Barcelona, Barcelona, 08028, Spain Josep M. Argilés, Sílvia Busquets & Francisco J. López-Soriano * BS Nutrition Centre, Barcelona, 08195,


Spain Britta Stemmler Authors * Josep M. Argilés View author publications You can also search for this author inPubMed Google Scholar * Sílvia Busquets View author publications You can also


search for this author inPubMed Google Scholar * Britta Stemmler View author publications You can also search for this author inPubMed Google Scholar * Francisco J. López-Soriano View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Josep M. Argilés. ETHICS DECLARATIONS COMPETING INTERESTS J.M.A.:


Companies' Advisor 2003- Board of Advisors, Danone Research 2005- Board of Advisors, ANECA (National Agency for Evaluation of University Professors); also, on a non-regular basis, an


advisor for: Novartis (Switzerland), Par Pharmaceuticals (USA), Sacoor Medical Group (UK), Amgen (USA) and Merck, Sharp and Dohme (USA), Abbott Pharmaceuticals (USA). S.B., B.S. and


F.J.L.-S. declare no competing interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 GLOSSARY *


Adipokines Cytokines that are released by adipose tissue cells. * Asthenia From the Greek, _a stenos_, meaning 'without force'; loss of muscle force. * Brown adipose tissue (BAT;


also known as brown fat). One of two types of fat or adipose tissue (the other being white adipose tissue (also known as white fat)) found in mammals. Its primary function is to generate


body heat, being responsible for the so-called non-shivering thermogenesis. * Calcium release units Specialized junctional domains of the sarcoplasmic reticulum that bear calcium release


channels, also known as ryanoidine receptors. * Glycaemia Blood glucose levels. * Ghrelin resistance Reduced effects of ghrelin, in spite of high circulating levels of the molecule. *


Myokines Cytokines that are released by skeletal muscle. * Sarcomere From the Greek _sarx_ (flesh) and _meros_ (part), it represents the basic muscle. Sarcomeres are composed of long,


fibrous proteins that slide past each other when the muscles contract and relax. * Total parenteral nutrition Intravenous artificial nutrition without oral ingestion. * White adipose tissue


(WAT; also known as white fat). WAT is used as a store of energy in the form of triacylglycerols. It may account for up to 25% of body weight in healthy humans. RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Argilés, J., Busquets, S., Stemmler, B. _et al._ Cancer cachexia: understanding the molecular basis. _Nat Rev Cancer_ 14,


754–762 (2014). https://doi.org/10.1038/nrc3829 Download citation * Published: 09 October 2014 * Issue Date: November 2014 * DOI: https://doi.org/10.1038/nrc3829 SHARE THIS ARTICLE Anyone


you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative