
Prenatal screening for structural congenital heart disease
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:

KEY POINTS * Prenatal diagnosis of congenital heart disease (CHD) is important for investigation of affected fetuses for comorbidities, prognostication, preparation for postnatal management,
and parental choice about continuation of pregnancy * Historical risk factors, such as a family history of CHD, or fetal risk factors, including increased nuchal translucency, warrant
investigation with detailed fetal echocardiography * Most fetuses with CHD present in the 'low-risk' population, and prenatal detection depends on recognizing abnormalities during
obstetric scans * Cardiac anomalies characterized by an abnormal four-chamber view of the heart have a higher detection rate than those in which the abnormality is primarily of the outflow
tracts * For particular cardiac lesions, including transposition of the great arteries, coarctation of the aorta, and hypoplastic left heart syndrome, prenatal diagnosis improves outcomes *
Prenatal diagnosis of CHD allows the preparation of postnatal intervention in most instances; in a minority of cases (mainly critical left-heart lesions), fetal cardiac intervention can be
considered ABSTRACT Congenital heart defects can be diagnosed during fetal life using echocardiography. Prenatal diagnosis allows full investigation of affected fetuses for coexisting
abnormalities, and gives time for parents to be informed about the prognosis of the fetus and treatments that might be required. In a minority of cases, where the natural history suggests an
unfavourable outcome, prenatal diagnosis provides an opportunity for fetal cardiac intervention. For some cardiac lesions, notably hypoplastic left heart syndrome, transposition of the
great arteries, and coarctation of the aorta, prenatal diagnosis has been shown to reduce postnatal morbidity and mortality. Some costs of care, notably the transport of critically ill
infants, are reduced by prenatal diagnosis. Prenatal screening programmes typically recommend detailed assessment of fetuses judged to be at high risk of congenital heart disease. However,
most cases of congenital heart disease arise in the low-risk population, and detection of affected fetuses in this setting depends on recognizing abnormalities of the heart during the
midtrimester scan. Evidence supports the use of structured training interventions and feedback to those undertaking sonographic examinations, to improve the prenatal detection of congenital
heart disease. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution
Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full
article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *
Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DETECTION OF CONGENITAL HEART DISEASE BY NEONATOLOGIST PERFORMED CARDIAC ULTRASOUND IN PRETERM INFANTS Article Open access 23
July 2024 ADVANCING FETAL DIAGNOSIS AND PROGNOSTICATION USING COMPREHENSIVE PRENATAL PHENOTYPING AND GENETIC TESTING Article 27 June 2024 MATERNAL AND NEONATAL FACTORS ASSOCIATED WITH
CESAREAN DELIVERY IN A COHORT OF PREGNANCIES COMPLICATED BY PRENATALLY DIAGNOSED CONGENITAL HEART DISEASE Article 14 August 2023 REFERENCES * Hoffman, J. I. Incidence of congenital heart
disease: II. Prenatal incidence. _Pediatr. Cardiol._ 16, 155–165 (1995). Article CAS PubMed Google Scholar * Hoffman, J. I. & Kaplan, S. The incidence of congenital heart disease.
_J. Am. Coll. Cardiol._ 39, 1890–1900 (2002). Article PubMed Google Scholar * Wren, C., Richmond, S. & Donaldson, L. Temporal variability in birth prevalence of cardiovascular
malformations. _Heart_ 83, 414–419 (2000). Article CAS PubMed PubMed Central Google Scholar * Jenkins, K. J. _ et al_. Noninherited risk factors and congenital cardiovascular defects:
current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. _Circulation_
115, 2995–3014 (2007). Article PubMed Google Scholar * Carvalho, J. S. _ et al_. ISUOG practice guidelines (updated): sonographic screening examination of the fetal heart. _Ultrasound
Obstet. Gynecol._ 41, 348–359 (2013). Article PubMed Google Scholar * Rychik, J. _ et al_. American Society of Echocardiography guidelines and standards for performance of the fetal
echocardiogram. _J. Am. Soc. Echocardiogr._ 17, 803–810 (2004). Article PubMed Google Scholar * The American Institute of Ultrasound in Medicine. AIUM practice guideline for the
performance of fetal echocardiography. _J. Ultrasound Med._ 30, 127–136 (2011). * Allan, L. _ et al_. Recommendations for the practice of fetal cardiology in Europe. _Cardiol. Young_ 14,
109–114 (2004). Article PubMed Google Scholar * Public Health England. _NHS Fetal Anomaly Screening Programme: Standards and Policies_ [online], (2014). * Hyett, J., Perdu, M., Sharland,
G., Snijders, R. & Nicolaides, K. H. Using fetal nuchal translucency to screen for major congenital cardiac defects at 10–14 weeks of gestation: population based cohort study. _BMJ_ 318,
81–85 (1999). Article CAS PubMed PubMed Central Google Scholar * Ghi, T., Huggon, I., Zosmer, N. & Nicolaides, K. Incidence of major structural cardiac defects associated with
increased nuchal translucency but normal karyotype. _Ultrasound Obstet. Gynecol._ 18, 610–614 (2001). Article CAS PubMed Google Scholar * Zosmer, N., Souter, V., Chan, C., Huggon, I.
& Nicolaides, K. Early diagnosis of major cardiac defects in chromosomally normal fetuses with increased nuchal translucency. _Br. J. Obstet. Gynaecol._ 106, 829–833 (1999). Article CAS
PubMed Google Scholar * Makrydimas, G. _ et al_. Nuchal translucency and fetal cardiac defects: a pooled analysis of major fetal echocardiography centers. _Am. J. Obstet. Gynecol._ 192,
89–95 (2005). Article PubMed Google Scholar * Sotiriadis, A., Papatheodorou, S., Eleftheriades, M. & Makrydimas, G. Nuchal translucency and major congenital heart defects in fetuses
with normal karyotype: a meta-analysis. _Ultrasound Obstet. Gynecol._ 42, 383–389 (2013). CAS PubMed Google Scholar * Pereira, S., Ganapathy, R., Syngelaki, A., Maiz, N. & Nicolaides,
K. H. Contribution of fetal tricuspid regurgitation in first-trimester screening for major cardiac defects. _Obstet. Gynecol._ 117, 1384–1391 (2011). Article PubMed Google Scholar *
Maiz, N., Plasencia, W., Dagklis, T., Faros, E. & Nicolaides, K. Ductus venosus Doppler in fetuses with cardiac defects and increased nuchal translucency thickness. _Ultrasound Obstet.
Gynecol._ 31, 256–260 (2008). Article CAS PubMed Google Scholar * Maiz, N. & Nicolaides, K. Ductus venosus in the first trimester: contribution to screening of chromosomal, cardiac
defects and monochorionic twin complications. _Fetal Diagn. Ther._ 28, 65–71 (2010). Article PubMed Google Scholar * Morain, S., Greene, M. & Mello, M. A new era in noninvasive
prenatal testing. _N. Engl. J. Med._ 369, 499–501 (2013). Article CAS PubMed Google Scholar * Gil, M., Quezada, M., Bregant, B., Ferraro, M. & Nicolaides, K. Implementation of
maternal blood cell-free DNA testing in early screening for aneuploidies. _Ultrasound Obstet. Gynecol._ 42, 34–40 (2013). Article CAS PubMed Google Scholar * Nicolaides, K., Syngelaki,
A., Poon, L., Gil, M. & Wright, D. First-trimester contingent screening for trisomies 21, 18 and 13 by biomarkers and maternal blood cell-free DNA testing. _Fetal Diagn. Ther._
http://dx.doi.org/10.1159/000356066. * Gardiner, H. First-trimester fetal echocardiography: routine practice or research tool? _Ultrasound Obstet. Gynecol._ 42, 611–612 (2013). Article CAS
PubMed Google Scholar * Gill, H., Splitt, M., Sharland, G. & Simpson, J. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by
detailed fetal echocardiography. _J. Am. Coll. Cardiol._ 42, 923–929 (2003). Article PubMed Google Scholar * Burn, J. _ et al_. Recurrence risks in offspring of adults with major heart
defects: results from first cohort of British collaborative study. _Lancet_ 351, 311–316 (1998). Article CAS PubMed Google Scholar * Fesslova, V. _ et al_. Recurrence of congenital heart
disease in cases with familial risk screened prenatally by echocardiography. _J. Pregnancy_ 2011, 368067 (2011). Article PubMed PubMed Central Google Scholar * Allan, L., Crawford, D.,
Chita, S., Anderson, R. & Tynan, M. Familial recurrence of congenital heart disease in a prospective series of mothers referred for fetal echocardiography. _Am. J. Cardiol._ 58, 334–337
(1986). Article CAS PubMed Google Scholar * Hinton, R. _ et al_. Hypoplastic left heart syndrome is heritable. _J. Am. Coll. Cardiol._ 50, 1590–1595 (2007). Article PubMed Google
Scholar * Alonso, S. _ et al_. Heterotaxia syndrome and autosomal dominant inheritance. _Am. J. Med. Genet._ 56, 12–15 (1995). Article CAS PubMed Google Scholar * Yagel, S., Cohen, S.
M. & Achiron, R. Examination of the fetal heart by five short-axis views: a proposed screening method for comprehensive cardiac evaluation. _Ultrasound Obstet. Gynecol._ 17, 367–369
(2001). Article CAS PubMed Google Scholar * Bull, C. Current and potential impact of fetal diagnosis on prevalence and spectrum of serious congenital heart disease at term in the UK.
British Paediatric Cardiac Association. _Lancet_ 354, 1242–1247 (1999). Article CAS PubMed Google Scholar * Levy, D. _ et al_. Improved prenatal detection of congenital heart disease in
an integrated health care system. _Pediatr. Cardiol._ 34, 670–679 (2013). Article PubMed Google Scholar * Allan, L. Antenatal diagnosis of heart disease. _Heart_ 83, 367 (2000). Article
CAS PubMed PubMed Central Google Scholar * Gilboa, S. _ et al_. Association between prepregnancy body mass index and congenital heart defects. _Am. J. Obstet. Gynecol._ 202, 510 (2010).
Article Google Scholar * Hunter, S., Heads, A., Wyllie, J. & Robson, S. Prenatal diagnosis of congenital heart disease in the northern region of England: benefits of a training
programme for obstetric ultrasonographers. _Heart_ 84, 294–298 (2000). Article CAS PubMed PubMed Central Google Scholar * McBrien, A., Sands, A., Craig, B., Dornan, J. & Casey, F.
Impact of a regional training program in fetal echocardiography for sonographers on the antenatal detection of major congenital heart disease. _Ultrasound Obstet. Gynecol._ 36, 279–284
(2010). Article CAS PubMed Google Scholar * Sharland, G. Routine fetal cardiac screening: what are we doing and what should we do? _Prenat. Diagn._ 24, 1123–1129 (2004). Article PubMed
Google Scholar * Sharland, G. & Allan, L. Screening for congenital heart disease prenatally. Results of a 2 1/2-year study in the South East Thames Region. _Br. J. Obstet. Gynaecol._
99, 220–225 (1992). Article CAS PubMed Google Scholar * Jaudi, S. _ et al_. Online audit and feedback improve fetal second-trimester four-chamber view images: a randomised controlled
trial. _Prenat. Diagn._ 33, 959–964 (2013). Article PubMed Google Scholar * Jegatheeswaran, A. _ et al_. Costs of prenatal detection of congenital heart disease. _Am. J. Cardiol._ 108,
1808–1814 (2011). Article PubMed Google Scholar * Gardiner, H. _ et al_. Prenatal screening for major congenital heart disease: assessing performance by combining national cardiac audit
with maternity data. _Heart_ 100, 375–382 (2014). Article PubMed Google Scholar * Marek, J., Tomek, V., Skovranek, J., Povysilova, V. & Samanek, M. Prenatal ultrasound screening of
congenital heart disease in an unselected national population: a 21-year experience. _Heart_ 97, 124–130 (2011). Article PubMed Google Scholar * Allan, L. _ et al_. Prospective diagnosis
of 1,006 consecutive cases of congenital heart disease in the fetus. _J. Am. Coll. Cardiol._ 23, 1452–1458 (1994). Article CAS PubMed Google Scholar * Jowett, V. _ et al_. Sonographic
predictors of surgery in fetal coarctation of the aorta. _Ultrasound Obstet. Gynecol._ 40, 47–54 (2012). Article CAS PubMed Google Scholar * Sharland, G., Chan, K. & Allan, L.
Coarctation of the aorta: difficulties in prenatal diagnosis. _Br. Heart J._ 71, 70–75 (1994). Article CAS PubMed PubMed Central Google Scholar * Hornberger, L., Sahn, D., Kleinman, C.,
Copel, J. & Silverman, N. Antenatal diagnosis of coarctation of the aorta: a multicenter experience. _J. Am. Coll. Cardiol._ 23, 417–423 (1994). Article CAS PubMed Google Scholar *
Matsui, H., Mellander, M., Roughton, M., Jicinska, H. & Gardiner, H. Morphological and physiological predictors of fetal aortic coarctation. _Circulation_ 118, 1793–1801 (2008). Article
PubMed Google Scholar * Pasquini, L. _ et al_. Z-scores of the fetal aortic isthmus and duct: an aid to assessing arch hypoplasia. _Ultrasound Obstet. Gynecol._ 29, 628–633 (2007).
Article CAS PubMed Google Scholar * Chubb, H. & Simpson, J. The use of Z-scores in paediatric cardiology. _Ann. Pediatr. Cardiol._ 5, 179–184 (2012). Article PubMed PubMed Central
Google Scholar * Head, C., Jowett, V., Sharland, G. & Simpson, J. Timing of presentation and postnatal outcome of infants suspected of having coarctation of the aorta during fetal
life. _Heart_ 91, 1070–1074 (2005). Article CAS PubMed PubMed Central Google Scholar * Allan, L. & Sharland, G. The echocardiographic diagnosis of totally anomalous pulmonary venous
connection in the fetus. _Heart_ 85, 433–437 (2001). Article CAS PubMed PubMed Central Google Scholar * Feller Printz, B. & Allan, L. Abnormal pulmonary venous return diagnosed
prenatally by pulsed Doppler flow imaging. _Ultrasound Obstet. Gynecol._ 9, 347–349 (1997). Article CAS PubMed Google Scholar * Seale, A. _ et al_. Total anomalous pulmonary venous
connection: impact of prenatal diagnosis. _Ultrasound Obstet. Gynecol._ 40, 310–318 (2012). Article CAS PubMed Google Scholar * Yamamoto, Y. & Hornberger, L. Progression of outflow
tract obstruction in the fetus. _Early Hum. Dev._ 88, 279–285 (2012). Article PubMed Google Scholar * Johnson, P., Maxwell, D. J., Tynan, M. J. & Allan, L. D. Intracardiac pressures
in the human fetus. _Heart_ 84, 59–63 (2000). Article CAS PubMed PubMed Central Google Scholar * Mosimann, B., Zidere, V., Simpson, J. & Allan, L. Outcome and requirement for
surgical repair following prenatal diagnosis of ventricular septal defect. _Ultrasound Obstet. Gynecol._ http://dx.doi.org/10.1002/uog.13284. * Paladini, D. _ et al_. Characterization and
natural history of ventricular septal defects in the fetus. _Ultrasound Obstet. Gynecol._ 16, 118–122 (2000). Article CAS PubMed Google Scholar * Carvalho, J., Moscoso, G. & Ville,
Y. First-trimester transabdominal fetal echocardiography. _Lancet_ 351, 1023–1027 (1998). Article CAS PubMed Google Scholar * Carvalho, M. _ et al_. Detection of fetal structural
abnormalities at the 11–14 week ultrasound scan. _Prenat. Diagn._ 22, 1–4 (2002). Article CAS PubMed Google Scholar * Yagel, S., Cohen, S. & Messing, B. First and early second
trimester fetal heart screening. _Curr. Opin. Obstet. Gynecol._ 19, 183–190 (2007). Article PubMed Google Scholar * Simpsom, J., Jones, A., Callaghan, N. & Sharland, G. Accuracy and
limitations of transabdominal fetal echocardiography at 12–15 weeks of gestation in a population at high risk for congenital heart disease. _BJOG_ 107, 1492–1497 (2000). Article CAS PubMed
Google Scholar * Persico, N. _ et al_. Fetal echocardiography at 11–13 weeks by transabdominal high-frequency ultrasound. _Ultrasound Obstet. Gynecol._ 37, 296–301 (2011). Article CAS
PubMed Google Scholar * Zidere, V., Bellsham-Revell, H., Persico, N. & Allan, L. Comparison of echocardiographic findings in fetuses at less than 15 weeks' gestation with later
cardiac evaluation. _Ultrasound Obstet. Gynecol._ 42, 679–686 (2013). Article CAS PubMed Google Scholar * Arya, B., Glickstein, J., Levasseur, S. & Williams, I. Parents of children
with congenital heart disease prefer more information than cardiologists provide. _Congenit. Heart Dis._ 8, 78–85 (2013). Article PubMed Google Scholar * Prsa, M., Holly, C., Carnevale,
F., Justino, H. & Rohlicek, C. Attitudes and practices of cardiologists and surgeons who manage HLHS. _Pediatrics_ 125, e625–e630 (2010). Article PubMed Google Scholar * Kon, A.,
Ackerson, L. & Lo, B. How pediatricians counsel parents when no “best-choice” management exists: lessons to be learned from hypoplastic left heart syndrome. _Arch. Pediatr. Adolesc.
Med._ 158, 436–441 (2004). Article PubMed Google Scholar * Williams, I. A. _ et al_. Parental understanding of neonatal congenital heart disease. _Pediatr. Cardiol._ 29, 1059–1065 (2008).
Article PubMed PubMed Central Google Scholar * Hilton-Kamm, D., Chang, R.-K. & Sklansky, M. Prenatal diagnosis of hypoplastic left heart syndrome: impact of counseling patterns on
parental perceptions and decisions regarding termination of pregnancy. _Pediatr. Cardiol._ 33, 1402–1410 (2012). Article PubMed Google Scholar * Hilton-Kamm, D., Sklansky, M. & Chang,
R.-K. How not to tell parents about their child's new diagnosis of congenital heart disease: an Internet survey of 841 parents. _Pediatr. Cardiol._ 35, 239–252 (2014). Article PubMed
Google Scholar * Marino, B. _ et al_. Quality-of-life concerns differ among patients, parents, and medical providers in children and adolescents with congenital and acquired heart
disease. _Pediatrics_ 123, e708–e715 (2009). Article PubMed Google Scholar * Langford, K., Sharland, G. & Simpson, J. Relative risk of abnormal karyotype in fetuses found to have an
atrioventricular septal defect (AVSD) on fetal echocardiography. _Prenat. Diagn._ 25, 137–139 (2005). Article PubMed Google Scholar * Pepas, L. P. _ et al_. An echocardiographic study of
tetralogy of Fallot in the fetus and infant. _Cardiol. Young_ 13, 240–247 (2003). Article PubMed Google Scholar * Sharland, G. What should be provided by a service for fetal cardiology?
_Cardiol. Young_ 10, 625–635 (2000). Article CAS PubMed Google Scholar * Rempel, G., Cender, L., Lynam, M., Sandor, G. & Farquharson, D. Parents' perspectives on decision making
after antenatal diagnosis of congenital heart disease. _J. Obstet. Gynecol. Neonatal Nurs._ 33, 64–70 (2004). Article PubMed Google Scholar * Brosig, C. L., Whitstone, B. N., Frommelt,
M. A., Frisbee, S. J. & Leuthner, S. R. Psychological distress in parents of children with severe congenital heart disease: the impact of prenatal versus postnatal diagnosis. _J.
Perinatol._ 27, 687–692 (2007). Article CAS PubMed Google Scholar * Tworetzky, W. _ et al_. Improved surgical outcome after fetal diagnosis of hypoplastic left heart syndrome.
_Circulation_ 103, 1269–1273 (2001). Article CAS PubMed Google Scholar * Sivarajan, V., Penny, D. J., Filan, P., Brizard, C. & Shekerdemian, L. S. Impact of antenatal diagnosis of
hypoplastic left heart syndrome on the clinical presentation and surgical outcomes: the Australian experience. _J. Paediatr. Child Health_ 45, 112–117 (2009). Article PubMed Google Scholar
* Kumar, R. K., Newburger, J. W., Gauvreau, K., Kamenir, S. A. & Hornberger, L. K. Comparison of outcome when hypoplastic left heart syndrome and transposition of the great arteries
are diagnosed prenatally versus when diagnosis of these two conditions is made only postnatally. _Am. J. Cardiol._ 83, 1649–1653 (1999). Article CAS PubMed Google Scholar * Mahle, W.,
Clancy, R., McGaurn, S., Goin, J. & Clark, B. Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. _Pediatrics_
107, 1277–1282 (2001). Article CAS PubMed Google Scholar * Franklin, O. _ et al_. Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity. _Heart_ 87,
67–69 (2002). Article CAS PubMed PubMed Central Google Scholar * Bonnet, D. _ et al_. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and
mortality. _Circulation_ 99, 916–918 (1999). Article CAS PubMed Google Scholar * Jouannic, J.-M. _ et al_. Sensitivity and specificity of prenatal features of physiological shunts to
predict neonatal clinical status in transposition of the great arteries. _Circulation_ 110, 1743–1746 (2004). Article PubMed Google Scholar * Tzifa, A., Barker, C., Tibby, S. M. &
Simpson, J. M. Prenatal diagnosis of pulmonary atresia: impact on clinical presentation and early outcome. _Arch. Dis. Child. Fetal Neonatal Ed._ 92, F199–F203 (2007). Article PubMed
Google Scholar * Mats, M. & Jan, S. Failure to diagnose critical heart malformations in newborns before discharge-an increasing problem? _Acta Paediatrica_ 95 (2007). * Ewer, A. _ et
al_. Pulse oximetry screening for congenital heart defects in newborn infants (PulseOx): a test accuracy study. _Lancet_ 378, 785–794 (2011). Article PubMed Google Scholar * Rogers, L. _
et al_. Mitral valve dysplasia syndrome: a unique form of left-sided heart disease. _J. Thorac. Cardiovasc. Surg._ 142, 1381–1387 (2011). Article PubMed Google Scholar * Vogel, M. _ et
al_. Aortic stenosis and severe mitral regurgitation in the fetus resulting in giant left atrium and hydrops: pathophysiology, outcomes, and preliminary experience with pre-natal cardiac
intervention. _J. Am. Coll. Cardiol._ 57, 348–355 (2011). Article PubMed Google Scholar * Divanovic´, A. _ et al_. Prediction and perinatal management of severely restrictive atrial
septum in fetuses with critical left heart obstruction: clinical experience using pulmonary venous Doppler analysis. _J. Thorac. Cardiovasc. Surg._ 141, 988–994 (2011). Article PubMed
Google Scholar * Michelfelder, E., Gomez, C., Border, W., Gottliebson, W. & Franklin, C. Predictive value of fetal pulmonary venous flow patterns in identifying the need for atrial
septoplasty in the newborn with hypoplastic left ventricle. _Circulation_ 112, 2974–2979 (2005). Article PubMed Google Scholar * Simpson, J. & Sharland, G. Natural history and outcome
of aortic stenosis diagnosed prenatally. _Heart_ 77, 205–210 (1997). Article CAS PubMed PubMed Central Google Scholar * Mäkikallio, K. _ et al_. Fetal aortic valve stenosis and the
evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. _Circulation_ 113, 1401–1405 (2006). Article PubMed Google Scholar * Gardiner, H. M. _ et al_.
Morphologic and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. _J. Am. Coll. Cardiol._ 51, 1299–1308
(2008). Article PubMed Google Scholar * Salvin, J. W. _ et al_. Fetal tricuspid valve size and growth as predictors of outcome in pulmonary atresia with intact ventricular septum.
_Pediatrics_ 118, e415–e420 (2006). Article PubMed Google Scholar * Andrews, R. E., Tibby, S. M., Sharland, G. K. & Simpson, J. M. Prediction of outcome of tricuspid valve
malformations diagnosed during fetal life. _Am. J. Cardiol._ 101, 1046–1050 (2008). Article PubMed Google Scholar * Fouron, J. C. Fetal arrhythmias: the Saint-Justine hospital experience.
_Prenat. Diagn._ 24, 1068–1080 (2004). Article PubMed Google Scholar * Jaeggi, E. T. _ et al_. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with
digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. _Circulation_ 124, 1747–1754 (2011). Article CAS PubMed Google Scholar * Simpson, J. M. & Sharland, G.
K. Fetal tachycardias: management and outcome of 127 consecutive cases. _Heart_ 79, 576–581 (1998). Article CAS PubMed PubMed Central Google Scholar * Jaeggi, E. _ et al_.
Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. _Circulation_ 110, 1542–1548 (2004). Article
PubMed Google Scholar * Rosenthal, E., Gordon, P. A., Simpson, J. M. & Sharland, G. K. Letter regarding article by Jaeggi _ et al_., “transplacental fetal treatment improves the
outcome of prenatally diagnosed complete atrioventricular block without structural heart disease”. _Circulation_ 111, e287–e288 (2005). Article PubMed Google Scholar * Eliasson, H. _ et
al_. Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients. _Circulation_ 124, 1919–1926 (2011). Article PubMed Google Scholar *
McElhinney, D. _ et al_. Predictors of technical success and postnatal biventricular outcome after _in utero_ aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart
syndrome. _Circulation_ 120, 1482–1490 (2009). Article PubMed PubMed Central Google Scholar * McElhinney, D., Tworetzky, W. & Lock, J. Current status of fetal cardiac intervention.
_Circulation_ 121, 1256–1263 (2010). Article PubMed PubMed Central Google Scholar * Arzt, W. _ et al_. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis:
experience and results of 24 procedures. _Ultrasound Obstet. Gynecol._ 37, 689–695 (2011). Article CAS PubMed Google Scholar * Makikallio, K. _ et al_. Fetal aortic valve stenosis and
the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. _Circulation_ 113, 1401–1405 (2006). Article PubMed Google Scholar * Tworetzky, W. _ et al_.
Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention.
_Circulation_ 110, 2125–2131 (2004). Article PubMed Google Scholar * Emani, S. M. _ et al_. Staged left ventricular recruitment after single-ventricle palliation in patients with
borderline left heart hypoplasia. _J. Am. Coll. Cardiol._ 60, 1966–1974 (2012). Article PubMed Google Scholar * Friedman, K. G. _ et al_. Postnatal left ventricular diastolic function
after fetal aortic valvuloplasty. _Am. J. Cardiol._ 108, 556–560 (2011). Article PubMed PubMed Central Google Scholar * Simpson, J. M. Fetal cardiac interventions: worth it? _Heart_ 95,
1653–1655 (2009). Article CAS PubMed Google Scholar * Tulzer, G. _ et al_. Fetal pulmonary valvuloplasty for critical pulmonary stenosis or atresia with intact septum. _Lancet_ 360,
1567–1568 (2002). Article PubMed Google Scholar * Tworetzky, W. _ et al_. _In utero_ valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes.
_Pediatrics_ 124, e510–e518 (2009). Article PubMed Google Scholar * Rychik, J., Rome, J. J., Collins, M. H., DeCampli, W. M. & Spray, T. L. The hypoplastic left heart syndrome with
intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. _J. Am. Coll. Cardiol._ 34, 554–560 (1999). Article CAS PubMed Google Scholar * Seed, M., Bradley,
T., Bourgeois, J., Jaeggi, E. & Yoo, S. J. Antenatal MR imaging of pulmonary lymphangiectasia secondary to hypoplastic left heart syndrome. _Pediatr. Radiol._ 39, 747–749 (2009).
Article PubMed Google Scholar * Marshall, A. C. _ et al_. Results of _in utero_ atrial septoplasty in fetuses with hypoplastic left heart syndrome. _Prenat. Diagn._ 28, 1023–1028 (2008).
Article PubMed Google Scholar * Kalish, B. T. _ et al_. Technical challenges of atrial septal stent placement in fetuses with hypoplastic left heart syndrome and intact atrial septum.
_Catheter. Cardiovasc. Interv._ http://dx.doi.org/10.1002/ccd.25098. * Chaturvedi, R. R., Ryan, G., Seed, M., van Arsdell, G. & Jaeggi, E. T. Fetal stenting of the atrial septum:
technique and initial results in cardiac lesions with left atrial hypertension. _Int. J. Cardiol._ 168, 2029–2036 (2013). Article PubMed Google Scholar * Vida, V. _ et al_. Hypoplastic
left heart syndrome with intact or highly restrictive atrial septum: surgical experience from a single center. _Ann. Thorac. Surg._ 84, 581–585 (2007). Article PubMed Google Scholar *
Warrier, D., Saraf, R., Maheshwari, S., Suresh, P. & Shah, S. Awareness of fetal echo in Indian scenario. _Ann. Pediatr. Cardiol._ 5, 156–159 (2012). Article PubMed PubMed Central
Google Scholar * Vaidyanathan, B., Kumar, S., Sudhakar, A. & Kumar, R. K. Conotruncal anomalies in the fetus: referral patterns and pregnancy outcomes in a dedicated fetal cardiology
unit in South India. _Ann. Pediatr. Cardiol._ 6, 15–20 (2013). Article PubMed PubMed Central Google Scholar * Thangaratinam, S., Brown, K., Zamora, J., Khan, K. S. & Ewer, A. K.
Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systematic review and meta-analysis. _Lancet_ 379, 2459–2464 (2012). Article PubMed Google
Scholar * Sairam, S. & Carvalho, J. Early fetal echocardiography and anomaly scan in fetuses with increased nuchal translucency. _Early Hum. Dev._ 88, 269–272 (2012). Article PubMed
Google Scholar * Adriaanse, B. _ et al_. Interobserver agreement in detailed prenatal diagnosis of congenital heart disease by telemedicine using four-dimensional ultrasound with
spatiotemporal image correlation. _Ultrasound Obstet. Gynecol._ 39, 203–209 (2012). Article CAS PubMed Google Scholar * Zidere, V., Pushparajah, K., Allan, L. D. & Simpson, J. M.
Three-dimensional fetal echocardiography for prediction of postnatal surgical approach in double outlet right ventricle: a pilot study. _Ultrasound Obstet. Gynecol._ 42, 421–425 (2013).
Article CAS PubMed Google Scholar * Viñals, F. Current experience and prospect of internet consultation in fetal cardiac ultrasound. _Fetal Diagn. Ther._ 30, 83–87 (2011). Article
PubMed Google Scholar * Viñals, F., Poblete, P. & Giuliano, A. Spatio-temporal image correlation (STIC): a new tool for the prenatal screening of congenital heart defects. _Ultrasound
Obstet. Gynecol._ 22, 388–394 (2003). Article PubMed Google Scholar * Yeo, L. & Romero, R. Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and
automatic examination of the fetal heart. _Ultrasound Obstet. Gynecol._ 42, 268–284 (2013). Article PubMed Google Scholar * McCrossan, B. A., Sands, A. J., Kileen, T., Cardwell, C. R.
& Casey, F. A. Fetal diagnosis of congenital heart disease by telemedicine. _Arch. Dis. Child. Fetal Neonatal Ed._ 96, F394–F397 (2011). Article PubMed Google Scholar * McCrossan, B.
A., Sands, A. J., Kileen, T., Doherty, N. N. & Casey, F. A. A fetal telecardiology service: patient preference and socio-economic factors. _Prenat. Diagn._ 32, 883–887 (2012). PubMed
Google Scholar * Seed, M. _ et al_. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. _J. Cardiovasc.
Magn. Reson._ 14, 79 (2012). Article PubMed PubMed Central Google Scholar * Manganaro, L. _ et al_. Magnetic resonance imaging of fetal heart: anatomical and pathological findings. _J.
Matern. Fetal Neonatal Med._ http://dx.doi.org/10.3109/14767058.2013.852174. * Wielandner, A., Mlczoch, E., Prayer, D. & Berger-Kulemann, V. Potential of magnetic resonance for imaging
the fetal heart. _Semin. Fetal Neonatal Med._ 18, 286–297 (2013). Article PubMed Google Scholar Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Congenital
Heart Disease, Fetal Cardiology Unit, Evelina London Children's Hospital, London, SE1 7EH, UK Lindsey E. Hunter & John M. Simpson Authors * Lindsey E. Hunter View author
publications You can also search for this author inPubMed Google Scholar * John M. Simpson View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS
Both authors researched data for the article, contributed substantially to discussion of its content, wrote the manuscript, and reviewed and edited it before submission. CORRESPONDING AUTHOR
Correspondence to John M. Simpson. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT
SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR TABLE 1 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Hunter, L., Simpson, J. Prenatal screening for structural
congenital heart disease. _Nat Rev Cardiol_ 11, 323–334 (2014). https://doi.org/10.1038/nrcardio.2014.34 Download citation * Published: 25 March 2014 * Issue Date: June 2014 * DOI:
https://doi.org/10.1038/nrcardio.2014.34 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative