Breaking barriers to novel analgesic drug development

Breaking barriers to novel analgesic drug development


Play all audios:


KEY POINTS * Pain is the primary reason why people seek medical care; more than 40% of the US population is affected by chronic pain. * Opioids, which are the most commonly used and often


the most effective class of analgesics, produce tolerance, dependence and constipation, and are associated with major abuse liabilities. The respiratory depression associated with high doses


has led to a catastrophic increase in the number of drug overdose deaths in the United States. * Several new or previously overlooked targets are gaining significant attention. In the field


of G-protein-coupled receptors (GPCRs), these include new ligands targeting opioid receptor heteromers, different opioid receptor subtypes and biased agonists. Non-opioid GPCRs currently


being pursued include cannabinoid receptor 2 (CB2), angiotensin type 2 receptor (AT2R) and chemokine receptors. * Various academic and industry groups are pursuing ion channel strategies by


targeting sodium, potassium and calcium channels — specifically, certain Nav1.7, Nav1.8 and voltage-dependent calcium channel (Cavs) ligands are showing particular promise in early


preclinical and clinical trials. * Several enzyme targets that modulate pain pathways are also being pursued. * Despite considerable efforts, there have been several high-profile failures of


novel analgesics in the clinic. * Barriers that need to be overcome to develop efficacious analgesics include issues related to the lack of predictability of preclinical models in certain


contexts, the translation of pathways from animal models to humans, exaggerated placebo effects and issues with clinical trial design. ABSTRACT Acute and chronic pain complaints, although


common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse


effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying


pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer


opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio


journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per


year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DISCOVERY AND


VALIDATION OF BIOMARKERS TO AID THE DEVELOPMENT OF SAFE AND EFFECTIVE PAIN THERAPEUTICS: CHALLENGES AND OPPORTUNITIES Article 15 June 2020 PATHOLOGY OF PAIN AND ITS IMPLICATIONS FOR


THERAPEUTIC INTERVENTIONS Article Open access 08 June 2024 DEZOCINE AS A POTENT ANALGESIC: OVERVIEW OF ITS PHARMACOLOGICAL CHARACTERIZATION Article 04 November 2021 CHANGE HISTORY * _ 23


JUNE 2017 In the original published article, the ligands RB-64 and PZM21 have been shown as attributed to Trevena in table 1 in the 'biased GPCR ligands' row. This error has been


corrected in the HTML and PDF versions of the article. _ * _ 06 OCTOBER 2017 The compounds APD371,LY2828360, S-777469 and KHK6188 were incorrectly referred to as inhibitors of the


cannabinoid receptors CB1 and CB2 in Table 1, when they are cannabinoid receptor agonists. In addition, KHK6188 is not currently in a Phase 2 clinical trial for neuropathic pain as stated in


Table 1 and development of this agent has been discontinued. The error has been corrected in the html and pdf versions online. _ REFERENCES * Dubois, M. Y., Gallagher, R. M. & Lippe, P.


M. Pain medicine position paper. _Pain Med._ 10, 972–1000 (2009). PubMed  Google Scholar  * Johannes, C. B., Le, T. K., Zhou, X., Johnston, J. A. & Dworkin, R. H. The prevalence of


chronic pain in United States adults: results of an Internet-based survey. _J. Pain_ 11, 1230–1239 (2010). PubMed  Google Scholar  * Volkow, N. D. & McLellan, A. T. Opioid abuse in


chronic pain — misconceptions and mitigation strategies. _N. Engl. J. Med._ 374, 1253–1263 (2016). THIS REVIEW HIGHLIGHTS COMMON MISCONCEPTIONS ABOUT ABUSE-RELATED LIABILITIES OF


PRESCRIPTION OPIOIDS AND PROPOSES STRATEGIES THAT COULD HELP TO MITIGATE THESE RISKS. CAS  PubMed  Google Scholar  * Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of


persistent peripheral neuropathic pain. _Pain_ 87, 149–158 (2000). IN THIS STUDY, THE AUTHORS DESCRIBE A TECHNIQUE FOR MODELLING PERIPHERAL NEUROPATHIC PAIN IN LABORATORY RODENTS. CAS 


PubMed  Google Scholar  * Honore, P. et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory


neurons. _Neuroscience_ 98, 585–598 (2000). CAS  PubMed  Google Scholar  * Costigan, M. et al. Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1.


_Brain_ 133, 2519–2527 (2010). THIS RESEARCH ARTICLE DESCRIBES A PUTATIVE HUMAN PAIN GENE THAT COULD INFORM THE SELECTION OF NOVEL DRUG TARGETS FOR PATIENTS WITH NEUROPATHIC PAIN. IT MAY


HELP TO EXPLAIN WHY SOME, BUT NOT ALL, PEOPLE WITH NERVE INJURY PROGRESS TO CHRONIC PAIN. PubMed  PubMed Central  Google Scholar  * von Hehn, C. A., Baron, R. & Woolf, C. J.


Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. _Neuron_ 73, 638–652 (2012). THIS WORK DESCRIBES HOW THE VARIABLE EXPRESSION OF SENSORY NERVE INJURY SYMPTOMS CAN


PROVIDE INSIGHTS INTO THE UNDERLYING PATHOPHYSIOLOGICAL MECHANISMS AND GUIDANCE FOR THE DEVELOPMENT OF PERSONALIZED PAIN THERAPIES. CAS  PubMed  PubMed Central  Google Scholar  * Ji, R. R.,


Xu, Z. Z. & Gao, Y. J. Emerging targets in neuroinflammation-driven chronic pain. _Nat. Rev. Drug Discov._ 13, 533–548 (2014). HERE, THE AUTHORS DISCUSS EMERGING NEUROINFLAMMATORY PAIN


TARGETS AND DESCRIBE POTENTIAL THERAPEUTIC OPPORTUNITIES TO TARGET EXCESSIVE NEUROINFLAMMATION. CAS  PubMed  PubMed Central  Google Scholar  * Latremoliere, A. & Woolf, C. J. Central


sensitization: a generator of pain hypersensitivity by central neural plasticity. _J. Pain_ 10, 895–926 (2009). THIS WORK DESCRIBES THE MECHANISMS AND TRIGGERS THAT UNDERLIE THE INITIATION


AND MAINTENANCE OF CENTRAL SENSITIZATION, AND HOW THEY ARE ALTERED BY CHANGES IN THE PROPERTIES AND EXPRESSION PATTERNS OF GLUTAMATE RECEPTORS. PubMed  PubMed Central  Google Scholar  *


Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. _Cell_ 139, 267–284 (2009). IN THIS PIECE, THE AUTHORS REVIEW THE BIOLOGICAL


UNDERPINNINGS OF SOMATOSENSATION AT THE CIRCUIT, CELLULAR AND SUBCELLULAR LEVELS, WITH PARTICULAR EMPHASIS ON PAIN-RELATED RECEPTORS AND MECHANISMS. CAS  PubMed  PubMed Central  Google


Scholar  * Ossipov, M. H., Dussor, G. O. & Porreca, F. Central modulation of pain. _J. Clin. Invest._ 120, 3779–3787 (2010). THIS REVIEW EXPLORES EVIDENCE THAT CENTRAL MODULATORY


CIRCUITS CAN DRAMATICALLY CHANGE THE SUBJECTIVE EXPERIENCE OF PAINFUL STIMULI. CAS  PubMed  PubMed Central  Google Scholar  * Vardeh, D., Mannion, R. J. & Woolf, C. J. Toward a


mechanism-based approach to pain diagnosis. _J. Pain_ 17, T50–T69 (2016). HERE, THE AUTHORS PROPOSE THAT IDENTIFYING SPECIFIC MECHANISMS THAT UNDERLIE CHRONIC PAIN COULD PROVIDE THE BASIS


FOR A PERSONALIZED-MEDICINE APPROACH TO ANALGESIA. PubMed  PubMed Central  Google Scholar  * Woolf, C. J. Overcoming obstacles to developing new analgesics. _Nat. Med._ 16, 1241–1247 (2010).


THIS ARTICLE DISCUSSES THE MANY COMPLEXITIES THAT HAVE MADE THE DEVELOPMENT OF NEW ANALGESICS SO CHALLENGING. CAS  PubMed  Google Scholar  * Andrews, N. A. et al. Ensuring transparency and


minimization of methodologic bias in preclinical pain research: PPRECISE considerations. _Pain_ 157, 901–909 (2016). HERE, MEMBERS OF THE PRECLINICAL PAIN RESEARCH CONSORTIUM FOR


INVESTIGATING SAFETY AND EFFICACY (PPRECISE) WORKING GROUP PROPOSE NEW VOLUNTARY STANDARDS OF SCIENTIFIC RIGOUR AND TRANSPARENT REPORTING TO PROMOTE MORE-EFFICIENT ADVANCEMENT OF THE SEARCH


FOR NEW PAIN TREATMENTS. PubMed  Google Scholar  * Singla, N. et al. Assay sensitivity of pain intensity versus pain relief in acute pain clinical trials: ACTTION systematic review and


meta-analysis. _J. Pain_ 16, 683–691 (2015). THIS META-ANALYSIS FOUND THAT FOR PRECLINICAL ACUTE PAIN TRIALS, READOUTS OF TOTAL PAIN RELIEF MAY BE MORE SENSITIVE TO TREATMENT THAN SUMMED


PAIN INTENSITY DIFFERENCES. PubMed  Google Scholar  * Finnerup, N. B. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. _Lancet Neurol._ 14,


162–173 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of the nervous system to damage. _Annu.


Rev. Neurosci._ 32, 1–32 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Patapoutian, A., Tate, S. & Woolf, C. J. Transient receptor potential channels: targeting pain at the


source. _Nat. Rev. Drug Discov._ 8, 55–68 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Woolf, C. J. Pain: morphine, metabolites, mambas, and mutations. _Lancet Neurol._ 12, 18–20


(2013). PubMed  Google Scholar  * Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. _Science_ 288, 1765–1769 (2000). IN THIS REVIEW, THE AUTHORS


CONCEPTUALIZE HOW PLASTICITY IN ASCENDING SENSORY PATHWAYS MAY ELICIT PAIN HYPERSENSITIVITY BY INCREASING SIGNAL GAIN. CAS  PubMed  Google Scholar  * Chiu, I. M., von Hehn, C. A. &


Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. _Nat. Neurosci._ 15, 1063–1067 (2012). CAS  PubMed  PubMed Central  Google Scholar


  * Woolf, C. J. What is this thing called pain? _J. Clin. Invest._ 120, 3742–3744 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Julius, D. & Basbaum, A. I. Molecular mechanisms


of nociception. _Nature_ 413, 203–210 (2001). HERE, THE AUTHORS DESCRIBE MOLECULAR MECHANISMS OF PRIMARY AFFERENT NEURONS, THEIR MODALITY SENSITIVITIES AND VARIOUS TRANSDUCERS, PEPTIDES,


LIPIDS AND GROWTH FACTORS THAT SIGNAL PAIN AND MEDIATE PAIN-RELATED SIGNALS. CAS  PubMed  Google Scholar  * Michaud, K., Bombardier, C. & Emery, P. Quality of life in patients with


rheumatoid arthritis: does abatacept make a difference? _Clin. Exp. Rheumatol._ 25, S35–S45 (2007). CAS  PubMed  Google Scholar  * Drenth, J. P. & Waxman, S. G. Mutations in


sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. _J. Clin. Invest._ 117, 3603–3609 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Woolf, C. J. Central


sensitization: implications for the diagnosis and treatment of pain. _Pain_ 152, S2–S15 (2011). PubMed  Google Scholar  * Hains, B. C. et al. Upregulation of sodium channel Nav1.3 and


functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. _J. Neurosci._ 23, 8881–8892 (2003). CAS  PubMed  PubMed Central 


Google Scholar  * Nassar, M. A. et al. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. _Mol. Pain_ 2, 33 (2006). PubMed  PubMed Central  Google


Scholar  * Dong, X. W. et al. Small interfering RNA-mediated selective knockdown of NaV1.8 tetrodotoxin-resistant sodium channel reverses mechanical allodynia in neuropathic rats.


_Neuroscience_ 146, 812–821 (2007). CAS  PubMed  Google Scholar  * Jarvis, M. F. et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and


inflammatory pain in the rat. _Proc. Natl Acad. Sci. USA_ 104, 8520–8525 (2007). CAS  PubMed  Google Scholar  * Ekberg, J. et al. muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron


specific sodium channels and chronic pain behavior without motor deficits. _Proc. Natl Acad. Sci. USA_ 103, 17030–17035 (2006). CAS  PubMed  Google Scholar  * Gold, M. S. et al.


Redistribution of NaV1.8 in uninjured axons enables neuropathic pain. _J. Neurosci._ 23, 158–166 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Joshi, S. K. et al. Involvement of the


TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. _Pain_ 123, 75–82 (2006). CAS  PubMed  Google Scholar  * Roza, C., Laird, J. M.,


Souslova, V., Wood, J. N. & Cervero, F. The tetrodotoxin-resistant Na+ channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. _J.


Physiol._ 550, 921–926 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Fritch, P. C. et al. Novel KCNQ2/Q3 agonists as potential therapeutics for epilepsy and neuropathic pain. _J.


Med. Chem._ 53, 887–896 (2010). CAS  PubMed  Google Scholar  * Dost, R., Rostock, A. & Rundfeldt, C. The anti-hyperalgesic activity of retigabine is mediated by KCNQ potassium channel


activation. _Naunyn Schmiedebergs Arch. Pharmacol._ 369, 382–390 (2004). CAS  PubMed  Google Scholar  * Lee, S. Pharmacological inhibition of voltage-gated Ca2+ channels for chronic pain


relief. _Curr. Neuropharmacol._ 11, 606–620 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Stemkowski, P. L., Noh, M. C., Chen, Y. & Smith, P. A. Increased excitability of


medium-sized dorsal root ganglion neurons by prolonged interleukin-1β exposure is K+ channel dependent and reversible. _J. Physiol._ 593, 3739–3755 (2015). CAS  PubMed  PubMed Central 


Google Scholar  * Zogopoulos, P., Vasileiou, I., Patsouris, E. & Theocharis, S. E. The role of endocannabinoids in pain modulation. _Fundam. Clin. Pharmacol._ 27, 64–80 (2013). CAS 


PubMed  Google Scholar  * Gutenstein, H. & Akil, H. in _Goodman and Gilman's Pharmacological Basis of Therapeutics_ Ch. 21 (eds Brunton, L., Lazo, J. & Parker, K.) 547–590 (The


McGraw Hill companies, 2006). CHAPTER 21 OF THIS AUTHORITATIVE PHARMACOLOGY TEXT PROVIDES A THOROUGH OVERVIEW OF OPIOID ANALGESIC PHARMACOLOGY. Google Scholar  * Fries, D. S. in _Principles


of Medicinal Chemistry_ Ch. 14 (eds Foye, W. O., Lemke, T. L. & Williams,D. A.) 247–269 (William & Wilkins, 1995). CHAPTER 14 OF THIS ESSENTIAL MEDICINAL CHEMISTRY SOURCE DESCRIBES


THE MEDICINAL CHEMISTRY OF COMMON OPIOID AND ANTI-INFLAMMATORY ANALGESICS. Google Scholar  * Lesniak, A. & Lipkowski, A. W. Opioid peptides in peripheral pain control. _Acta Neurobiol.


Exp. (Wars.)_ 71, 129–138 (2011). Google Scholar  * Navratilova, E. et al. Positive emotions and brain reward circuits in chronic pain. _J. Comp. Neurol._ 524, 1646–1652 (2016). PubMed 


PubMed Central  Google Scholar  * Navratilova, E. & Porreca, F. Reward and motivation in pain and pain relief. _Nat. Neurosci._ 17, 1304–1312 (2014). CAS  PubMed  PubMed Central  Google


Scholar  * Kolodny, A. et al. The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. _Annu. Rev. Public Health_ 36, 559–574 (2015). PubMed  Google


Scholar  * Cassidy, T. A., DasMahapatra, P., Black, R. A., Wieman, M. S. & Butler, S. F. Changes in prevalence of prescription opioid abuse after introduction of an abuse-deterrent


opioid formulation. _Pain Med._ 15, 440–451 (2014). PubMed  Google Scholar  * Kunins, H. V. Abuse-deterrent opioid formulations: part of a public health strategy to reverse the opioid


epidemic. _JAMA Intern. Med._ 175, 987–988 (2015). PubMed  Google Scholar  * Chilcoat, H. D., Coplan, P. M., Harikrishnan, V. & Alexander, L. Decreased diversion by doctor-shopping for a


reformulated extended release oxycodone product (OxyContin). _Drug Alcohol Depend._ 165, 221–228 (2016). PubMed  Google Scholar  * Coplan, P. M. et al. The effect of an abuse-deterrent


opioid formulation on opioid abuse-related outcomes in the post-marketing setting. _Clin. Pharmacol. Ther._ 100, 275–286 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Cicero, T. J.,


Ellis, M. S. & Surratt, H. L. Effect of abuse-deterrent formulation of OxyContin. _N. Engl. J. Med._ 367, 187–189 (2012). CAS  PubMed  Google Scholar  * Cicero, T. J., Ellis, M. S.


& Kasper, Z. A. A tale of 2 ADFs: differences in the effectiveness of abuse-deterrent formulations of oxymorphone and oxycodone extended-release drugs. _Pain_ 157, 1232–1238 (2016). CAS


  PubMed  Google Scholar  * Walsh, S. L., Strain, E. C., Abreu, M. E. & Bigelow, G. E. Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in


humans. _Psychopharmacology (Berl.)_ 157, 151–162 (2001). CAS  Google Scholar  * Pallasch, T. J. & Gill, C. J. Butorphanol and nalbuphine: a pharmacologic comparison. _Oral Surg. Oral


Med. Oral Pathol._ 59, 15–20 (1985). CAS  PubMed  Google Scholar  * Webster, L., Menzaghi, F. & Spencer, R. CR845, a novel peripherally-acting kappa opioid receptor agonist, has low


abuse potential compared with pentazocine. _J. Pain_ 16, S81 (2015). Google Scholar  * Spahn, V. et al. A nontoxic pain killer designed by modeling of pathological receptor conformations.


_Science_ 355, 966–969 (2017). CAS  PubMed  Google Scholar  * Milligan, G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. _Mol. Pharmacol._ 84,


158–169 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Rozenfeld, R. & Devi, L. A. Receptor heteromerization and drug discovery. _Trends Pharmacol. Sci._ 31, 124–130 (2010). CAS


  PubMed  PubMed Central  Google Scholar  * Yekkirala, A. S. Two to tango: GPCR oligomers and GPCR–TRP channel interactions in nociception. _Life Sci._ 92, 438–445 (2013). CAS  PubMed 


Google Scholar  * Yekkirala, A. S., Kalyuzhny, A. E. & Portoghese, P. S. An immunocytochemical-derived correlate for evaluating the bridging of heteromeric mu-delta opioid protomers by


bivalent ligands. _ACS Chem. Biol._ 8, 1412–1416 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Lenard, N. R., Daniels, D. J., Portoghese, P. S. & Roerig, S. C. Absence of


conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. _Eur. J. Pharmacol._ 566, 75–82


(2007). CAS  PubMed  Google Scholar  * Aceto, M. D. et al. MDAN-21: a bivalent opioid ligand containing mu-agonist and delta-antagonist pharmacophores and its effects in rhesus monkeys.


_Int. J. Med. Chem._ 2012, 327257 (2012). PubMed  PubMed Central  Google Scholar  * Daniels, D. J. et al. Opioid-induced tolerance and dependence in mice is modulated by the distance between


pharmacophores in a bivalent ligand series. _Proc. Natl Acad. Sci. USA_ 102, 19208–19213 (2005). CAS  PubMed  Google Scholar  * Le Naour, M. et al. Bivalent ligands that target mu opioid


(MOP) and cannabinoid1 (CB1) receptors are potent analgesics devoid of tolerance. _J. Med. Chem._ 56, 5505–5513 (2013). CAS  PubMed  Google Scholar  * Akgun, E. et al. Ligands that interact


with putative MOR-mGluR5 heteromer in mice with inflammatory pain produce potent antinociception. _Proc. Natl Acad. Sci. USA_ 110, 11595–11599 (2013). CAS  PubMed  Google Scholar  * Akgun,


E. et al. Inhibition of inflammatory and neuropathic pain by targeting a mu opioid receptor/chemokine receptor5 heteromer (MOR-CCR5). _J. Med. Chem._ 58, 8647–8657 (2015). CAS  PubMed 


PubMed Central  Google Scholar  * Yekkirala, A. S. et al. N-Naphthoyl-beta-naltrexamine (NNTA), a highly selective and potent activator of mu/kappa-opioid heteromers. _Proc. Natl Acad. Sci.


USA_ 108, 5098–5103 (2011). CAS  PubMed  Google Scholar  * Chakrabarti, S., Liu, N. J. & Gintzler, A. R. Formation of mu-/kappa-opioid receptor heterodimer is sex-dependent and mediates


female-specific opioid analgesia. _Proc. Natl Acad. Sci. USA_ 107, 20115–20119 (2010). CAS  PubMed  Google Scholar  * Ding, H. et al. A novel orvinol analog, BU08028, as a safe opioid


analgesic without abuse liability in primates. _Proc. Natl Acad. Sci. USA_ 113, E5511–E5518 (2016). CAS  PubMed  Google Scholar  * Pasternak, G. W. & Pan, Y. X. Mu opioids and their


receptors: evolution of a concept. _Pharmacol. Rev._ 65, 1257–1317 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Marrone, G. F. et al. Truncated mu opioid GPCR variant involvement


in opioid-dependent and opioid-independent pain modulatory systems within the CNS. _Proc. Natl Acad. Sci. USA_ 113, 3663–3668 (2016). CAS  PubMed  Google Scholar  * Majumdar, S. et al.


Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. _Proc. Natl Acad. Sci. USA_ 108, 19778–19783


(2011). CAS  PubMed  Google Scholar  * Wieskopf, J. S. et al. Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene.


_Pain_ 155, 2063–2070 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Liu, X. Y. et al. Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by


opioids. _Cell_ 147, 447–458 (2011). CAS  PubMed  PubMed Central  Google Scholar  * White, K. L. et al. The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique


spectrum of activities _in vivo_. _J. Pharmacol. Exp. Ther._ 352, 98–109 (2015). PubMed  PubMed Central  Google Scholar  * Tang, W., Strachan, R. T., Lefkowitz, R. J. & Rockman, H. A.


Allosteric modulation of beta-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch. _J. Biol. Chem._ 289, 28271–28283 (2014). CAS  PubMed  PubMed Central  Google


Scholar  * Drake, M. T. et al. β-Arrestin-biased agonism at the β2-adrenergic receptor. _J. Biol. Chem._ 283, 5669–5676 (2008). CAS  PubMed  Google Scholar  * Wisler, J. W., Xiao, K.,


Thomsen, A. R. & Lefkowitz, R. J. Recent developments in biased agonism. _Curr. Opin. Cell Biol._ 27, 18–24 (2014). IN THIS REVIEW, THE AUTHORS DESCRIBE HOW DIFFERENT LIGANDS CAN INDUCE


DISTINCT RECEPTOR CONFORMATIONS AT THE SAME GPCR TO ELICIT UNIQUE DOWNSTREAM SIGNALLING PROFILES. THEY PROVIDE SUPPORT FOR HOW THESE PROPERTIES COULD BE EXPLOITED TO DEVELOP ANALGESICS WITH


DIFFERENT OR REDUCED SIDE-EFFECT PROFILES. CAS  PubMed  Google Scholar  * Shukla, A. K. et al. Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane


receptors. _Proc. Natl Acad. Sci. USA_ 105, 9988–9993 (2008). CAS  PubMed  Google Scholar  * Whalen, E. J., Rajagopal, S. & Lefkowitz, R. J. Therapeutic potential of beta-arrestin- and G


protein-biased agonists. _Trends Mol. Med._ 17, 126–139 (2011). CAS  PubMed  Google Scholar  * Zidar, D. A., Violin, J. D., Whalen, E. J. & Lefkowitz, R. J. Selective engagement of G


protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. _Proc. Natl Acad. Sci. USA_ 106, 9649–9654 (2009). CAS  PubMed  Google Scholar  * Gesty-Palmer, D. et


al. A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. _Sci. Transl Med._ 1, 1ra1 (2009). PubMed  PubMed


Central  Google Scholar  * Strachan, R. T. et al. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR). _J. Biol. Chem._ 289,


14211–14224 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Violin, J. D., Crombie, A. L., Soergel, D. G. & Lark, M. W. Biased ligands at G-protein-coupled receptors: promise and


progress. _Trends Pharmacol. Sci._ 35, 308–316 (2014). CAS  PubMed  Google Scholar  * Soergel, D. G. et al. Biased agonism of the mu-opioid receptor by TRV130 increases analgesia and reduces


on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. _Pain_ 155, 1829–1835 (2014). CAS  PubMed  Google Scholar 


* Soergel, D. G. et al. First clinical experience with TRV130: pharmacokinetics and pharmacodynamics in healthy volunteers. _J. Clin. Pharmacol._ 54, 351–357 (2014). CAS  PubMed  Google


Scholar  * Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. _Nature_ 537, 185–190 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Tabrizi,


M. A., Baraldi, P. G., Borea, P. A. & Varani, K. Medicinal chemistry, pharmacology, and potential therapeutic benefits of cannabinoid CB2 receptor agonists. _Chem. Rev._ 116, 519–560


(2016). Google Scholar  * Han, S., Thatte, J., Buzard, D. J. & Jones, R. M. Therapeutic utility of cannabinoid receptor type 2 (CB2) selective agonists. _J. Med. Chem._ 56, 8224–8256


(2013). CAS  PubMed  Google Scholar  * Nevalainen, T. Recent development of CB2 selective and peripheral CB1/CB2 cannabinoid receptor ligands. _Curr. Med. Chem._ 21, 187–203 (2014). CAS 


PubMed  Google Scholar  * Anand, U. et al. Mechanisms underlying clinical efficacy of angiotensin II type 2 receptor (AT2R) antagonist EMA401 in neuropathic pain: clinical tissue and _in


vitro_ studies. _Mol. Pain_ 11, 38 (2015). PubMed  PubMed Central  Google Scholar  * Danser, A. H. & Anand, P. The angiotensin II type 2 receptor for pain control. _Cell_ 157, 1504–1506


(2014). CAS  PubMed  Google Scholar  * Rice, A. S. et al. EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic


neuralgia: a randomised, double-blind, placebo-controlled phase 2 clinical trial. _Lancet_ 383, 1637–1647 (2014). CAS  PubMed  Google Scholar  * Anand, U. et al. Angiotensin II type 2


receptor (AT2 R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat sensory neurons. _Eur. J. Pain_ 17, 1012–1026 (2013). CAS 


PubMed  Google Scholar  * Smith, M. T., Woodruff, T. M., Wyse, B. D., Muralidharan, A. & Walther, T. A small molecule angiotensin II type 2 receptor (AT2R) antagonist produces analgesia


in a rat model of neuropathic pain by inhibition of p38 mitogen-activated protein kinase (MAPK) and p44/p42 MAPK activation in the dorsal root ganglia. _Pain Med._ 14, 1557–1568 (2013).


PubMed  Google Scholar  * Marion, E. et al. Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways. _Cell_ 157, 1565–1576 (2014). CAS  PubMed  Google


Scholar  * Lemmens, S., Brone, B., Dooley, D., Hendrix, S. & Geurts, N. Alpha-adrenoceptor modulation in central nervous system trauma: pain, spasms, and paralysis — an unlucky triad.


_Med. Res. Rev._ 35, 653–677 (2015). CAS  PubMed  Google Scholar  * Giovannitti, J. A. Jr, Thoms, S. M. & Crawford, J. J. Alpha-2 adrenergic receptor agonists: a review of current


clinical applications. _Anesth. Prog._ 62, 31–39 (2015). PubMed  PubMed Central  Google Scholar  * Mori, K. et al. Effects of norepinephrine on rat cultured microglial cells that express


alpha1, alpha2, beta1 and beta2 adrenergic receptors. _Neuropharmacology_ 43, 1026–1034 (2002). CAS  PubMed  Google Scholar  * Lavand'homme, P. M. & Eisenach, J. C. Perioperative


administration of the alpha2-adrenoceptor agonist clonidine at the site of nerve injury reduces the development of mechanical hypersensitivity and modulates local cytokine expression. _Pain_


105, 247–254 (2003). CAS  PubMed  Google Scholar  * Feng, X. et al. Intrathecal administration of clonidine attenuates spinal neuroimmune activation in a rat model of neuropathic pain with


existing hyperalgesia. _Eur. J. Pharmacol._ 614, 38–43 (2009). CAS  PubMed  Google Scholar  * Wei, H. & Pertovaara, A. Spinal and pontine alpha2-adrenoceptors have opposite effects on


pain-related behavior in the neuropathic rat. _Eur. J. Pharmacol._ 551, 41–49 (2006). CAS  PubMed  Google Scholar  * Schnabel, A., Meyer-Friessem, C. H., Reichl, S. U., Zahn, P. K. &


Pogatzki-Zahn, E. M. Is intraoperative dexmedetomidine a new option for postoperative pain treatment? A meta-analysis of randomized controlled trials. _Pain_ 154, 1140–1149 (2013). CAS 


PubMed  Google Scholar  * Schnabel, A. et al. Efficacy and safety of intraoperative dexmedetomidine for acute postoperative pain in children: a meta-analysis of randomized controlled trials.


_Paediatr. Anaesth._ 23, 170–179 (2013). PubMed  Google Scholar  * Melik Parsadaniantz, S., Rivat, C., Rostene, W. & Reaux-Le Goazigo, A. Opioid and chemokine receptor crosstalk: a


promising target for pain therapy? _Nat. Rev. Neurosci._ 16, 69–78 (2015). PubMed  Google Scholar  * Abbadie, C. et al. Chemokines and pain mechanisms. _Brain Res. Rev._ 60, 125–134 (2009).


CAS  PubMed  Google Scholar  * Reaux-Le Goazigo, A., Van Steenwinckel, J., Rostene, W. & Melik Parsadaniantz, S. Current status of chemokines in the adult CNS. _Prog. Neurobiol._ 104,


67–92 (2013). CAS  PubMed  Google Scholar  * Van Steenwinckel, J. et al. CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain


after peripheral nerve injury. _J. Neurosci._ 31, 5865–5875 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Xie, F., Wang, Y., Li, X., Chao, Y. C. & Yue, Y. Early repeated


administration of CXCR4 antagonist AMD3100 dose-dependently improves neuropathic pain in rats after L5 spinal nerve ligation. _Neurochem. Res._ 41, 2289–2299 (2016). CAS  PubMed  Google


Scholar  * Talbot, S., Foster, S. L. & Woolf, C. J. Neuroimmunity: physiology and pathology. _Annu. Rev. Immunol._ 34, 421–447 (2016). CAS  PubMed  Google Scholar  * Szabo, I. et al.


Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. _Proc. Natl Acad. Sci. USA_ 99, 10276–10281 (2002). CAS  PubMed 


Google Scholar  * Szabo, I. et al. Selective inactivation of CCR5 and decreased infectivity of R5 HIV-1 strains mediated by opioid-induced heterologous desensitization. _J. Leukoc. Biol._


74, 1074–1082 (2003). CAS  PubMed  Google Scholar  * Grimm, M. C. et al. Opiates transdeactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. _J.


Exp. Med._ 188, 317–325 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Pello, O. M. et al. Ligand stabilization of CXCR4/delta-opioid receptor heterodimers reveals a mechanism for


immune response regulation. _Eur. J. Immunol._ 38, 537–549 (2008). CAS  PubMed  Google Scholar  * Rivat, C. et al. Src family kinases involved in CXCL12-induced loss of acute morphine


analgesia. _Brain Behav. Immun._ 38, 38–52 (2014). CAS  PubMed  Google Scholar  * Zhao, C. M. et al. Spinal MCP-1 contributes to the development of morphine antinociceptive tolerance in


rats. _Am. J. Med. Sci._ 344, 473–479 (2012). PubMed  Google Scholar  * Zhang, N., Rogers, T. J., Caterina, M. & Oppenheim, J. J. Proinflammatory chemokines, such as C-C chemokine ligand


3, desensitize mu-opioid receptors on dorsal root ganglia neurons. _J. Immunol._ 173, 594–599 (2004). CAS  PubMed  Google Scholar  * Ye, D. et al. Activation of CXCL10/CXCR3 signaling


attenuates morphine analgesia: involvement of Gi protein. _J. Mol. Neurosci._ 53, 571–579 (2014). CAS  PubMed  Google Scholar  * Rittner, H. L. et al. Pain control by CXCR2 ligands through


Ca2+-regulated release of opioid peptides from polymorphonuclear cells. _FASEB J._ 20, 2627–2629 (2006). CAS  PubMed  Google Scholar  * Wilson, N. M., Jung, H., Ripsch, M. S., Miller, R. J.


& White, F. A. CXCR4 signaling mediates morphine-induced tactile hyperalgesia. _Brain Behav. Immun._ 25, 565–573 (2011). CAS  PubMed  Google Scholar  * Kalliomaki, J. et al. A


randomized, double-blind, placebo-controlled trial of a chemokine receptor 2 (CCR2) antagonist in posttraumatic neuralgia. _Pain_ 154, 761–767 (2013). PubMed  Google Scholar  * Padi, S. S.


et al. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. _Pain_ 153, 95–106


(2012). CAS  PubMed  Google Scholar  * Szallasi, A., Cortright, D. N., Blum, C. A. & Eid, S. R. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist


proof-of-concept. _Nat. Rev. Drug Discov._ 6, 357–372 (2007). CAS  PubMed  Google Scholar  * Habib, A. M., Wood, J. N. & Cox, J. J. Sodium channels and pain. _Handb. Exp. Pharmacol._


227, 39–56 (2015). CAS  PubMed  Google Scholar  * Waxman, S. G. et al. Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use.


_Lancet Neurol._ 13, 1152–1160 (2014). CAS  PubMed  Google Scholar  * Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. _Nature_ 389, 816–824


(1997). CAS  PubMed  Google Scholar  * Nilius, B. & Szallasi, A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine.


_Pharmacol. Rev._ 66, 676–814 (2014). PubMed  Google Scholar  * Moran, M. M., McAlexander, M. A., Biro, T. & Szallasi, A. Transient receptor potential channels as therapeutic targets.


_Nat. Rev. Drug Discov._ 10, 601–620 (2011). CAS  PubMed  Google Scholar  * Carnevale, V. & Rohacs, T. TRPV1: a target for rational drug design. _Pharmaceuticals (Basel)_ 9, E52 (2016).


Google Scholar  * Lehto, S. G. et al. Antihyperalgesic effects of (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluorom ethyl)phenyl)-acrylamide (AMG8562), a


novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. _J. Pharmacol. Exp. Ther._ 326, 218–229 (2008). CAS  PubMed  Google Scholar  *


Watabiki, T. et al. Amelioration of neuropathic pain by novel transient receptor potential vanilloid 1 antagonist AS1928370 in rats without hyperthermic effect. _J. Pharmacol. Exp. Ther._


336, 743–750 (2011). CAS  PubMed  Google Scholar  * Chiche, D., Brown, W. & Walker, P. NEO6860, a novel modality selective TRPV1 antagonist: results from a phase I, double-blind,


placebo-controlled study in healthy subjects. _J. Pain_ 17, S79 (2016). Google Scholar  * Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of


ligand and lipid action. _Nature_ 534, 347–351 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Cao, L. et al. Pharmacological reversal of a pain phenotype in iPSC-derived sensory


neurons and patients with inherited erythromelalgia. _Sci. Transl Med._ 8, 335ra56 (2016). PubMed  Google Scholar  * Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7


sodium channel: from molecule to man. _Nat. Rev. Neurosci._ 14, 49–62 (2013). CAS  PubMed  Google Scholar  * Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to


experience pain. _Nature_ 444, 894–898 (2006). CAS  PubMed  Google Scholar  * Cox, J. J. et al. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. _Hum.


Mut._ 31, E1670–E1686 (2010). CAS  PubMed  Google Scholar  * Nassar, M. A. et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain.


_Proc. Natl Acad. Sci. USA_ 101, 12706–12711 (2004). CAS  PubMed  Google Scholar  * Minett, M. S. et al. Distinct Nav1.7-dependent pain sensations require different sets of sensory and


sympathetic neurons. _Nat. Commun._ 3, 791 (2012). PubMed  PubMed Central  Google Scholar  * Gingras, J. et al. Global Nav1.7 knockout mice recapitulate the phenotype of human congenital


indifference to pain. _PLoS ONE_ 9, e105895 (2014). PubMed  PubMed Central  Google Scholar  * Bagal, S. K., Marron, B. E., Owen, R. M., Storer, R. I. & Swain, N. A. Voltage gated sodium


channels as drug discovery targets. _Channels (Austin)_ 9, 360–366 (2015). Google Scholar  * Sun, S., Cohen, C. J. & Dehnhardt, C. M. Inhibitors of voltage-gated sodium channel Nav1.7:


patent applications since 2010. _Pharm. Pat. Anal._ 3, 509–521 (2014). CAS  PubMed  Google Scholar  * Focken, T. et al. Discovery of aryl sulfonamides as isoform-selective inhibitors of


NaV1.7 with efficacy in rodent pain models. _ACS Med. Chem. Lett._ 7, 277–282 (2016). CAS  PubMed  PubMed Central  Google Scholar  * McCormack, K. et al. Voltage sensor interaction site for


selective small molecule inhibitors of voltage-gated sodium channels. _Proc. Natl Acad. Sci. USA_ 110, E2724–E2732 (2013). CAS  PubMed  Google Scholar  * Butt, M. et al. Morphologic,


stereologic, and morphometric evaluation of the nervous system in young cynomolgus monkeys (_Macaca fascicularis_) following maternal administration of tanezumab, a monoclonal antibody to


nerve growth factor. _Toxicol. Sci._ 142, 463–476 (2014). CAS  PubMed  Google Scholar  * Wainger, B. J. et al. Modeling pain _in vitro_ using nociceptor neurons reprogrammed from


fibroblasts. _Nat. Neurosci._ 18, 17–24 (2015). CAS  PubMed  Google Scholar  * Talbot, S. et al. Silencing nociceptor neurons reduces allergic airway inflammation. _Neuron_ 87, 341–354


(2015). CAS  PubMed  PubMed Central  Google Scholar  * Bauer, C. S. et al. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain


is inhibited by the alpha2delta ligand pregabalin. _J. Neurosci._ 29, 4076–4088 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Lawrence, J. Nav1.7: a new channel for pain treatment.


_Pharm. J._ http://dx.doi.org/10.1211/PJ.2016.20200841 (2016). * Bowman, C. J. et al. Developmental toxicity assessment of tanezumab, an anti-nerve growth factor monoclonal antibody, in


cynomolgus monkeys (_Macaca fascicularis_). _Reprod. Toxicol._ 53, 105–118 (2015). CAS  PubMed  Google Scholar  * Murray, J. K. et al. Single residue substitutions that confer voltage-gated


sodium ion channel subtype selectivity in the NaV1.7 inhibitory peptide GpTx-1. _J. Med. Chem._ 59, 2704–2717 (2016). CAS  PubMed  Google Scholar  * Weiss, J. et al. Loss-of-function


mutations in sodium channel Nav1.7 cause anosmia. _Nature_ 472, 186–190 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Minett, M. S. et al. Endogenous opioids contribute to


insensitivity to pain in humans and mice lacking sodium channel Nav1.7. _Nat. Commun._ 6, 8967 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Kort, M. E. et al. Subtype-selective


NaV1.8 sodium channel blockers: identification of potent, orally active nicotinamide derivatives. _Bioorg. Med. Chem. Lett._ 20, 6812–6815 (2010). CAS  PubMed  Google Scholar  * Bagal, S. K.


et al. Recent progress in sodium channel modulators for pain. _Bioorg. Med. Chem. Lett._ 24, 3690–3699 (2014). CAS  PubMed  Google Scholar  * Wilson, M. J. et al. μ-Conotoxins that


differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. _Proc. Natl Acad. Sci. USA_ 108, 10302–10307 (2011). CAS  PubMed 


Google Scholar  * Rush, A. M., Cummins, T. R. & Waxman, S. G. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. _J. Physiol._ 579, 1–14


(2007). CAS  PubMed  Google Scholar  * Dib-Hajj, S. D., Black, J. A. & Waxman, S. G. NaV1.9: a sodium channel linked to human pain. _Nat. Rev. Neurosci._ 16, 511–519 (2015). CAS  PubMed


  Google Scholar  * Goral, R. O., Leipold, E., Nematian-Ardestani, E. & Heinemann, S. H. Heterologous expression of NaV1.9 chimeras in various cell systems. _Pflugers Arch._ 467,


2423–2435 (2015). CAS  PubMed  Google Scholar  * Owsianik, G., Talavera, K., Voets, T. & Nilius, B. Permeation and selectivity of TRP channels. _Annu. Rev. Physiol._ 68, 685–717 (2006).


CAS  PubMed  Google Scholar  * Hellwig, N. et al. TRPV1 acts as proton channel to induce acidification in nociceptive neurons. _J. Biol. Chem._ 279, 34553–34561 (2004). CAS  PubMed  Google


Scholar  * Meyers, J. R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. _J. Neurosci._ 23, 4054–4065 (2003). CAS  PubMed  PubMed Central 


Google Scholar  * Binshtok, A. M., Bean, B. P. & Woolf, C. J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. _Nature_ 449, 607–610 (2007). CAS 


PubMed  Google Scholar  * Puopolo, M. et al. Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314. _J. Neurophysiol._ 109, 1704–1712 (2013). CAS  PubMed  PubMed


Central  Google Scholar  * Brenneis, C. et al. Bupivacaine-induced cellular entry of QX-314 and its contribution to differential nerve block. _Br. J. Pharmacol._ 171, 438–451 (2014). CAS 


PubMed  Google Scholar  * Virginio, C., MacKenzie, A., Rassendren, F. A., North, R. A. & Surprenant, A. Pore dilation of neuronal P2X receptor channels. _Nat. Neurosci._ 2, 315–321


(1999). CAS  PubMed  Google Scholar  * Khakh, B. S., Bao, X. R., Labarca, C. & Lester, H. A. Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. _Nat.


Neurosci._ 2, 322–330 (1999). CAS  PubMed  Google Scholar  * Yan, Z., Li, S., Liang, Z., Tomic, M. & Stojilkovic, S. S. The P2X7 receptor channel pore dilates under physiological ion


conditions. _J. Gen. Physiol._ 132, 563–573 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Binshtok, A. M. et al. Coapplication of lidocaine and the permanently charged sodium


channel blocker QX-314 produces a long-lasting nociceptive blockade in rodents. _Anesthesiology_ 111, 127–137 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Roberson, D. P.,


Binshtok, A. M., Blasl, F., Bean, B. P. & Woolf, C. J. Targeting of sodium channel blockers into nociceptors to produce long-duration analgesia: a systematic study and review. _Br. J.


Pharmacol._ 164, 48–58 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Leffler, A. et al. The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent


sensory neurons. _J. Clin. Invest._ 118, 763–776 (2008). PubMed  PubMed Central  Google Scholar  * Leffler, A., Lattrell, A., Kronewald, S., Niedermirtl, F. & Nau, C. Activation of TRPA1


by membrane permeable local anesthetics. _Mol. Pain_ 7, 62 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Roberson, D. P. et al. Activity-dependent silencing reveals functionally


distinct itch-generating sensory neurons. _Nat. Neurosci._ 16, 910–918 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C.


The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. _Pharmacol. Rev._ 67, 821–870 (2015). CAS  PubMed  PubMed Central 


Google Scholar  * Zamponi, G. W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. _Nat. Rev. Drug Discov._ 15, 19–34 (2016). IN THIS REVIEW, ZAMPONI


DISCUSSES VARIOUS CHALLENGES AND OPPORTUNITIES FOR USING CALCIUM CHANNELS AS DRUG TARGETS FOR NEUROLOGICAL DISORDERS. CAS  PubMed  Google Scholar  * Abbadie, C. et al. Analgesic effects of a


substituted N-triazole oxindole (TROX-1), a state-dependent, voltage-gated calcium channel 2 blocker. _J. Pharmacol. Exp. Ther._ 334, 545–555 (2010). CAS  PubMed  Google Scholar  * Patel,


R. et al. Electrophysiological characterization of activation state-dependent CaV2 channel antagonist TROX-1 in spinal nerve injured rats. _Neuroscience_ 297, 47–57 (2015). CAS  PubMed 


PubMed Central  Google Scholar  * Shao, P. P. et al. Aminopiperidine sulfonamide Cav2.2 channel inhibitors for the treatment of chronic pain. _J. Med. Chem._ 55, 9847–9855 (2012). CAS 


PubMed  Google Scholar  * Lipscombe, D. & Andrade, A. Calcium channel CaVα1 splice isoforms — tissue specificity and drug action. _Curr. Mol. Pharmacol._ 8, 22–31 (2015). CAS  PubMed 


PubMed Central  Google Scholar  * Bourinet, E. et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. _EMBO J._ 24, 315–324


(2005). CAS  PubMed  Google Scholar  * Choi, S. et al. Attenuated pain responses in mice lacking CaV3.2 T-type channels. _Genes Brain Behav._ 6, 425–431 (2007). CAS  PubMed  Google Scholar


  * Jarvis, M. F. et al. A peripherally acting, selective T-type calcium channel blocker, ABT-639, effectively reduces nociceptive and neuropathic pain in rats. _Biochem. Pharmacol._ 89,


536–544 (2014). CAS  PubMed  Google Scholar  * Wallace, M., Duan, R., Liu, W., Locke, C. & Nothaft, W. A. Randomized, double-blind, placebo-controlled, crossover study of the T-type


calcium channel blocker ABT-639 in an intradermal capsaicin experimental pain model in healthy adults. _Pain Med._ 17, 551–560 (2015). PubMed  Google Scholar  * Ziegler, D., Duan, W. R., An,


G., Thomas, J. W. & Nothaft, W. A randomized double-blind, placebo-, and active-controlled study of T-type calcium channel blocker ABT-639 in patients with diabetic peripheral


neuropathic pain. _Pain_ 156, 2013–2020 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Francois, A. et al. State-dependent properties of a new T-type calcium channel blocker enhance


CaV3.2 selectivity and support analgesic effects. _Pain_ 154, 283–293 (2013). CAS  PubMed  Google Scholar  * Xu, J. et al. A mixed Ca2+ channel blocker, A-1264087, utilizes peripheral and


spinal mechanisms to inhibit spinal nociceptive transmission in a rat model of neuropathic pain. _J. Neurophysiol._ 111, 394–404 (2014). CAS  PubMed  Google Scholar  * Zhu, C. Z. et al.


Mechanistic insights into the analgesic efficacy of A-1264087, a novel neuronal Ca2+ channel blocker that reduces nociception in rat preclinical pain models. _J. Pain_ 387, e1–e14 (2014).


Google Scholar  * Scott, V. E. et al. A-1048400 is a novel, orally active, state-dependent neuronal calcium channel blocker that produces dose-dependent antinociception without altering


hemodynamic function in rats. _Biochem. Pharmacol._ 83, 406–418 (2012). CAS  PubMed  Google Scholar  * Marsh, B., Acosta, C., Djouhri, L. & Lawson, S. N. Leak K+ channel mRNAs in dorsal


root ganglia: relation to inflammation and spontaneous pain behaviour. _Mol. Cell. Neurosci._ 49, 375–386 (2012). CAS  PubMed  Google Scholar  * Pollema-Mays, S. L., Centeno, M. V., Ashford,


C. J., Apkarian, A. V. & Martina, M. Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model. _Mol. Cell. Neurosci._ 57,


1–9 (2013). CAS  PubMed  Google Scholar  * Zheng, Q. et al. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain


in a rat model. _Pain_ 154, 434–448 (2013). CAS  PubMed  Google Scholar  * Laumet, G. et al. G9a is essential for epigenetic silencing of K+ channel genes in acute-to-chronic pain


transition. _Nat. Neurosci._ 18, 1746–1755 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Lu, R. et al. Slack channels expressed in sensory neurons control neuropathic pain in mice.


_J. Neurosci._ 35, 1125–1135 (2015). PubMed  PubMed Central  Google Scholar  * Lyu, C. et al. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat


dorsal root ganglion neurons and spinal cord after peripheral axotomy. _Mol. Pain_ 11, 44 (2015). PubMed  PubMed Central  Google Scholar  * Maljevic, S. & Lerche, H. Potassium channels:


a review of broadening therapeutic possibilities for neurological diseases. _J. Neurol._ 260, 2201–2211 (2013). CAS  PubMed  Google Scholar  * Tsantoulas, C. & McMahon, S. B. Opening


paths to novel analgesics: the role of potassium channels in chronic pain. _Trends Neurosci._ 37, 146–158 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Tsantoulas, C. Emerging


potassium channel targets for the treatment of pain. _Curr. Opin. Support. Palliat. Care_ 9, 147–154 (2015). PubMed  Google Scholar  * Wickenden, A. D. & McNaughton-Smith, G. Kv7


channels as targets for the treatment of pain. _Curr. Pharm. Des._ 15, 1773–1798 (2009). CAS  PubMed  Google Scholar  * Wu, Y. J. et al. Discovery of


(S,E)-3-(2-fluorophenyl)-N-(1-(3-(pyridin-3-yloxy)phenyl)ethyl)-acrylamide as a potent and efficacious KCNQ2 (Kv7.2) opener for the treatment of neuropathic pain. _Bioorg. Med. Chem. Lett._


23, 6188–6191 (2013). CAS  PubMed  Google Scholar  * Zheng, Y. et al. Activation of peripheral KCNQ channels relieves gout pain. _Pain_ 156, 1025–1035 (2015). CAS  PubMed  PubMed Central 


Google Scholar  * Mathie, A. & Veale, E. L. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. _Pflugers Arch._ 467, 931–943 (2015). CAS  PubMed


  Google Scholar  * Wang, H. S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. _Science_ 282, 1890–1893 (1998). CAS  PubMed  Google Scholar  * Pan,


Z. et al. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. _J. Neurosci._ 26, 2599–2613 (2006). CAS  PubMed  PubMed Central 


Google Scholar  * Cooper, E. C. Made for “anchorin”: Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons. _Semin. Cell Dev. Biol._ 22, 185–192


(2011). CAS  PubMed  Google Scholar  * Blackburn-Munro, G. & Jensen, B. S. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic


pain. _Eur. J. Pharmacol._ 460, 109–116 (2003). CAS  PubMed  Google Scholar  * Li, H. et al. Antinociceptive efficacy of retigabine in the monosodium lodoacetate rat model for osteoarthritis


pain. _Pharmacology_ 95, 251–257 (2015). CAS  PubMed  Google Scholar  * Rose, K. et al. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. _Pain_ 152,


742–754 (2011). CAS  PubMed  PubMed Central  Google Scholar  * King, C. H., Lancaster, E., Salomon, D., Peles, E. & Scherer, S. S. Kv7.2 regulates the function of peripheral sensory


neurons. _J. Comp. Neurol._ 522, 3262–3280 (2014). CAS  PubMed  PubMed Central  Google Scholar  * King, C. H. & Scherer, S. S. Kv7.5 is the primary Kv7 subunit expressed in C-fibers. _J.


Comp. Neurol._ 520, 1940–1950 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Feliciangeli, S., Chatelain, F. C., Bichet, D. & Lesage, F. The family of K2P channels: salient


structural and functional properties. _J. Physiol._ 593, 2587–2603 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Busserolles, J., Tsantoulas, C., Eschalier, A. & Lopez Garcia,


J. A. Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. _Pain_ 157 (Suppl. 1), S7–S14 (2016). PubMed  Google Scholar  * Devilliers, M. et al. Activation of


TREK-1 by morphine results in analgesia without adverse side effects. _Nat. Commun._ 4, 2941 (2013). PubMed  Google Scholar  * Bagriantsev, S. N. et al. A high-throughput functional screen


identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. _ACS Chem. Biol._ 8, 1841–1851 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Rodrigues, N.


et al. Synthesis and structure-activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. _Eur. J. Med. Chem._ 75, 391–402 (2014).


CAS  PubMed  Google Scholar  * Bocksteins, E. & Snyders, D. J. Electrically silent Kv subunits: their molecular and functional characteristics. _Physiology (Bethesda)_ 27, 73–84 (2012).


CAS  Google Scholar  * Bocksteins, E. Kv5, Kv6, Kv8, and Kv9 subunits: no simple silent bystanders. _J. Gen. Physiol._ 147, 105–125 (2016). CAS  PubMed  PubMed Central  Google Scholar  *


Tsantoulas, C. et al. Sensory neuron downregulation of the Kv9.1 potassium channel subunit mediates neuropathic pain following nerve injury. _J. Neurosci._ 32, 17502–17513 (2012). CAS 


PubMed  PubMed Central  Google Scholar  * Tsantoulas, C. et al. Kv2 dysfunction after peripheral axotomy enhances sensory neuron responsiveness to sustained input. _Exp. Neurol._ 251,


115–126 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Bocksteins, E. et al. Kv2.1 and silent Kv subunits underlie the delayed rectifier K+ current in cultured small mouse DRG


neurons. _Am. J. Physiol. Cell Physiol._ 296, C1271–C1278 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Stas, J. I., Bocksteins, E., Labro, A. J. & Snyders, D. J. Modulation of


closed-state inactivation in Kv2.1/Kv6.4 heterotetramers as mechanism for 4-AP induced potentiation. _PLoS ONE_ 10, e0141349 (2015). PubMed  PubMed Central  Google Scholar  * Knabl, J. et


al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. _Nature_ 451, 330–334 (2008). CAS  PubMed  Google Scholar  * Bonin, R. P. & De Koninck, Y. Restoring


ionotropic inhibition as an analgesic strategy. _Neurosci Lett._ 557, 43–51 (2013). CAS  PubMed  Google Scholar  * Klinger, F. et al. δ subunit-containing GABAA receptors are preferred


targets for the centrally acting analgesic flupirtine. _Br. J. Pharmacol._ 172, 4946–4958 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Zeilhofer, H. U., Ralvenius, W. T. &


Acuna, M. A. Restoring the spinal pain gate: GABAA receptors as targets for novel analgesics. _Adv. Pharmacol._ 73, 71–96 (2015). CAS  PubMed  Google Scholar  * Tegeder, I. et al. GTP


cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. _Nat. Med._ 12, 1269–1277 (2006). CAS  PubMed  Google Scholar  * Latremoliere, A. et al. Reduction of


neuropathic and inflammatory pain through inhibition of the tetrahydrobiopterin pathway. _Neuron_ 86, 1393–1406 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Chidley, C., Haruki,


H., Pedersen, M. G., Muller, E. & Johnsson, K. A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. _Nat. Chem. Biol._ 7, 375–383 (2011). CAS 


PubMed  Google Scholar  * Chandrasekhar, S. et al. Identification and characterization of novel microsomal prostaglandin E synthase-1 inhibitors for analgesia. _J. Pharmacol. Exp. Ther._


356, 635–644 (2016). CAS  PubMed  Google Scholar  * Jin, Y. et al. Pharmacodynamic comparison of LY3023703, a novel microsomal prostaglandin E synthase 1 inhibitor, with celecoxib. _Clin.


Pharmacol. Ther._ 99, 274–284 (2016). CAS  PubMed  Google Scholar  * Wagner, K., Yang, J., Inceoglu, B. & Hammock, B. D. Soluble epoxide hydrolase inhibition is antinociceptive in a


mouse model of diabetic neuropathy. _J. Pain_ 15, 907–914 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Inceoglu, B. et al. Endoplasmic reticulum stress in the peripheral nervous


system is a significant driver of neuropathic pain. _Proc. Natl Acad. Sci. USA_ 112, 9082–9087 (2015). CAS  PubMed  Google Scholar  * Sisignano, M. et al. 5,6-EET is released upon neuronal


activity and induces mechanical pain hypersensitivity via TRPA1 on central afferent terminals. _J. Neurosci._ 32, 6364–6372 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Brenneis,


C. et al. Soluble epoxide hydrolase limits mechanical hyperalgesia during inflammation. _Mol. Pain_ 7, 78 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Lam, D. K., Dang, D., Zhang,


J., Dolan, J. C. & Schmidt, B. L. Novel animal models of acute and chronic cancer pain: a pivotal role for PAR2. _J. Neurosci._ 32, 14178–14183 (2012). CAS  PubMed  PubMed Central 


Google Scholar  * Christianson, C. A. et al. Spinal matrix metalloproteinase 3 mediates inflammatory hyperalgesia via a tumor necrosis factor-dependent mechanism. _Neuroscience_ 200, 199–210


(2012). CAS  PubMed  Google Scholar  * Berta, T. et al. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-alpha secretion. _J. Clin. Invest._ 124, 1173–1186 (2014).


CAS  PubMed  PubMed Central  Google Scholar  * Clark, A. K., Grist, J., Al-Kashi, A., Perretti, M. & Malcangio, M. Spinal cathepsin S and fractalkine contribute to chronic pain in the


collagen-induced arthritis model. _Arthritis Rheum._ 64, 2038–2047 (2012). CAS  PubMed  Google Scholar  * Vicuna, L. et al. The serine protease inhibitor SerpinA3N attenuates neuropathic


pain by inhibiting T cell-derived leukocyte elastase. _Nat. Med._ 21, 518–523 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Landry, R. P., Jacobs, V. L., Romero-Sandoval, E. A.


& DeLeo, J. A. Propentofylline, a CNS glial modulator does not decrease pain in post-herpetic neuralgia patients: _in vitro_ evidence for differential responses in human and rodent


microglia and macrophages. _Exp. Neurol._ 234, 340–350 (2012). CAS  PubMed  Google Scholar  * Ji, R. R. Mitogen-activated protein kinases as potential targets for pain killers. _Curr. Opin.


Investig. Drugs_ 5, 71–75 (2004). PubMed  Google Scholar  * Ostenfeld, T. et al. A randomized, placebo-controlled trial of the analgesic efficacy and safety of the p38 MAP kinase inhibitor,


losmapimod, in patients with neuropathic pain from lumbosacral radiculopathy. _Clin. J. Pain_ 31, 283–293 (2015). PubMed  Google Scholar  * Smith, M. T., Wyse, B. D. & Edwards, S. R.


Small molecule angiotensin II type 2 receptor (AT2R) antagonists as novel analgesics for neuropathic pain: comparative pharmacokinetics, radioligand binding, and efficacy in rats. _Pain


Med._ 14, 692–705 (2013). PubMed  Google Scholar  * Bevan, S., Quallo, T. & Andersson, D. A. TRPV1. _Handb. Exp. Pharmacol._ 222, 207–245 (2014). CAS  PubMed  Google Scholar  * Girardin,


F. Membrane transporter proteins: a challenge for CNS drug development. _Dialogues Clin. Neurosci._ 8, 311–321 (2006). PubMed  PubMed Central  Google Scholar  * Huggins, J. P., Smart, T.


S., Langman, S., Taylor, L. & Young, T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which


modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. _Pain_ 153, 1837–1846 (2012). CAS  PubMed  Google Scholar  *


Keith, J. M. et al. Preclinical characterization of the FAAH inhibitor JNJ-42165279. _ACS Med. Chem. Lett._ 6, 1204–1208 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Pawsey, S. et


al. Safety, tolerability and pharmacokinetics of FAAH inhibitor V158866: a double-blind, randomised, placebo-controlled phase I study in healthy volunteers. _Drugs R. D_ 16, 181–191 (2016).


CAS  PubMed  PubMed Central  Google Scholar  * Cajanus, K. et al. Effect of endocannabinoid degradation on pain: role of FAAH polymorphisms in experimental and postoperative pain in women


treated for breast cancer. _Pain_ 157, 361–369 (2016). CAS  PubMed  Google Scholar  * Woolf, C. J., Safieh-Garabedian, B., Ma, Q. P., Crilly, P. & Winter, J. Nerve growth factor


contributes to the generation of inflammatory sensory hypersensitivity. _Neuroscience_ 62, 327–331 (1994). CAS  PubMed  Google Scholar  * Gimbel, J. S. et al. Long-term safety and


effectiveness of tanezumab as treatment for chronic low back pain. _Pain_ 155, 1793–1801 (2014). CAS  PubMed  Google Scholar  * Bramson, C. et al. Exploring the role of tanezumab as a novel


treatment for the relief of neuropathic pain. _Pain Med._ 16, 1163–1176 (2015). PubMed  Google Scholar  * Schnitzer, T. J. & Marks, J. A. A systematic review of the efficacy and general


safety of antibodies to NGF in the treatment of OA of the hip or knee. _Osteoarthritis Cartilage_ 23 (Suppl. 1), S8–S17 (2015). PubMed  Google Scholar  * Hochberg, M. C. et al. When is


osteonecrosis not osteonecrosis? Adjudication of reported serious adverse joint events in the tanezumab clinical development program. _Arthritis Rheumatol._ 68, 382–391 (2016). CAS  PubMed 


Google Scholar  * Sorge, R. E. et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. _Nat. Methods_ 11, 629–632 (2014). CAS  PubMed  Google


Scholar  * Baron, R. et al. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. _Pain_ 158, 261–272 (2016). PubMed Central  Google Scholar  *


Mogil, J. S., Davis, K. D. & Derbyshire, S. W. The necessity of animal models in pain research. _Pain_ 151, 12–17 (2010). IN THIS REVIEW, MOGIL AND COLLEAGUES DESCRIBE THE CRUCIAL ROLE


OF ANIMAL MODELS IN THE DEVELOPMENT OF CLINICAL ANALGESICS AND PROPOSE ADVANCEMENTS IN ANIMAL MODELS OF PAIN THAT COULD IMPROVE THE RELEVANCE AND TRANSLATABILITY OF PRECLINICAL STUDIES.


PubMed  Google Scholar  * Whiteside, G. T., Pomonis, J. D. & Kennedy, J. D. An industry perspective on the role and utility of animal models of pain in drug discovery. _Neurosci. Lett._


557, 65–72 (2013). CAS  PubMed  Google Scholar  * Hill, R. NK1 (substance P) receptor antagonists — why are they not analgesic in humans? _Trends Pharmacol. Sci._ 21, 244–246 (2000). CAS 


PubMed  Google Scholar  * Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. _Nat. Neurosci._ 18, 1081–1083 (2015). CAS  PubMed 


PubMed Central  Google Scholar  * Edwards, R. R., Dworkin, R. H., Sullivan, M. D., Turk, D. C. & Wasan, A. D. The role of psychosocial processes in the development and maintenance of


chronic pain. _J. Pain_ 17, T70–T92 (2016). PubMed  PubMed Central  Google Scholar  * Smith, S. M. et al. Pain intensity rating training: results from an exploratory study of the ACTTION


PROTECCT system. _Pain_ 157, 1056–1064 (2016). PubMed  Google Scholar  * Dodd, S., Dean, O. M., Vian, J. & Berk, M. A. Review of the theoretical and biological understanding of the


nocebo and placebo phenomena. _Clin. Ther._ 39, 469–476 (2017). PubMed  Google Scholar  * Paice, J. A. et al. AAPT diagnostic criteria for chronic cancer pain conditions. _J. Pain_ 18,


233–246 (2017). PubMed  Google Scholar  * Smith, S. M. et al. The potential role of sensory testing, skin biopsy, and functional brain imaging as biomarkers in chronic pain clinical trials:


IMMPACT considerations. _J. Pain_ http://dx.doi.org/10.1016/j.jpain.2017.02.429 (2017). * Edwards, R. R. et al. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT


recommendations. _Pain_ 157, 1851–1871 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Viscusi, E. R. et al. A randomized, phase 2 study investigating TRV130, a biased ligand of the


mu-opioid receptor, for the intravenous treatment of acute pain. _Pain_ 157, 264–272 (2016). CAS  PubMed  Google Scholar  * Lu, Z. et al. Mediation of opioid analgesia by a truncated


6-transmembrane GPCR. _J. Clin. Invest._ 125, 2626–2630 (2015). PubMed  PubMed Central  Google Scholar  * Moriconi, A. et al. Targeting the minor pocket of C5aR for the rational design of an


oral allosteric inhibitor for inflammatory and neuropathic pain relief. _Proc. Natl Acad. Sci. USA_ 111, 16937–16942 (2014). CAS  PubMed  Google Scholar  * Altun, A. et al. Attenuation of


morphine antinociceptive tolerance by cannabinoid CB1 and CB2 receptor antagonists. _J. Physiol. Sci._ 65, 407–415 (2015). CAS  PubMed  Google Scholar  * Haugh, O., Penman, J., Irving, A. J.


& Campbell, V. A. The emerging role of the cannabinoid receptor family in peripheral and neuro-immune interactions. _Curr. Drug Targets_ 17, 1834–1840 (2016). CAS  PubMed  Google


Scholar  * Deliu, E. et al. The lysophosphatidylinositol receptor GPR55 modulates pain perception in the periaqueductal gray. _Mol. Pharmacol._ 88, 265–272 (2015). CAS  PubMed  PubMed


Central  Google Scholar  * Kort, M. E. & Kym, P. R. TRPV1 antagonists: clinical setbacks and prospects for future development. _Prog. Med. Chem._ 51, 57–70 (2012). CAS  PubMed  Google


Scholar  * Manitpisitkul, P. et al. Safety, tolerability and pharmacokinetic and pharmacodynamic learnings from a double-blind, randomized, placebo-controlled, sequential group


first-in-human study of the TRPV1 antagonist, JNJ-38893777, in healthy men. _Clin. Drug Investig._ 35, 353–363 (2015). CAS  PubMed  Google Scholar  * Quiding, H. et al. TRPV1 antagonistic


analgesic effect: a randomized study of AZD1386 in pain after third molar extraction. _Pain_ 154, 808–812 (2013). CAS  PubMed  Google Scholar  * De Petrocellis, L. & Moriello, A. S.


Modulation of the TRPV1 channel: current clinical trials and recent patents with focus on neurological conditions. _Recent Pat. CNS Drug Discov._ 8, 180–204 (2013). CAS  PubMed  Google


Scholar  * Ghosh, S. et al. Full fatty acid amide hydrolase inhibition combined with partial monoacylglycerol lipase inhibition: augmented and sustained antinociceptive effects with reduced


cannabimimetic side effects in mice. _J. Pharmacol. Exp. Ther._ 354, 111–120 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Grim, T. W. et al. Combined inhibition of FAAH and COX


produces enhanced anti-allodynic effects in mouse neuropathic and inflammatory pain models. _Pharmacol. Biochem. Behav._ 124, 405–411 (2014). CAS  PubMed  PubMed Central  Google Scholar  *


Starowicz, K. et al. Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism.


_PLoS ONE_ 8, e60040 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Schlosburg, J. E. et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the


endocannabinoid system. _Nat. Neurosci._ 13, 1113–1119 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Luz, J. G. et al. Crystal structures of mPGES-1 inhibitor complexes form a basis


for the rational design of potent analgesic and anti-inflammatory therapeutics. _J. Med. Chem._ 58, 4727–4737 (2015). CAS  PubMed  Google Scholar  * Leclerc, P. et al. Characterization of a


human and murine mPGES-1 inhibitor and comparison to mPGES-1 genetic deletion in mouse models of inflammation. _Prostaglandins Other Lipid Mediat._ 107, 26–34 (2013). CAS  PubMed  Google


Scholar  * Sjogren, T. et al. Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily. _Proc. Natl Acad. Sci. USA_ 110, 3806–3811


(2013). PubMed  Google Scholar  * Hellio le Graverand, M. P. et al. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat


(SD-6010), in patients with symptomatic osteoarthritis of the knee. _Ann. Rheum. Dis._ 72, 187–195 (2013). PubMed  Google Scholar  * Wozniak, K. M. et al. The orally active glutamate


carboxypeptidase II inhibitor E2072 exhibits sustained nerve exposure and attenuates peripheral neuropathy. _J. Pharmacol. Exp. Ther._ 343, 746–754 (2012). CAS  PubMed  Google Scholar  *


Vornov, J. J. et al. Pharmacokinetics and pharmacodynamics of the glutamate carboxypeptidase II inhibitor 2-MPPA show prolonged alleviation of neuropathic pain through an indirect mechanism.


_J. Pharmacol. Exp. Ther._ 346, 406–413 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Huang, J. L., Chen, X. L., Guo, C. & Wang, Y. X. Contributions of spinal D-amino acid


oxidase to bone cancer pain. _Amino Acids_ 43, 1905–1918 (2012). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS The authors acknowledge generous funding support from the


following US National Institutes of Health grants: NS039518 and NS038253 (US National Institute of Neurological Disorders and Stroke (NINDS) to C.J.W); NS072040 and NS036855 (NINDS to


B.P.B.); and DA041912 (US National Institute on Drug Abuse to A.S.Y.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Neurobiology, Harvard Medical School, Boston


Children's Hospital, 300 Longwood Avenue, Boston, 02115, Massachusetts, USA Ajay S. Yekkirala, David P. Roberson, Bruce P. Bean & Clifford J. Woolf * FM Kirby Neurobiology Center


Boston Children's Hospital, 300 Longwood Avenue, Boston, 02115, Massachusetts, USA Ajay S. Yekkirala, David P. Roberson & Clifford J. Woolf * Blue Therapeutics, Harvard Innovation


Launch Lab, 114 Western Avenue, Allston, 02134, Massachusetts, USA Ajay S. Yekkirala & David P. Roberson Authors * Ajay S. Yekkirala View author publications You can also search for this


author inPubMed Google Scholar * David P. Roberson View author publications You can also search for this author inPubMed Google Scholar * Bruce P. Bean View author publications You can also


search for this author inPubMed Google Scholar * Clifford J. Woolf View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence


to Ajay S. Yekkirala or Clifford J. Woolf. ETHICS DECLARATIONS COMPETING INTERESTS A.S.Y and D.P.R. are co-founders of Blue Therapeutics in Allston, Massachusetts, USA, which is focused on


developing non-addictive painkillers targeting G-protein-coupled receptor heteromers. A.S.Y. holds a patent on an analgesic agent. B.P.B. is a co-founder of Flex Pharma in Boston,


Massachusetts, USA, and co-holds patents on using charged sodium channel blockers for pain relief and other indications. C.J.W is co-founder and scientific advisor to Quartet Medicine in


Cambridge, Massachusetts, USA, which is focused on developing treatments for chronic pain and inflammation targeting the tetrahydrobiopterin pathway; he is also a consultant and stock holder


for Abide Therapeutics in San Diego, California, USA, and holds several patents related to methods and approaches for studying and treating pain. RELATED LINKS DATABASES ClinicalTrials.gov


FURTHER INFORMATION Arena Pharmaceuticals press release on APD371 BioTuesdays — Xenon still committed to TV-45070 for neuropathic pain Cara Therapeutics — Kappa Opioid Receptor Agonists


CNV2197944 phase II trial announcement press release CR845 phase IIa results press release CR845 phase III patient recruitment press release DEX-IN phase II efficacy press release DEX-IN


phase II side effects press release US Centers for Disease Control and Prevention — Overdose Xenon and Genentech collaboration press release Z944 phase Ib results press release POWERPOINT


SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR TABLE 1 POWERPOINT SLIDE FOR TABLE 2 POWERPOINT SLIDE FOR TABLE 3 GLOSSARY * Analgesics Pharmacological


agents or ligands that produce analgesia. * Tolerance A state in which the drug no longer produces the same effect and a higher dose is therefore needed. * Dependence An adaptive state that


develops when a pharmacological agent is used repeatedly and leads to withdrawal on cessation of the drug regimen. * Hyperalgesia Enhanced nociceptive response to a noxious stimulus, leading


to greater discomfort than before. * Allodynia Nociceptive response elicited even to previously non-noxious stimuli. * Phenocopy When an organism shows phenotypic characteristics that


reflect a different genotype from its own. * Neuropathic pain A condition leading to pain due to damage or disease of nervous system tissues. * Central sensitization A condition of the


nervous system in which neurons in the central nervous system are in a state of prolonged increase in excitability and synaptic efficacy, coupled with the loss of inhibitory activity. *


Analgesia A lack of, or insensibility to, pain. * Nociception Sensory neuronal responses to noxious or damaging stimuli that attribute the sensation of pain. * Depersonalization A state in


which an individual's thoughts, feelings and emotions seem to not belong to them. * Antinociception Inhibition of sensory neuronal response to noxious stimuli that leads to reduction of


pain sensation. * Ligand bias Occurs when a ligand shows selectivity or preference to a particular signal transduction mechanism for a target receptor. Also called 'functional


selectivity'. * Psychotomimetic effects A state of psychosis of the mind leading to delusions, hallucinations, and so on that are precipitated by a pharmacological agent or ligand. *


Post-herpetic neuralgia Pain caused by nerve damage due to infection with varicella zoster virus. * Withdrawal Symptoms such as anxiety and shaking that develop on cessation of a drug that


has been used repeatedly. * Trigeminal neuralgia A painful condition caused by disease affecting, dysfunction of or damage to the trigeminal nerve. * Anosmia Loss of the sense of smell. *


Allosteric modulators Ligands that alter the activity of an agonist, antagonist or inverse agonist of a target by binding to a site distinct from the active site. * Phenotypic screens


Unbiased screening strategies in which the functional output is a pre-determined alteration of phenotype. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Yekkirala, A., Roberson, D., Bean, B. _et al._ Breaking barriers to novel analgesic drug development. _Nat Rev Drug Discov_ 16, 545–564 (2017). https://doi.org/10.1038/nrd.2017.87 Download


citation * Published: 09 June 2017 * Issue Date: August 2017 * DOI: https://doi.org/10.1038/nrd.2017.87 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative