The pharmacological landscape and therapeutic potential of serine hydrolases

The pharmacological landscape and therapeutic potential of serine hydrolases


Play all audios:


KEY POINTS * Serine hydrolases are one of the largest and most diverse classes of enzymes found in eukaryotes and prokaryotes, including ∼240 members in humans. * Several clinically approved


drugs target serine hydrolases. Prominent among these therapeutics are inhibitors of thrombin, acetylcholinesterase and dipeptidyl peptidase 4 that are used to treat clotting disorders,


Alzheimer's disease-associated dementia and diabetes, respectively. * Many serine hydrolases have recently emerged as enzymes with therapeutic potential and are the focus of intense


inhibitor discovery efforts. * Compounds that act through covalent mechanisms have proved to be especially effective at selectively inhibiting serine hydrolases. Here, we highlight the


mechanism-based electrophiles that have successfully formed the basis of selective, _in vivo_-active inhibitors (including several approved drugs) and also review promising new chemotypes


that have recently been discovered. * Activity-based protein profiling has facilitated the discovery of dysregulated serine hydrolases in disease and has enabled the rapid development of


selective inhibitors for the functional characterization of these enzymes. ABSTRACT Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are


targets of approved drugs for indications such as type 2 diabetes, Alzheimer's disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are


more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, _in vivo_-active inhibitors. Here, we review


the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic


probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate


will aid in their biological characterization and, in some cases, therapeutic validation. Access through your institution Buy or subscribe This is a preview of subscription content, access


via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PROTEIN KINASES IN NEURODEGENERATIVE DISEASES: CURRENT


UNDERSTANDINGS AND IMPLICATIONS FOR DRUG DISCOVERY Article Open access 07 May 2025 STRUCTURAL INSIGHTS INTO THE INHIBITION OF GLYCINE REUPTAKE Article 03 March 2021 IN SILICO DESIGN OF NOVEL


PYRIDAZINE DERIVATIVES AS BALANCED MULTIFUNCTIONAL AGENTS AGAINST ALZHEIMER’S DISEASE Article Open access 07 May 2025 REFERENCES * Long, J. Z. & Cravatt, B. F. The metabolic serine


hydrolases and their functions in mammalian physiology and disease. _Chem. Rev._ 111, 6022–6063 (2011). THIS IS A COMPREHENSIVE REVIEW OF THE MAMMALIAN METABOLIC SERINE HYDROLASES. Article 


CAS  PubMed  PubMed Central  Google Scholar  * Davie, E. W. & Ratnoff, O. D. Waterfall sequence for intrinsic blood clotting. _Science_ 145, 1310–1312 (1964). Article  CAS  PubMed 


Google Scholar  * Whitcomb, D. C. & Lowe, M. E. Human pancreatic digestive enzymes. _Dig. Dis. Sci._ 52, 1–17 (2007). Article  CAS  PubMed  Google Scholar  * Lane, R. M., Potkin, S. G.


& Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. _Int. J. Neuropsychopharmacol._ 9, 101–124 (2006). Article  CAS  PubMed  Google Scholar  * Bonventre, J.


V. et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. _Nature_ 390, 622–625 (1997). Article  CAS  PubMed  Google Scholar  * Menendez, J.


A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. _Nature Rev. Cancer_ 7, 763–777 (2007). Article  CAS  PubMed  Google Scholar  * Simon, G. M. &


Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. _J. Biol. Chem._ 285, 11051–11055 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. _Cell_ 140, 49–61 (2010). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Steuber, H. & Hilgenfeld, R. Recent advances in targeting viral proteases for the discovery of novel antivirals. _Curr. Top. Med. Chem._ 10, 323–345 (2010). Article 


CAS  PubMed  Google Scholar  * White, M. J. et al. The HtrA-like serine protease PepD interacts with and modulates the _Mycobacterium tuberculosis_ 35-kDa antigen outer envelope protein.


_PLoS ONE_ 6, e18175 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Damblon, C. et al. The catalytic mechanism of β-lactamases: NMR titration of an active-site lysine


residue of the TEM-1 enzyme. _Proc. Natl Acad. Sci. USA_ 93, 1747–1752 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bachovchin, D. A. et al. Superfamily-wide portrait of


serine hydrolase inhibition achieved by library-versus-library screening. _Proc. Natl Acad. Sci. USA_ 107, 20941–20946 (2010). THIS PAPER REPORTS THE FINDINGS OF A GLOBAL SURVEY OF


CARBAMATE-CONTAINING COMPOUNDS FOR INHIBITION AGAINST A LARGE PANEL OF SERINE HYDROLASES. Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, W., Blankman, J. L. & Cravatt, B. F.


A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. _J. Am. Chem. Soc._ 129, 9594–9595 (2007). Article  CAS  PubMed  Google Scholar  * Johnson, D. S. et


al. Discovery of PF-04457845: a highly potent, orally bioavailable, and selective urea FAAH inhibitor. _ACS Med. Chem. Lett._ 2, 91–96 (2011). Article  CAS  PubMed  Google Scholar  *


Adibekian, A. et al. Click-generated triazole ureas as ultrapotent _in vivo_-active serine hydrolase inhibitors. _Nature Chem. Biol._ 7, 469–478 (2011). Article  CAS  Google Scholar  *


Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B. F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. _Nature Biotech._ 21, 687–691 (2003).


Article  CAS  Google Scholar  * Hoover, H. S., Blankman, J. L., Niessen, S. & Cravatt, B. F. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein


profiling. _Bioorg. Med. Chem. Lett._ 18, 5838–5841 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tew, D. G., Boyd, H. F., Ashman, S., Theobald, C. & Leach, C. A.


Mechanism of inhibition of LDL phospholipase A2 by monocyclic-β-lactams. Burst kinetics and the effect of stereochemistry. _Biochemistry_ 37, 10087–10093 (1998). Article  CAS  PubMed  Google


Scholar  * Stedman, E. & Barger, G. J. Physostigmine (eserine). Part III. _J. Chem. Soc._ 127, 247–258 (1925). Article  CAS  Google Scholar  * Weibel, E. K., Hadvary, P., Hochuli, E.,


Kupfer, E. & Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase, produced by _Streptomyces toxytricini_. I. Producing organism, fermentation, isolation and biological activity.


_J. Antibiot._ 40, 1081–1085 (1987). Article  CAS  Google Scholar  * Li, J., Wilk, E. & Wilk, S. Aminoacylpyrrolidine-2-nitriles: potent and stable inhibitors of dipeptidyl-peptidase IV


(CD 26). _Arch. Biochem. Biophys._ 323, 148–154 (1995). Article  CAS  PubMed  Google Scholar  * Flentke, G. R. et al. Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro


dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. _Proc. Natl Acad. Sci. USA_ 88, 1556–1559 (1991). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Perona, J. J. & Craik, C. S. Structural basis of substrate specificity in the serine proteases. _Protein Sci._ 4, 337–360 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Yousef, G. M., Kopolovic, A. D., Elliott, M. B. & Diamandis, E. P. Genomic overview of serine proteases. _Biochem. Biophys. Res. Commun._ 305, 28–36 (2003). Article  CAS  PubMed 


Google Scholar  * Holmes, R. S. et al. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. _Mamm. Genome_ 21, 427–441


(2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kienesberger, P. C., Oberer, M., Lass, A. & Zechner, R. Mammalian patatin domain containing proteins: a family with


diverse lipolytic activities involved in multiple biological functions. _J. Lipid Res._ 50, S63–S68 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Shin, S. et al. Structure


of malonamidase E2 reveals a novel Ser-_cis_Ser-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. _EMBO J._ 21, 2509–2516 (2002). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C. & Cravatt, B. F. Structural adaptations in a membrane enzyme that terminates endocannabinoid


signaling. _Science_ 298, 1793–1796 (2002). Article  CAS  PubMed  Google Scholar  * Shi, Y. & Burn, P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity.


_Nature Rev. Drug Discov._ 3, 695–710 (2004). Article  CAS  Google Scholar  * Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. _Nature Rev. Drug


Discov._ 10, 307–317 (2011). THIS IS A COMPREHENSIVE REVIEW OF THE ADVANTAGES AND CHALLENGES OF COVALENT DRUGS. Article  CAS  Google Scholar  * Bar-On, P. et al. Kinetic and structural


studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. _Biochemistry_ 41, 3555–3564 (2002). Article  CAS  PubMed  Google Scholar  * Metzler, W. J. et al.


Involvement of DPP-IV catalytic residues in enzyme–saxagliptin complex formation. _Protein Sci._ 17, 240–250 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Villhauer, E. B.


et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. _J.


Med. Chem._ 46, 2774–2789 (2003). Article  CAS  PubMed  Google Scholar  * Hadvary, P., Sidler, W., Meister, W., Vetter, W. & Wolfer, H. The lipase inhibitor tetrahydrolipstatin binds


covalently to the putative active site serine of pancreatic lipase. _J. Biol. Chem._ 266, 2021–2027 (1991). Article  CAS  PubMed  Google Scholar  * Kawabata, K. et al. ONO-5046, a novel


inhibitor of human neutrophil elastase. _Biochem. Biophys. Res. Commun._ 177, 814–820 (1991). Article  CAS  PubMed  Google Scholar  * Nakayama, Y. et al. Clarification of mechanism of human


sputum elastase inhibition by a new inhibitor, ONO-5046, using electrospray ionization mass spectrometry. _Bioorg. Med. Chem. Lett._ 12, 2349–2353 (2002). Article  CAS  PubMed  Google


Scholar  * Silver, L. L. Multi-targeting by monotherapeutic antibacterials. _Nature Rev. Drug Discov._ 6, 41–55 (2007). Article  CAS  Google Scholar  * Flores, M. V., Strawbridge, J.,


Ciaramella, G. & Corbau, R. HCV-NS3 inhibitors: determination of their kinetic parameters and mechanism. _Biochim. Biophys. Acta_ 1794, 1441–1448 (2009). Article  CAS  PubMed  Google


Scholar  * Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. Carbapenems: past, present, and future. _Antimicrob. Agents Chemother._ 55, 4943–4960 (2011). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Llarrull, L. I., Testero, S. A., Fisher, J. F. & Mobashery, S. The future of the β-lactams. _Curr. Opin. Microbiol._ 13, 551–557 (2010).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Schlutter, J. Therapeutics: new drugs hit the target. _Nature_ 474, S5–S7 (2011). Article  PubMed  CAS  Google Scholar  * Mackman, N.


Triggers, targets and treatments for thrombosis. _Nature_ 451, 914–918 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Macfarlane, R. G. An enzyme cascade in the blood


clotting mechanism, and its function as a biochemical amplifier. _Nature_ 202, 498–499 (1964). Article  CAS  PubMed  Google Scholar  * Gustafsson, D. et al. A new oral anticoagulant: the


50-year challenge. _Nature Rev. Drug Discov._ 3, 649–659 (2004). Article  CAS  Google Scholar  * Markwardt, F. The development of hirudin as an antithrombotic drug. _Thromb. Res._ 74, 1–23


(1994). Article  CAS  PubMed  Google Scholar  * White, H. D. & Chew, D. P. Bivalirudin: an anticoagulant for acute coronary syndromes and coronary interventions. _Expert Opin.


Pharmacother._ 3, 777–788 (2002). Article  CAS  PubMed  Google Scholar  * Okamoto, S. A synthetic thrombin inhibitor taking extremely active stereostructure. _Thromb. Haemost._ 42, A205


(1979). Google Scholar  * Walenga, J. M. An overview of the direct thrombin inhibitor argatroban. _Pathophysiol. Haemost. Thromb._ 32 (Suppl. 3), 9–14 (2002). Article  CAS  PubMed  Google


Scholar  * Boudes, P. F. The challenges of new drugs benefits and risks analysis: lessons from the ximelagatran FDA Cardiovascular Advisory Committee. _Contemp. Clin. Trials_ 27, 432–440


(2006). Article  PubMed  Google Scholar  * Brandstetter, H. et al. Refined 2.3 Å X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin


inhibitors NAPAP, 4-TAPAP and MQPA. A starting point for improving antithrombotics. _J. Mol. Biol._ 226, 1085–1099 (1992). Article  CAS  PubMed  Google Scholar  * Hauel, N. H. et al.


Structure-based design of novel potent nonpeptide thrombin inhibitors. _J. Med. Chem._ 45, 1757–1766 (2002). Article  CAS  PubMed  Google Scholar  * Eisert, W. G. et al. Dabigatran: an oral


novel potent reversible nonpeptide inhibitor of thrombin. _Arterioscler. Thromb. Vasc. Biol._ 30, 1885–1889 (2010). Article  CAS  PubMed  Google Scholar  * Schulman, S. et al. Dabigatran


versus warfarin in the treatment of acute venous thromboembolism. _N. Engl. J. Med._ 361, 2342–2352 (2009). Article  CAS  PubMed  Google Scholar  * Fujikawa, K., Legaz, M. E., Kato, H. &


Davie, E. W. The mechanism of activation of bovine factor IX (Christmas factor) by bovine factor XIa (activated plasma thromboplastin antecedent). _Biochemistry_ 13, 4508–4516 (1974).


Article  CAS  PubMed  Google Scholar  * Nutt, E. et al. The amino acid sequence of antistasin. A potent inhibitor of factor Xa reveals a repeated internal structure. _J. Biol. Chem._ 263,


10162–10167 (1988). Article  CAS  PubMed  Google Scholar  * Tuszynski, G. P., Gasic, T. B. & Gasic, G. J. Isolation and characterization of antistasin. An inhibitor of metastasis and


coagulation. _J. Biol. Chem._ 262, 9718–9723 (1987). Article  CAS  PubMed  Google Scholar  * Waxman, L., Smith, D. E., Arcuri, K. E. & Vlasuk, G. P. Tick anticoagulant peptide (TAP) is a


novel inhibitor of blood coagulation factor Xa. _Science_ 248, 593–596 (1990). Article  CAS  PubMed  Google Scholar  * Bauer, K. A. et al. Fondaparinux, a synthetic pentasaccharide: the


first in a new class of antithrombotic agents — the selective factor Xa inhibitors. _Cardiovasc. Drug Rev._ 20, 37–52 (2002). Article  CAS  PubMed  Google Scholar  * Perzborn, E., Roehrig,


S., Straub, A., Kubitza, D. & Misselwitz, F. The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. _Nature Rev. Drug Discov._ 10, 61–75 (2011). Article  CAS


  Google Scholar  * Becker, R. C., Alexander, J., Dyke, C. K. & Harrington, R. A. Development of DX-9065a, a novel direct factor Xa antagonist, in cardiovascular disease. _Thromb.


Haemost._ 92, 1182–1193 (2004). Article  CAS  PubMed  Google Scholar  * Sato, K. et al. YM-60828, a novel factor Xa inhibitor: separation of its antithrombotic effects from its prolongation


of bleeding time. _Eur. J. Pharmacol._ 339, 141–146 (1997). Article  CAS  PubMed  Google Scholar  * Lam, P. Y. et al. Structure-based design of novel guanidine/benzamidine mimics: potent and


orally bioavailable factor Xa inhibitors as novel anticoagulants. _J. Med. Chem._ 46, 4405–4418 (2003). Article  CAS  PubMed  Google Scholar  * Pinto, D. J. et al. Discovery of


1-[3-(aminomethyl)phenyl]-_N_-3-fluoro-2′-(methylsulfonyl)-[1,1′-biphenyl]-4 -yl]-3-(trifluoromethyl)-1_H_-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally


bioavailable inhibitor of blood coagulation factor Xa. _J. Med. Chem._ 44, 566–578 (2001). Article  CAS  PubMed  Google Scholar  * Roehrig, S. et al. Discovery of the novel antithrombotic


agent 5-chloro-_N_-({(5_S_)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene- 2-carboxamide (BAY 59–7939): an oral, direct factor Xa inhibitor. _J. Med. Chem._


48, 5900–5908 (2005). Article  CAS  PubMed  Google Scholar  * Eriksson, B. I., Quinlan, D. J. & Eikelboom, J. W. Novel oral factor Xa and thrombin inhibitors in the management of


thromboembolism. _Annu. Rev. Med._ 62, 41–57 (2011). Article  CAS  PubMed  Google Scholar  * Giacobini, E. Cholinesterases: new roles in brain function and in Alzheimer's disease.


_Neurochem. Res._ 28, 515–522 (2003). Article  CAS  PubMed  Google Scholar  * Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. Neurotransmitter-related enzymes and indices of


hypoxia in senile dementia and other abiotrophies. _Brain_ 99, 459–496 (1976). Article  CAS  PubMed  Google Scholar  * Davies, P. & Maloney, A. J. Selective loss of central cholinergic


neurons in Alzheimer's disease. _Lancet_ 2, 1403 (1976). Article  CAS  PubMed  Google Scholar  * Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H. & Tomlinson, B. E.


Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. _J. Neurol. Sci._ 34, 247–265 (1977).


Article  CAS  PubMed  Google Scholar  * Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. _Science_ 217, 408–414 (1982).


Article  CAS  PubMed  Google Scholar  * Hansen, R. A., Gartlehner, G., Kaufer, D. J., Lohr, K. N. & Carey, T. Drug class review on Alzheimer's drugs: final report. _Drug Class


Reviews_ (2006). * Ellis, J. M. Cholinesterase inhibitors in the treatment of dementia. _J. Am. Osteopath. Assoc._ 105, 145–158 (2005). PubMed  Google Scholar  * Casida, J. E. & Quistad,


G. B. Serine hydrolase targets of organophosphorus toxicants. _Chem. Biol. Interact._ 157–158, 277–283 (2005). Article  PubMed  CAS  Google Scholar  * Kawakami, Y. et al. The rationale for


E2020 as a potent acetylcholinesterase inhibitor. _Bioorg. Med. Chem._ 4, 1429–1446 (1996). Article  CAS  PubMed  Google Scholar  * Nochi, S., Asakawa, N. & Sato, T. Kinetic-study on the


inhibition of acetylcholinesterase by 1-benzyl-4-[(5,6-dimethoxy-L-indanon)-2-Yl]methylpiperidine hydrochloride (E2020). _Biol. Pharm. Bull._ 18, 1145–1147 (1995). Article  CAS  PubMed 


Google Scholar  * Sugimoto, H., Iimura, Y., Yamanishi, Y. & Yamatsu, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,


6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. _J. Med. Chem._ 38, 4821–4829 (1995). Article  CAS  PubMed  Google Scholar  * Harvey, A. L. The


pharmacology of galanthamine and its analogues. _Pharmacol. Ther._ 68, 113–128 (1995). Article  CAS  PubMed  Google Scholar  * Thomsen, T. & Kewitz, H. Selective inhibition of human


acetylcholinesterase by galanthamine _in vitro_ and _in vivo_. _Life Sci._ 46, 1553–1558 (1990). Article  CAS  PubMed  Google Scholar  * Thomsen, T., Bickel, U., Fischer, J. P. & Kewitz,


H. Stereoselectivity of cholinesterase inhibition by galanthamine and tolerance in humans. _Eur. J. Clin. Pharmacol._ 39, 603–605 (1990). Article  CAS  PubMed  Google Scholar  * Hemsworth,


B. A. & West, G. B. The anticholinesterase activity of physostigmine. _J. Pharm. Pharmacol._ 20, 406–407 (1968). Article  CAS  PubMed  Google Scholar  * Kennedy, J. S. et al.


Preferential cerebrospinal fluid acetylcholinesterase inhibition by rivastigmine in humans. _J. Clin. Psychopharmacol._ 19, 513–521 (1999). Article  CAS  PubMed  Google Scholar  * Kathuria,


S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. _Nature Med._ 9, 76–81 (2003). Article  CAS  PubMed  Google Scholar  * Long, J. Z. et al. Selective blockade of


2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. _Nature Chem. Biol._ 5, 37–44 (2009). Article  CAS  Google Scholar  * Bongers, J., Lambros, T., Ahmad, M. &


Heimer, E. P. Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. _Biochim. Biophys. Acta_ 1122, 147–153 (1992). Article  CAS  PubMed  Google


Scholar  * Rosenblum, J. S. & Kozarich, J. W. Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. _Curr. Opin. Chem. Biol._ 7, 496–504 (2003). Article


  CAS  PubMed  Google Scholar  * Murphy, K. G., Dhillo, W. S. & Bloom, S. R. Gut peptides in the regulation of food intake and energy homeostasis. _Endocr. Rev._ 27, 719–727 (2006).


Article  CAS  PubMed  Google Scholar  * Thorens, B. Glucagon-like peptide-1 and control of insulin secretion. _Diabetes Metab._ 21, 311–318 (1995). CAS  Google Scholar  * Meier, J. J.,


Nauck, M. A., Schmidt, W. E. & Gallwitz, B. Gastric inhibitory polypeptide: the neglected incretin revisited. _Regul. Pept._ 107, 1–13 (2002). Article  CAS  PubMed  Google Scholar  *


Drucker, D. J. Biological actions and therapeutic potential of the glucagon-like peptides. _Gastroenterology_ 122, 531–544 (2002). Article  CAS  PubMed  Google Scholar  * Holst, J. J. &


Deacon, C. F. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. _Diabetes_ 47, 1663–1670 (1998). Article  CAS  PubMed  Google Scholar  * Feng, J. et


al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. _J. Med. Chem._ 50, 2297–2300 (2007). Article  CAS  PubMed  Google


Scholar  * Lambeir, A. M. et al. Dipeptide-derived diphenyl phosphonate esters: mechanism-based inhibitors of dipeptidyl peptidase IV. _Biochim. Biophys. Acta_ 1290, 76–82 (1996). Article 


PubMed  Google Scholar  * Hughes, T. E., Mone, M. D., Russell, M. E., Weldon, S. C. & Villhauer, E. B. NVP-DPP728


(1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(_S_)-pyrrolidine), a slow-binding inhibitor of dipeptidyl peptidase IV. _Biochemistry_ 38, 11597–11603 (1999). Article  CAS 


PubMed  Google Scholar  * Oefner, C. et al. High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with


1-[([2-[(5-iodopyridin-2-yl)amino]-ethyl]amino)-acetyl]-2-cyano-(_S_)-pyrrol idine. _Acta Crystallogr. D Biol. Crystallogr._ 59, 1206–1212 (2003). Article  PubMed  Google Scholar  *


Villhauer, E. B. et al. 1-[2-[(5-cyanopyridin-2-yl)amino]ethylamino]acetyl-2-(_S_)-pyrrolidinecarbon itrile: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor


with antihyperglycemic properties. _J. Med. Chem._ 45, 2362–2365 (2002). Article  CAS  PubMed  Google Scholar  * Magnin, D. R. et al. Synthesis of novel potent dipeptidyl peptidase IV


inhibitors with enhanced chemical stability: interplay between the N-terminal amino acid alkyl side chain and the cyclopropyl group of α-aminoacyl-l-_cis_-4,5-methanoprolinenitrile-based


inhibitors. _J. Med. Chem._ 47, 2587–2598 (2004). Article  CAS  PubMed  Google Scholar  * Augeri, D. J. et al. Discovery and preclinical profile of saxagliptin (BMS-477118): a highly potent,


long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. _J. Med. Chem._ 48, 5025–5037 (2005). Article  CAS  PubMed  Google Scholar  * Kim, D. et


al. (2_R_)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8_H_)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor


for the treatment of type 2 diabetes. _J. Med. Chem._ 48, 141–151 (2005). Article  CAS  PubMed  Google Scholar  * Eckhardt, M. et al.


8-(3-(_R_)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin -2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally


bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. _J. Med. Chem._ 50, 6450–6453 (2007). Article  CAS  PubMed  Google Scholar  * Xu, J. et al. Discovery of potent and


selective β-homophenylalanine based dipeptidyl peptidase IV inhibitors. _Bioorg. Med. Chem. Lett._ 14, 4759–4762 (2004). Article  CAS  PubMed  Google Scholar  * Cravatt, B. F. et al.


Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. _Nature_ 384, 83–87 (1996). Article  CAS  PubMed  Google Scholar  * Naidu, P. S. et al. Evaluation of


fatty acid amide hydrolase inhibition in murine models of emotionality. _Psychopharmacology_ 192, 61–70 (2007). Article  CAS  PubMed  Google Scholar  * Cravatt, B. F. et al.


Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. _Proc. Natl Acad. Sci. USA_ 98, 9371–9376 (2001). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Lichtman, A. H. et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of


potency and selectivity. _J. Pharmacol. Exp. Ther._ 311, 441–448 (2004). Article  CAS  PubMed  Google Scholar  * Russo, R. et al. The fatty acid amide hydrolase inhibitor URB597


(cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. _J. Pharmacol. Exp. Ther._ 322, 236–242 (2007). Article  CAS  PubMed 


Google Scholar  * Justinova, Z. et al. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. _Biol. Psychiatry_ 64, 930–937


(2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ahn, K. et al. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. _Biochemistry_


46, 13019–13030 (2007). Article  CAS  PubMed  Google Scholar  * Ahn, K. et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. _Chem.


Biol._ 16, 411–420 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Khanna, I. K. & Alexander, C. W. Fatty acid amide hydrolase inhibitors — progress and potential. _CNS


Neurol. Disord. Drug Targets_ 10, 545–558 (2011). THIS IS A DETAILED REVIEW OF THE CURRENT PANEL OF FAAH INHIBITORS, WHICH INCLUDES AN ARRAY OF HYDROLASE-DIRECTED CHEMOTYPES. Article  CAS 


PubMed  Google Scholar  * Zalewski, A., Macphee, C. & Nelson, J. J. Lipoprotein-associated phospholipase A2: a potential therapeutic target for atherosclerosis. _Curr. Drug Targets


Cardiovasc. Haematol. Disord._ 5, 527–532 (2005). Article  CAS  PubMed  Google Scholar  * Packard, C. J. et al. Lipoprotein-associated phospholipase A2 as an independent predictor of


coronary heart disease. West of Scotland Coronary Prevention Study Group. _N. Engl. J. Med._ 343, 1148–1155 (2000). Article  CAS  PubMed  Google Scholar  * MacPhee, C. H. et al.


Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel


inhibitor. _Biochem. J._ 338, 479–487 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Davis, B. et al. Electrospray ionization mass spectrometry identifies substrates and


products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. _J. Biol. Chem._ 283, 6428–6437 (2008). Article  CAS  PubMed  Google Scholar  * Blackie, J. A.


et al. The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. _Bioorg. Med. Chem. Lett._ 13, 1067–1070 (2003). Article  CAS 


PubMed  Google Scholar  * Boyd, H. F. et al. 2-(alkylthio)pyrimidin-4-ones as novel, reversible inhibitors of lipoprotein-associated phospholipase A2. _Bioorg. Med. Chem. Lett._ 10, 395–398


(2000). Article  CAS  PubMed  Google Scholar  * Wilensky, R. L. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development.


_Nature Med._ 14, 1059–1066 (2008). Article  CAS  PubMed  Google Scholar  * Mallela, J., Yang, J. & Shariat-Madar, Z. Prolylcarboxypeptidase: a cardioprotective enzyme. _Int. J. Biochem.


Cell Biol._ 41, 477–481 (2009). Article  CAS  PubMed  Google Scholar  * Wallingford, N. et al. Prolylcarboxypeptidase regulates food intake by inactivating α-MSH in rodents. _J. Clin.


Invest._ 119, 2291–2303 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Zhou, C. et al. Design and synthesis of prolylcarboxypeptidase (PrCP) inhibitors to validate PrCP as a


potential target for obesity. _J. Med. Chem._ 53, 7251–7263 (2010). Article  CAS  PubMed  Google Scholar  * Shen, H. C. et al. Discovery of benzimidazole pyrrolidinyl amides as


prolylcarboxypeptidase inhibitors. _Bioorg. Med. Chem. Lett._ 21, 1299–1305 (2011). Article  CAS  PubMed  Google Scholar  * Lehner, R. & Verger, R. Purification and characterization of a


porcine liver microsomal triacylglycerol hydrolase. _Biochemistry_ 36, 1861–1868 (1997). Article  CAS  PubMed  Google Scholar  * Lehner, R. & Vance, D. E. Cloning and expression of a


cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol. _Biochem. J._ 343, 1–10 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dolinsky, V. W.,


Gilham, D., Alam, M., Vance, D. E. & Lehner, R. Triacylglycerol hydrolase: role in intracellular lipid metabolism. _Cell. Mol. Life Sci._ 61, 1633–1651 (2004). Article  CAS  PubMed 


Google Scholar  * Wei, E. et al. Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and increases energy expenditure. _Cell Metab._ 11, 183–193 (2010). Article  CAS


  PubMed  Google Scholar  * Gilham, D. et al. Inhibitors of hepatic microsomal triacylglycerol hydrolase decrease very low density lipoprotein secretion. _FASEB J._ 17, 1685–1687 (2003).


Article  CAS  PubMed  Google Scholar  * Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R. & Lass, A. Adipose triglyceride lipase and the lipolytic catabolism of cellular


fat stores. _J. Lipid Res._ 50, 3–21 (2009). Article  CAS  PubMed  Google Scholar  * Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. _Science_ 333,


233–238 (2011). Article  CAS  PubMed  Google Scholar  * McCoy, M. G. et al. Characterization of the lipolytic activity of endothelial lipase. _J. Lipid Res._ 43, 921–929 (2002). Article  CAS


  PubMed  Google Scholar  * Ma, K. et al. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. _Proc. Natl Acad. Sci. USA_


100, 2748–2753 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ishida, T. et al. Endothelial lipase is a major determinant of HDL level. _J. Clin. Invest._ 111, 347–355


(2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Goodman, K. B. et al. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. _Bioorg. Med. Chem.


Lett._ 19, 27–30 (2009). Article  CAS  PubMed  Google Scholar  * Kato, T., Okada, M. & Nagatsu, T. Distribution of post-proline cleaving enzyme in human brain and the peripheral tissues.


_Mol. Cell. Biochem._ 32, 117–121 (1980). Article  CAS  PubMed  Google Scholar  * Wilk, S. Prolyl endopeptidase. _Life Sci._ 33, 2149–2157 (1983). Article  CAS  PubMed  Google Scholar  *


Lopez, A., Tarrago, T. & Giralt, E. Low molecular weight inhibitors of prolyl oligopeptidase: a review of compounds patented from 2003 to 2010. _Expert Opin. Ther. Pat._ 21, 1023–1044


(2011). Article  PubMed  CAS  Google Scholar  * Bakker, A. V., Jung, S., Spencer, R. W., Vinick, F. J. & Faraci, W. S. Slow tight-binding inhibition of prolyl endopeptidase by


benzyloxycarbonyl-prolyl-prolinal. _Biochem. J._ 271, 559–562 (1990). Article  CAS  PubMed  PubMed Central  Google Scholar  * Toide, K., Iwamoto, Y., Fujiwara, T. & Abe, H. JTP-4819: a


novel prolyl endopeptidase inhibitor with potential as a cognitive enhancer. _J. Pharmacol. Exp. Ther._ 274, 1370–1378 (1995). CAS  PubMed  Google Scholar  * Barelli, H. et al. S 17092–1, a


highly potent, specific and cell permeant inhibitor of human proline endopeptidase. _Biochem. Biophys. Res. Commun._ 257, 657–661 (1999). Article  CAS  PubMed  Google Scholar  * Bellemere,


G., Morain, P., Vaudry, H. & Jegou, S. Effect of S 17092, a novel prolyl endopeptidase inhibitor, on substance P and α-melanocyte-stimulating hormone breakdown in the rat brain. _J.


Neurochem._ 84, 919–929 (2003). Article  CAS  PubMed  Google Scholar  * Nolte, W. M., Tagore, D. M., Lane, W. S. & Saghatelian, A. Peptidomics of prolyl endopeptidase in the central


nervous system. _Biochemistry_ 48, 11971–11981 (2009). Article  CAS  PubMed  Google Scholar  * Toide, K. et al. Effect of a novel prolyl endopeptidase inhibitor, JTP-4819, on neuropeptide


metabolism in the rat brain. _Naunyn Schmiedebergs Arch. Pharmacol._ 353, 355–362 (1996). Article  CAS  PubMed  Google Scholar  * Shinoda, M., Okamiya, K. & Toide, K. Effect of a novel


prolyl endopeptidase inhibitor, JTP-4819, on thyrotropin-releasing hormone-like immunoreactivity in the cerebral cortex and hippocampus of aged rats. _Jpn J. Pharmacol._ 69, 273–276 (1995).


Article  CAS  PubMed  Google Scholar  * Schneider, J. S., Giardiniere, M. & Morain, P. Effects of the prolyl endopeptidase inhibitor S 17092 on cognitive deficits in chronic low dose


MPTP-treated monkeys. _Neuropsychopharmacology_ 26, 176–182 (2002). Article  CAS  PubMed  Google Scholar  * Morain, P. et al. S 17092: a prolyl endopeptidase inhibitor as a potential


therapeutic drug for memory impairment. Preclinical and clinical studies. _CNS Drug Rev._ 8, 31–52 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Morain, P., Boeijinga, P.


H., Demazieres, A., De Nanteuil, G. & Luthringer, R. Psychotropic profile of S 17092, a prolyl endopeptidase inhibitor, using quantitative EEG in young healthy volunteers.


_Neuropsychobiology_ 55, 176–183 (2007). Article  CAS  PubMed  Google Scholar  * Lambeir, A. M. Translational research on prolyl oligopeptidase inhibitors: the long road ahead. _Expert Opin.


Ther. Pat._ 21, 977–981 (2011). Article  CAS  PubMed  Google Scholar  * Puustinen, P. et al. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase


2A-mediated inactivation in human malignant glioma. _Cancer Res._ 69, 2870–2877 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Andreasen, P. A., Egelund, R. & Petersen,


H. H. The plasminogen activation system in tumor growth, invasion, and metastasis. _Cell. Mol. Life Sci._ 57, 25–40 (2000). Article  CAS  PubMed  Google Scholar  * Nomura, D. K., Dix, M. M.


& Cravatt, B. F. Activity-based protein profiling for biochemical pathway discovery in cancer. _Nature Rev. Cancer_ 10, 630–638 (2010). THIS REVIEW SUMMARIZES THE USE OF ABPP TO PROVIDE


INFORMATION ON THE METABOLIC AND SIGNALLING ENZYMES IN CANCER AND TO ENABLE THE DEVELOPMENT OF SELECTIVE CHEMICAL PROBES TO CHARACTERIZE THEIR FUNCTIONS. Article  CAS  Google Scholar  *


Scanlan, M. J. et al. Molecular cloning of fibroblast activation protein α, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. _Proc.


Natl Acad. Sci. USA_ 91, 5657–5661 (1994). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rettig, W. J. et al. Regulation and heteromeric structure of the fibroblast activation


protein in normal and transformed cells of mesenchymal and neuroectodermal origin. _Cancer Res._ 53, 3327–3335 (1993). CAS  PubMed  Google Scholar  * Garin-Chesa, P., Old, L. J. &


Rettig, W. J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. _Proc. Natl Acad. Sci. USA_ 87, 7235–7239 (1990). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Cheng, J. D. et al. Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. _Cancer Res._


62, 4767–4772 (2002). CAS  PubMed  Google Scholar  * Cheng, J. D. et al. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. _Mol. Cancer Ther._ 4,


351–360 (2005). Article  CAS  PubMed  Google Scholar  * Adams, S. et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated


cytotoxicity via a novel immune mechanism. _Cancer Res._ 64, 5471–5480 (2004). Article  CAS  PubMed  Google Scholar  * Kraman, M. et al. Suppression of antitumor immunity by stromal cells


expressing fibroblast activation protein-α. _Science_ 330, 827–830 (2010). Article  CAS  PubMed  Google Scholar  * Edosada, C. Y. et al. Selective inhibition of fibroblast activation protein


protease based on dipeptide substrate specificity. _J. Biol. Chem._ 281, 7437–7444 (2006). Article  CAS  PubMed  Google Scholar  * Wolf, B. B., Quan, C., Tran, T., Wiesmann, C. &


Sutherlin, D. On the edge of validation — cancer protease fibroblast activation protein. _Mini Rev. Med. Chem._ 8, 719–727 (2008). Article  CAS  PubMed  Google Scholar  * Patterson, S. D.


& Aebersold, R. H. Proteomics: the first decade and beyond. _Nature Genet._ 33, S311–S323 (2003). Article  CAS  Google Scholar  * Yates, J. R. Mass spectral analysis in proteomics.


_Annu. Rev. Biophys. Biomol. Struct._ 33, 297–316 (2004). Article  CAS  PubMed  Google Scholar  * Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. _Science_ 312, 212–217


(2006). Article  CAS  PubMed  Google Scholar  * Cravatt, B. F., Simon, G. M. & Yates, J. R. The biological impact of mass-spectrometry-based proteomics. _Nature_ 450, 991–1000 (2007).


Article  CAS  PubMed  Google Scholar  * Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. _Science_ 286, 531–537


(1999). Article  CAS  PubMed  Google Scholar  * Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. _Nature Genet._ 21, 33–37 (1999). Article  CAS 


PubMed  Google Scholar  * Evans, M. J. & Cravatt, B. F. Mechanism-based profiling of enzyme families. _Chem. Rev._ 106, 3279–3301 (2006). Article  CAS  PubMed  Google Scholar  * Cravatt,


B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. _Annu. Rev. Biochem._ 77, 383–414 (2008). THIS IS A REVIEW OF THE


PRINCIPLES AND APPLICATIONS OF ABPP. Article  CAS  PubMed  Google Scholar  * Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. _Proc.


Natl Acad. Sci. USA_ 96, 14694–14699 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weerapana, E., Simon, G. M. & Cravatt, B. F. Disparate proteome reactivity profiles


of carbon electrophiles. _Nature Chem. Biol._ 4, 405–407 (2008). Article  CAS  Google Scholar  * Kato, D. et al. Activity-based probes that target diverse cysteine protease families. _Nature


Chem. Biol._ 1, 33–38 (2005). Article  CAS  Google Scholar  * Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. _Nature_ 468, 790–795


(2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Patricelli, M. P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. _Biochemistry_ 46, 350–358


(2007). Article  CAS  PubMed  Google Scholar  * Salisbury, C. M. & Cravatt, B. F. Activity-based probes for proteomic profiling of histone deacetylase complexes. _Proc. Natl Acad. Sci.


USA_ 104, 1171–1176 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Salisbury, C. M. & Cravatt, B. F. Optimization of activity-based probes for proteomic profiling of


histone deacetylase complexes. _J. Am. Chem. Soc._ 130, 2184–2194 (2008). Article  CAS  PubMed  Google Scholar  * Madsen, M. A., Deryugina, E. I., Niessen, S., Cravatt, B. F. & Quigley,


J. P. Activity-based protein profiling implicates urokinase activation as a key step in human fibrosarcoma intravasation. _J. Biol. Chem._ 281, 15997–16005 (2006). Article  CAS  PubMed 


Google Scholar  * Pan, Z. et al. Development of activity-based probes for trypsin-family serine proteases. _Bioorg. Med. Chem. Lett._ 16, 2882–2885 (2006). Article  CAS  PubMed  Google


Scholar  * Jessani, N. et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth _in vivo_. _Proc. Natl Acad. Sci. USA_ 101, 13756–13761 (2004). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. _Nature Methods_ 2, 691–697 (2005).


Article  CAS  PubMed  Google Scholar  * Blankman, J. L., Simon, G. M. & Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol.


_Chem. Biol._ 14, 1347–1356 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mahrus, S. & Craik, C. S. Selective chemical functional probes of granzymes A and B reveal


granzyme B is a major effector of natural killer cell-mediated lysis of target cells. _Chem. Biol._ 12, 567–577 (2005). Article  CAS  PubMed  Google Scholar  * Barglow, K. T. & Cravatt,


B. F. Discovering disease-associated enzymes by proteome reactivity profiling. _Chem. Biol._ 11, 1523–1531 (2004). Article  CAS  PubMed  Google Scholar  * Morak, M. et al. Differential


activity-based gel electrophoresis for comparative analysis of lipolytic and esterolytic activities. _J. Lipid Res._ 50, 1281–1292 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Kaschani, F. et al. Diversity of serine hydrolase activities of unchallenged and botrytis-infected _Arabidopsis thaliana_. _Mol. Cell. Proteomics_ 8, 1082–1093 (2009). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell


invasiveness. _Proc. Natl Acad. Sci. USA_ 99, 10335–10340 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chiang, K. P., Niessen, S., Saghatelian, A. & Cravatt, B. F. An


enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. _Chem. Biol._ 13, 1041–1050 (2006). Article  CAS  PubMed  Google Scholar  * Chang, J.


W., Nomura, D. K. & Cravatt, B. F. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. _Chem. Biol._ 18, 476–484 (2011). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Nomura, D. K. et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. _Chem. Biol._


18, 846–856 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Long, J. Z., Nomura, D. K. & Cravatt, B. F. Characterization of monoacylglycerol lipase inhibition reveals


differences in central and peripheral endocannabinoid metabolism. _Chem. Biol._ 16, 744–753 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kinsey, S. G. et al. Blockade of


endocannabinoid-degrading enzymes attenuates neuropathic pain. _J. Pharmacol. Exp. Ther._ 330, 902–910 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nomura, D. K. et al.


Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. _Science_ 334, 809–813 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Woitach, J.


T., Zhang, M., Niu, C. H. & Thorgeirsson, S. S. A retinoblastoma-binding protein that affects cell-cycle control and confers transforming ability. _Nature Genet._ 19, 371–374 (1998).


Article  CAS  PubMed  Google Scholar  * Shields, D. J. et al. RBBP9: a tumor-associated serine hydrolase activity required for pancreatic neoplasia. _Proc. Natl Acad. Sci. USA_ 107,


2189–2194 (2010). Article  CAS  PubMed  Google Scholar  * Bachovchin, D. A., Brown, S. J., Rosen, H. & Cravatt, B. F. Identification of selective inhibitors of uncharacterized enzymes by


high-throughput screening with fluorescent activity-based probes. _Nature Biotech._ 27, 387–394 (2009). THIS PAPER DESCRIBES THE INTRODUCTION OF COMPETITIVE ABPP FOR HIGH-THROUGHPUT


SCREENING. Article  CAS  Google Scholar  * Bachovchin, D. A. et al. Oxime esters as selective, covalent inhibitors of the serine hydrolase retinoblastoma-binding protein 9 (RBBP9). _Bioorg.


Med. Chem. Lett._ 20, 2254–2258 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kidd, D., Liu, Y. & Cravatt, B. F. Profiling serine hydrolase activities in complex


proteomes. _Biochemistry_ 40, 4005–4015 (2001). Article  CAS  PubMed  Google Scholar  * Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. _Mol. Cell.


Proteomics_ 1, 60–68 (2002). Article  CAS  PubMed  Google Scholar  * Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme


inhibitors. _Future Med. Chem._ 2, 949–964 (2010). Article  CAS  PubMed  Google Scholar  * Potashman, M. H. & Duggan, M. E. Covalent modifiers: an orthogonal approach to drug design.


_J. Med. Chem._ 52, 1231–1246 (2009). Article  CAS  PubMed  Google Scholar  * Knuckley, B. et al. A fluopol-ABPP HTS assay to identify PAD inhibitors. _Chem. Commun. (Camb.)_ 46, 7175–7177


(2010). Article  CAS  Google Scholar  * Bachovchin, D. A. et al. Organic synthesis toward small-molecule probes and drugs special feature: academic cross-fertilization by public screening


yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. _Proc. Natl Acad. Sci. USA_ 108, 6811–6816 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee,


J., Chen, Y., Tolstykh, T. & Stock, J. A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. _Proc. Natl Acad. Sci. USA_ 93,


6043–6047 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sontag, J. M., Nunbhakdi-Craig, V., Mitterhuber, M., Ogris, E. & Sontag, E. Regulation of protein phosphatase 2A


methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells. _J. Neurochem._ 115, 1455–1465 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Bachovchin, D. A. et al. Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1. _J. Med. Chem._ 54, 5229–5236


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Berlin, J. M. & Fu, G. C. Enantioselective nucleophilic catalysis: the synthesis of aza-β-lactams through [2 + 2]


cycloadditions of ketenes with azo compounds. _Angew. Chem. Int. Ed. Engl._ 47, 7048–7050 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wood, W. J., Patterson, A. W.,


Tsuruoka, H., Jain, R. K. & Ellman, J. A. Substrate activity screening: a fragment-based method for the rapid identification of nonpeptidic protease inhibitors. _J. Am. Chem. Soc._ 127,


15521–15527 (2005). Article  CAS  PubMed  Google Scholar  * Patterson, A. W. et al. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity


screening method. _J. Med. Chem._ 49, 6298–6307 (2006). Article  CAS  PubMed  Google Scholar  * Salisbury, C. M. & Ellman, J. A. Rapid identification of potent nonpeptidic serine


protease inhibitors. _Chembiochem._ 7, 1034–1037 (2006). Article  CAS  PubMed  Google Scholar  * Edwards, P. D., Zottola, M. A., Davis, M., Williams, J. & Tuthill, P. A. Peptidyl


α-ketoheterocyclic inhibitors of human neutrophil elastase. 3. _In vitro_ and _in vivo_ potency of a series of peptidyl α-ketobenzoxazoles. _J. Med. Chem._ 38, 3972–3982 (1995). Article  CAS


  PubMed  Google Scholar  * Erlanson, D. A. et al. Site-directed ligand discovery. _Proc. Natl Acad. Sci. USA_ 97, 9367–9372 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Erlanson, D. A., Wells, J. A. & Braisted, A. C. Tethering: fragment-based drug discovery. _Annu. Rev. Biophys. Biomol. Struct._ 33, 199–223 (2004). Article  CAS  PubMed  Google Scholar 


* Hagel, M. et al. Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine. _Nature Chem. Biol._ 7, 22–24 (2011). Article  CAS  Google Scholar  * Levy, J. H.


& O'Donnell, P. S. The therapeutic potential of a kallikrein inhibitor for treating hereditary angioedema. _Expert Opin. Investig. Drugs_ 15, 1077–1090 (2006). Article  CAS  PubMed


  Google Scholar  * Stoop, A. A. & Craik, C. S. Engineering of a macromolecular scaffold to develop specific protease inhibitors. _Nature Biotech._ 21, 1063–1068 (2003). Article  CAS 


Google Scholar  * Dennis, M. S. & Lazarus, R. A. Kunitz domain inhibitors of tissue factor–factor VIIa. II. Potent and specific inhibitors by competitive phage selection. _J. Biol.


Chem._ 269, 22137–22144 (1994). Article  CAS  PubMed  Google Scholar  * Xuan, J. A. et al. Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of


prostate and ovarian tumor cells in culture. _Cancer Res._ 66, 3611–3619 (2006). Article  CAS  PubMed  Google Scholar  * Sun, J., Pons, J. & Craik, C. S. Potent and selective inhibition


of membrane-type serine protease 1 by human single-chain antibodies. _Biochemistry_ 42, 892–900 (2003). Article  CAS  PubMed  Google Scholar  * Lazarus, R. A., Olivero, A. G., Eigenbrot, C.


& Kirchhofer, D. Inhibitors of tissue factor. Factor VIIa for anticoagulant therapy. _Curr. Med. Chem._ 11, 2275–2290 (2004). Article  CAS  PubMed  Google Scholar  * Edwards, A. M. et


al. Too many roads not taken. _Nature_ 470, 163–165 (2011). Article  CAS  PubMed  Google Scholar  * Subramanian, A. R., Kaufmann, M. & Morgenstern, B. DIALIGN-TX: greedy and progressive


approaches for segment-based multiple sequence alignment. _Algorithms Mol. Biol._ 3, 6 (2008). Article  PubMed  PubMed Central  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We


thank the Cravatt laboratory for helpful discussions. This work was supported by grants from the US National Institutes of Health (DA025285, GM090294, CA132630, DA017259, DA009789 and


CA087660), the National Science Foundation (predoctoral fellowship to D.A.B.), the California Breast Cancer Research Program (predoctoral fellowship to D.A.B.), and The Skaggs Institute for


Chemical Biology. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N.


Torrey Pines Road, La Jolla, 92037, California, USA Daniel A. Bachovchin & Benjamin F. Cravatt Authors * Daniel A. Bachovchin View author publications You can also search for this author


inPubMed Google Scholar * Benjamin F. Cravatt View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Benjamin F.


Cravatt. ETHICS DECLARATIONS COMPETING INTERESTS Benjamin F. Cravatt is a co-founder and advisor for a biotechnology company interested in developing inhibitors for serine hydrolase as


therapeutic targets. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION S1 (TABLE) Drugs that target viral and bacterial serine hydrolases. (PDF 283 kb) SUPPLEMENTARY INFORMATION S2 (TABLE)


The human serine hydrolases. (PDF 188 kb) RELATED LINKS RELATED LINKS FURTHER INFORMATION The Cravatt Laboratory GLOSSARY * Warheads Reactive chemical groups that covalently bind to


specific amino acid residues of the target enzyme. * Zymogens Inactive enzyme precursors, or pro-enzymes, that require a biochemical event (for example, a hydrolysis reaction) to convert


them into active enzymes. * Thrombi Aggregations of platelets, fibrin and cells. * Coagulation cascade A stepwise process involving the sequential activation of several serine protease


zymogens by limited proteolysis that results in the formation of fibrin blood clots. * Prodrug A pharmacological entity administered in a largely inactive form that is metabolized _in vivo_


into an active drug. * Cachexia A wasting syndrome characterized by the uncontrolled loss of muscle and adipose tissue. * Fluorescence polarization A measure of the apparent size of a


fluorophore; it is widely used to study molecular interactions. Briefly, a fluorophore excited with plane-polarized light will emit polarized light parallel to the plane of excitation unless


it rotates in the excited state. As the speed of rotational diffusion is inversely proportional to molecular volume, the resulting extent of depolarization gives a relative estimate of the


size of the fluorophore. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Bachovchin, D., Cravatt, B. The pharmacological landscape and therapeutic


potential of serine hydrolases. _Nat Rev Drug Discov_ 11, 52–68 (2012). https://doi.org/10.1038/nrd3620 Download citation * Published: 03 January 2012 * Issue Date: January 2012 * DOI:


https://doi.org/10.1038/nrd3620 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative