Alterations in vhl as potential biomarkers in renal-cell carcinoma

Alterations in vhl as potential biomarkers in renal-cell carcinoma


Play all audios:


ABSTRACT Germ line mutations in the _VHL_ tumor-suppressor gene cause von Hippel–Lindau (VHL) disease, a hereditary neoplastic disease associated with clear-cell renal-cell carcinomas


(ccRCCs), central nervous system hemangioblastomas and pheochromocytomas. Disruption of _VHL_, by somatic mutation, hypermethylation of its promoter or chromosomal loss, is also seen in the


majority of cases of sporadic ccRCC. The protein product of _VHL_, pVHL, has multiple functions, the best-documented of which relates to its ability to target hypoxia-inducible factors


(HIFs) for polyubiquitination and proteasomal degradation through its role in substrate recognition as part of a ubiquitin ligase complex. Consequently, pVHL-defective ccRCCs overexpress


mRNAs that are under the transcriptional control of HIF. Drugs that modulate the downstream targets of the pVHL/HIF pathway, including sunitinib, sorafenib, temsirolimus and bevacizumab,


have proven benefit in treating ccRCC. In VHL disease, clear evidence supports strong genotype–phenotype correlations, but the situation in sporadic ccRCC is less clear. Data indicate that


_VHL_ alterations have a potential role as prognostic and predictive markers in ccRCC. Future clinical trials should prospectively define the _VHL_ alteration status of study participants so


that the true utility of such markers can be determined. KEY POINTS * Disruption of _VHL_, by somatic mutation, hypermethylation of its promoter or chromosomal loss, is seen in the majority


of cases of clear-cell renal-cell carcinoma * The best-documented function of pVHL involves targeting hypoxia-inducible factors (HIFs) for polyubiquitination and proteasomal degradation


through its role as the substrate recognition component of a ubiquitin ligase complex * Drugs that modulate downstream targets of the VHL/HIF pathway have proven efficacy in treating


clear-cell renal-cell carcinoma * HIF-independent functions of pVHL are important for its tumor-suppressor action: maintenance of the primary cilium, assembly of extracellular matrix,


control of microtubule dynamics, regulation of neuronal apoptosis and transcriptional regulation * Future clinical trials should prospectively define the _VHL_ mutation status of study


participants and include planned subgroup analyses to assess the importance of mutational status as a stratifying variable * Understanding the functional effects of pVHL alterations might


facilitate development of a classification system to differentiate high-risk from low-risk patients and identify those who could benefit from targeted therapies Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print


issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS GENOMIC PROFILING IN RENAL CELL CARCINOMA Article 19 June 2020 PBRM1, SETD2 AND BAP1 — THE TRINITY OF 3P IN CLEAR CELL RENAL CELL CARCINOMA Article 17 October 2022


WHOLE GENOME SEQUENCING REFINES STRATIFICATION AND THERAPY OF PATIENTS WITH CLEAR CELL RENAL CELL CARCINOMA Article Open access 15 July 2024 REFERENCES * Kaelin, W. G. Jr. Molecular basis of


the VHL hereditary cancer syndrome. _Nat. Rev. Cancer_ 2, 673–682 (2002). Article  CAS  PubMed  Google Scholar  * Maher, E. R. _ et al_. Clinical features and natural history of von


Hippel–Lindau disease. _Q. J. Med._ 77, 1151–1163 (1990). Article  CAS  PubMed  Google Scholar  * Gnarra, J. R. _ et al_. Post-transcriptional regulation of vascular endothelial growth


factor mRNA by the product of the _VHL_ tumor suppressor gene. _Proc. Natl Acad. Sci. USA_ 93, 10589–10594 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Iliopoulos, O.,


Kibel, A., Gray, S. & Kaelin, W. G. Jr. Tumor suppression by the human von Hippel–Lindau gene product. _Nat. Med._ 1, 822–826 (1995). Article  CAS  PubMed  Google Scholar  * Schoenfeld,


A., Davidowitz, E. J. & Burk, R. D. A second major native von Hippel–Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. _Proc. Natl


Acad. Sci. USA_ 95, 8817–8822 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Davidowitz, E. J., Schoenfeld, A. R. & Burk, R. D. VHL induces renal cell differentiation


and growth arrest through integration of cell–cell and cell–extracellular matrix signaling. _Mol. Cell. Biol._ 21, 865–874 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Lieubeau-Teillet, B. _ et al_. von Hippel–Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids.


_Cancer Res._ 58, 4957–4962 (1998). CAS  PubMed  Google Scholar  * Pause, A., Lee, S., Lonergan, K. M. & Klausner, R. D. The von Hippel–Lindau tumor suppressor gene is required for cell


cycle exit upon serum withdrawal. _Proc. Natl Acad. Sci. USA_ 95, 993–998 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Knudson, A. G. Jr. Mutation and cancer: statistical


study of retinoblastoma. _Proc. Natl Acad. Sci. USA_ 68, 820–823 (1971). Article  PubMed  PubMed Central  Google Scholar  * Foster, K. _ et al_. Somatic mutations of the von Hippel–Lindau


disease tumor suppressor gene in non-familial clear cell renal carcinoma. _Hum. Mol. Genet._ 3, 2169–2173 (1994). Article  CAS  PubMed  Google Scholar  * Gnarra, J. R. _ et al_. Mutations of


the _VHL_ tumor suppressor gene in renal carcinoma. _Nat. Genet._ 7, 85–90 (1994). Article  CAS  PubMed  Google Scholar  * Shuin, T. _ et al_. Frequent somatic mutations and loss of


heterozygosity of the von Hippel–Lindau tumor suppressor gene in primary human renal cell carcinomas. _Cancer Res._ 54, 2852–2855 (1994). CAS  PubMed  Google Scholar  * Whaley, J. M. _ et


al_. Germ-line mutations in the von Hippel–Lindau tumor-suppressor gene are similar to somatic von Hippel–Lindau aberrations in sporadic renal cell carcinoma. _Am. J. Hum. Genet._ 55,


1092–1102 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Cockman, M. E. _ et al_. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel–Lindau tumor suppressor


protein. _J. Biol. Chem._ 275, 25733–25741 (2000). Article  CAS  PubMed  Google Scholar  * Kamura, T. _ et al_. Activation of HIF-1α ubiquitination by a reconstituted von Hippel–Lindau (VHL)


tumor suppressor complex. _Proc. Natl Acad. Sci. USA_ 97, 10430–10435 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maxwell, P. H. _ et al_. The tumor suppressor protein


VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. _Nature_ 399, 271–275 (1999). Article  CAS  PubMed  Google Scholar  * Ohh, M. _ et al_. Ubiquitination of


hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. _Nat. Cell Biol._ 2, 423–427 (2000). Article  CAS  PubMed  Google Scholar  * Tanimoto,


K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel–Lindau tumor suppressor protein. _EMBO J._ 19, 4298–4309 (2000).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaelin, W. G. The von Hippel–Lindau tumor suppressor protein: roles in cancer and oxygen sensing. _Cold Spring Harbor Symp. Quant.


Biol._ 70, 159–166 (2005). Article  CAS  PubMed  Google Scholar  * Kaelin, W. G. Jr. The von Hippel–Lindau protein, HIF hydroxylation, and oxygen sensing. _Biochem. Biophys. Res. Commun._ 3


38, 627–638 (2005). Article  Google Scholar  * Kaelin, W. G. Jr. The von Hippel–Lindau tumor suppressor protein: an update. _Methods Enzymol._ 43 5, 371–383 (2007). Article  Google Scholar 


* Kaelin, W. G. Jr. The von Hippel–Lindau tumor suppressor protein and clear cell renal carcinoma. _Clin. Cancer Res._ 13 (Pt 2), 680s–684s (2007). * Kaelin, W. G. Jr. The von Hippel–Lindau


tumor suppressor protein: O2 sensing and cancer. _Nat. Rev. Cancer_ 8, 865–873 (2008). Article  CAS  PubMed  Google Scholar  * Kaelin, W. G. Von Hippel–Lindau disease. _Annu. Rev. Pathol._


2, 145–173 (2007). Article  CAS  PubMed  Google Scholar  * Nyhan, M. J., O'Sullivan, G. C. & McKenna, S. L. Role of the _VHL_ (von Hippel–Lindau) gene in renal cancer: a


multifunctional tumor suppressor. _Biochem. Soc. Trans._ 36 (Pt 3), 472–478 (2008). Article  CAS  PubMed  Google Scholar  * Frew, I. J. & Krek, W. Multitasking by pVHL in tumor


suppression. _Curr. Opin. Cell Biol._ 19, 685–690 (2007). Article  CAS  PubMed  Google Scholar  * Folkman, J. Tumor angiogenesis: therapeutic implications. _N. Engl. J. Med._ 285, 1182–1186


(1971). Article  CAS  PubMed  Google Scholar  * Cébe-Suarez, S., Zehnder-Fjällman, A. & Ballmer-Hofer, K. The role of VEGF receptors in angiogenesis; complex partnerships. _Cell. Mol.


Life Sci._ 6 3, 601–615 (2006). Article  Google Scholar  * Bastien, L. _ et al_. Targeted therapies in metastatic renal cancer in 2009. _BJU Int._ 103, 1334–1342 (2009). Article  CAS  PubMed


  Google Scholar  * Atkins, M. B. _ et al_. Innovations and challenges in renal cancer: summary statement from the Third Cambridge Conference. _Cancer_ 115 (Suppl.), 2247–2251 (2009).


Article  PubMed  Google Scholar  * Kaelin, W. G. Jr. Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. _Cancer_ 115 (Suppl.), 2262–2272 (2009). Article  CAS


  PubMed  Google Scholar  * Motzer, R. J., Bacik, J., Murphy, B. A., Russo, P. & Mazumdar, M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against


advanced renal cell carcinoma. _J. Clin. Oncol._ 20, 289–296 (2002). Article  CAS  PubMed  Google Scholar  * Slamon, D. J. _ et al_. Use of chemotherapy plus a monoclonal antibody against


HER2 for metastatic breast cancer that overexpresses HER2. _N. Engl. J. Med._ 344, 783–792 (2001). Article  CAS  PubMed  Google Scholar  * Lievre, A. _ et al_. _KRAS_ mutation status is


predictive of response to cetuximab therapy in colorectal cancer. _Cancer Res._ 66, 3992–3995 (2006). Article  CAS  PubMed  Google Scholar  * Lynch, T. J. _ et al_. Activating mutations in


the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. _N. Engl. J. Med._ 350, 2129–2139 (2004). Article  CAS  PubMed  Google Scholar  *


Ong, K. R. _ et al_. Genotype–phenotype correlations in von Hippel–Lindau disease. _Hum. Mutat._ 28, 143–149 (2007). Article  CAS  PubMed  Google Scholar  * Forman, J. R., Worth, C. L.,


Bickerton, G. R., Eisen, T. G. & Blundell, T. L. Structural bioinformatics mutation analysis reveals genotype–phenotype correlations in von Hippel–Lindau disease and suggests molecular


mechanisms of tumorigenesis. _Proteins_ 77, 84–96 (2009). Article  CAS  PubMed  Google Scholar  * Clifford, S. C. _ et al_. Contrasting effects on HIF-1α regulation by disease-causing pVHL


mutations correlate with patterns of tumorigenesis in von Hippel–Lindau disease. _Hum. Mol. Genet._ 10, 1029–1038 (2001). Article  CAS  PubMed  Google Scholar  * Molina, A. M. & Motzer,


R. J. Current algorithms and prognostic factors in the treatment of metastatic renal cell carcinoma. _Clin. Genitourin. Cancer_ 6 (Suppl. 1), S7–S13 (2008). Article  CAS  PubMed  Google


Scholar  * Knauth, K., Bex, C., Jemth, P. & Buchberger, A. Renal cell carcinoma risk in type 2 von Hippel–Lindau disease correlates with defects in pVHL stability and HIF-1α


interactions. _Oncogene_ 25, 370–377 (2006). Article  CAS  PubMed  Google Scholar  * Li, L. _ et al_. Hypoxia-inducible factor linked to differential kidney cancer risk seen with type 2A and


type 2B _VHL_ mutations. _Mol. Cell Biol._ 27, 5381–5392 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pastore, Y. D. _ et al_. Mutations in the _VHL_ gene in sporadic


apparently congenital polycythemia. _Blood_ 101, 1591–1595 (2003). Article  CAS  PubMed  Google Scholar  * Ang, S. O. _ et al_. Disruption of oxygen homeostasis underlies congenital Chuvash


polycythemia. _Nat. Genet._ 32, 614–621 (2002). Article  CAS  PubMed  Google Scholar  * Banks, R. E. _ et al_. Genetic and epigenetic analysis of von Hippel–Lindau (_VHL_) gene alterations


and relationship with clinical variables in sporadic renal cancer. _Cancer Res._ 66, 2000–2011 (2006). Article  CAS  PubMed  Google Scholar  * Brauch, H. _ et al_. _VHL_ alterations in human


clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. _Cancer Res._ 60, 1942–1948 (2000). CAS  PubMed  Google Scholar  * Giménez-Bachs, J. M.


_ et al_. VHL protein alterations in sporadic renal cell carcinoma. _Clin. Oncol. (R. Coll. Radiol.)_ 19, 784–789 (2007). Article  Google Scholar  * Kim, J. H. _ et al_. Somatic VHL


alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. _Oncol. Rep._ 13, 859–864 (2005). CAS  PubMed  Google Scholar  * Kondo, K. _ et al_. Comprehensive


mutational analysis of the _VHL_ gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. _Genes Chromosomes Cancer_ 34, 58–68 (2002). Article  CAS  PubMed 


Google Scholar  * Ma, X., Yang, K., Lindblad, P., Egevad, L. & Hemminki, K. _VHL_ gene alterations in renal cell carcinoma patients: novel hotspot or founder mutations and linkage


disequilibrium. _Oncogene_ 20, 5393–5400 (2001). Article  CAS  PubMed  Google Scholar  * Nickerson, M. L. _ et al_. Improved identification of von Hippel–Lindau gene alterations in clear


cell renal tumors. _Clin. Cancer Res._ 14, 4726–4734 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Patard, J. J. _ et al_. Low CAIX expression and absence of _VHL_ gene


mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. _Int. J. Cancer_ 123, 395–400 (2008). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Schraml, P. _ et al_. _VHL_ mutations and their correlation with tumor cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. _J.


Pathol._ 196, 186–193 (2002). Article  CAS  PubMed  Google Scholar  * Smits, K. M. _ et al_. Genetic and epigenetic alterations in the von Hippel–Lindau gene: the influence on renal cancer


prognosis. _Clin. Cancer Res._ 14, 782–787 (2008). Article  CAS  PubMed  Google Scholar  * Suzuki, H. _ et al_. Mutational state of von Hippel–Lindau and adenomatous polyposis coli genes in


renal tumors. _Oncology_ 5 4, 252–257 (1997). Article  Google Scholar  * van Houwelingen, K. P. _ et al_. Prevalence of von Hippel–Lindau gene mutations in sporadic renal cell carcinoma:


results from The Netherlands cohort study. _BMC Cancer_ 5, 57 (2005). Article  PubMed  PubMed Central  Google Scholar  * Yao, M. _ et al_. _VHL_ tumor suppressor gene alterations associated


with good prognosis in sporadic clear-cell renal carcinoma. _J. Natl Cancer Inst._ 94, 1569–1575 (2002). Article  CAS  PubMed  Google Scholar  * Choyke, P. L. _ et al_. The natural history


of renal lesions in von Hippel–Lindau disease: a serial CT study in 28 patients. _AJR Am. J. Roentgenol._ 15 9, 1229–1234 (1992). Article  Google Scholar  * Neumann, H. P. _ et al_.


Prevalence, morphology and biology of renal cell carcinoma in von Hippel–Lindau disease compared to sporadic renal cell carcinoma. _J. Urol._ 160, 1248–1254 (1998). Article  CAS  PubMed 


Google Scholar  * Gallou, C. _ et al_. Genotype–phenotype correlation in von Hippel–Lindau families with renal lesions. _Hum. Mutat._ 24, 215–224 (2004). Article  CAS  PubMed  Google Scholar


  * Yang, K., Lindblad, P., Egevad, L. & Hemminki, K. Novel somatic mutations in the _VHL_ gene in Swedish archived sporadic renal cell carcinomas. _Cancer Lett._ 141, 1–8 (1999).


Article  PubMed  Google Scholar  * Gordan, J. D. _ et al_. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. _Cancer Cell_ 14, 435–446


(2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Smaldone, M. C. & Maranchie, J. K. Clinical implications of hypoxia inducible factor in renal cell carcinoma. _Urol.


Oncol._ 27, 238–245 (2009). Article  CAS  PubMed  Google Scholar  * Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF2α is sufficient to suppress pVHL-defective


tumor growth. _PLoS Biol._ 1, E83 (2003). Article  PubMed  PubMed Central  Google Scholar  * Zimmer, M., Doucette, D., Siddiqui, N. & Iliopoulos, O. Inhibition of hypoxia-inducible


factor is sufficient for growth suppression of _VHL__−/−_ tumors. _Mol. Cancer Res._ 2, 89–95 (2004). CAS  PubMed  Google Scholar  * Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. &


Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel–Lindau protein. _Cancer Cell_ 1, 237–246 (2002). Article  CAS  PubMed  Google Scholar  * Maranchie,


J. K. _ et al_. The contribution of VHL substrate binding and HIF-1α to the phenotype of VHL loss in renal cell carcinoma. _Cancer Cell_ 1, 247–255 (2002). Article  CAS  PubMed  Google


Scholar  * Hoffman, M. A. _ et al_. von Hippel–Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. _Hum. Mol. Genet._ 10, 1019–1027 (2001). Article


  CAS  PubMed  Google Scholar  * Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene


regulation. _Mol. Cell Biol._ 23, 9361–9374 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Raval, R. R. _ et al_. Contrasting properties of hypoxia-inducible factor 1


(HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. _Mol. Cell Biol._ 25, 5675–5686 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zimmer, M. _ et al_.


Small-molecule inhibitors of HIF-2α translation link its 5'UTR iron-responsive element to oxygen sensing. _Mol. Cell._ 32, 838–848 (2008). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Bui, M. H. _ et al_. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. _Clin. Cancer


Res._ 9, 802–811 (2003). CAS  PubMed  Google Scholar  * Choueiri, T. K. _ et al_. von Hippel–Lindau gene status and response to vascular endothelial growth factor targeted therapy for


metastatic clear cell renal cell carcinoma. _J. Urol._ 180, 860–866 (2008). Article  CAS  PubMed  Google Scholar  * Rini, B. I. _ et al_. Clinical response to therapy targeted at vascular


endothelial growth factor in metastatic renal cell carcinoma: impact of patient characteristics and von Hippel–Lindau gene status. _BJU Int._ 98, 756–762 (2006). Article  CAS  PubMed  Google


Scholar  * Gad, S. _ et al_. Somatic von Hippel–-Lindau (_VHL_) gene analysis and clinical outcome under anti-angiogenic treatment in metastatic renal cell carcinoma: preliminary results.


_Targeted Oncology_ 2, 3–6 (2007). Article  Google Scholar  * Hutson, T. E. _ et al_. Biomarker analysis and final efficacy and safety results of a phase II renal cell carcinoma trial with


pazopanib (GW786034), a multi-kinase angiogenesis inhibitor. _J. Clin. Oncol._ 26 (Suppl.), 5046 (2008). Article  Google Scholar  * Cho, D. _ et al_. Potential histologic and molecular


predictors of response to temsirolimus in patients with advanced renal cell carcinoma. _Clin. Genitourin. Cancer_ 5, 379–385 (2007). Article  CAS  PubMed  Google Scholar  * Atkins, M. _ et


al_. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. _Clin. Cancer Res._ 11, 3714–3721 (2005). Article  CAS  PubMed  Google Scholar  * Beroukhim,


R. _ et al_. Patterns of gene expression and copy-number alterations in von Hippel–Lindau disease-associated and sporadic clear cell carcinoma of the kidney. _Cancer Res._ 69, 4674–4681


(2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. _Oncology_ 69 (Suppl. 3), 4–10 (2005). Article  CAS  PubMed 


Google Scholar  * Poon, E., Harris, A. L. & Ashcroft, M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. _Expert Rev. Mol. Med._ 11, e26 (2009). Article  PubMed  Google


Scholar  * Koh, M. Y. & Powis, G. HAF: the new player in oxygen-independent HIF-1α degradation. _Cell Cycle_ 8, 1359–1366 (2009). Article  CAS  PubMed  Google Scholar  Download


references ACKNOWLEDGEMENTS The authors thank the Cambridge Biomedical Research Centre, Cambridge, UK, for their support. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Cancer Research UK


Cambridge Research Institute, Li Ka Shing Centre, Hills Road, CB2 0RE, Cambridge, UK Lucy Gossage * Department of Oncology, University of Cambridge, Box 193, Addenbrookes Hospital, CB2 0QQ,


Cambridge, UK Tim Eisen Authors * Lucy Gossage View author publications You can also search for this author inPubMed Google Scholar * Tim Eisen View author publications You can also search


for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Lucy Gossage. ETHICS DECLARATIONS COMPETING INTERESTS L. Gossage declares no competing interests. T. Eisen


declares that he has received honoraria and is a member of the advisory boards for Amgen, Astra Zeneca, Aveo, Bayer, Bristol-Myers, GlaxoSmithKline, Immatics, Pfizer and Wyeth, and has


received grant or research funding from Astra Zeneca, Bayer and Pfizer. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1 Classification systems for genetic mutations. (PDF 355 kb) RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Gossage, L., Eisen, T. Alterations in _VHL_ as potential biomarkers in renal-cell carcinoma. _Nat Rev Clin Oncol_


7, 277–288 (2010). https://doi.org/10.1038/nrclinonc.2010.42 Download citation * Published: 06 April 2010 * Issue Date: May 2010 * DOI: https://doi.org/10.1038/nrclinonc.2010.42 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative