
The pharmacological landscape and therapeutic potential of serine hydrolases
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:

KEY POINTS * Serine hydrolases are one of the largest and most diverse classes of enzymes found in eukaryotes and prokaryotes, including ∼240 members in humans. * Several clinically approved
drugs target serine hydrolases. Prominent among these therapeutics are inhibitors of thrombin, acetylcholinesterase and dipeptidyl peptidase 4 that are used to treat clotting disorders,
Alzheimer's disease-associated dementia and diabetes, respectively. * Many serine hydrolases have recently emerged as enzymes with therapeutic potential and are the focus of intense
inhibitor discovery efforts. * Compounds that act through covalent mechanisms have proved to be especially effective at selectively inhibiting serine hydrolases. Here, we highlight the
mechanism-based electrophiles that have successfully formed the basis of selective, _in vivo_-active inhibitors (including several approved drugs) and also review promising new chemotypes
that have recently been discovered. * Activity-based protein profiling has facilitated the discovery of dysregulated serine hydrolases in disease and has enabled the rapid development of
selective inhibitors for the functional characterization of these enzymes. ABSTRACT Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are
targets of approved drugs for indications such as type 2 diabetes, Alzheimer's disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are
more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, _in vivo_-active inhibitors. Here, we review
the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic
probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate
will aid in their biological characterization and, in some cases, therapeutic validation. Access through your institution Buy or subscribe This is a preview of subscription content, access
via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy
this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *
Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PROTEIN KINASES IN NEURODEGENERATIVE DISEASES: CURRENT
UNDERSTANDINGS AND IMPLICATIONS FOR DRUG DISCOVERY Article Open access 07 May 2025 STRUCTURAL INSIGHTS INTO THE INHIBITION OF GLYCINE REUPTAKE Article 03 March 2021 IN SILICO DESIGN OF NOVEL
PYRIDAZINE DERIVATIVES AS BALANCED MULTIFUNCTIONAL AGENTS AGAINST ALZHEIMER’S DISEASE Article Open access 07 May 2025 REFERENCES * Long, J. Z. & Cravatt, B. F. The metabolic serine
hydrolases and their functions in mammalian physiology and disease. _Chem. Rev._ 111, 6022–6063 (2011). THIS IS A COMPREHENSIVE REVIEW OF THE MAMMALIAN METABOLIC SERINE HYDROLASES. Article
CAS PubMed PubMed Central Google Scholar * Davie, E. W. & Ratnoff, O. D. Waterfall sequence for intrinsic blood clotting. _Science_ 145, 1310–1312 (1964). Article CAS PubMed
Google Scholar * Whitcomb, D. C. & Lowe, M. E. Human pancreatic digestive enzymes. _Dig. Dis. Sci._ 52, 1–17 (2007). Article CAS PubMed Google Scholar * Lane, R. M., Potkin, S. G.
& Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. _Int. J. Neuropsychopharmacol._ 9, 101–124 (2006). Article CAS PubMed Google Scholar * Bonventre, J.
V. et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. _Nature_ 390, 622–625 (1997). Article CAS PubMed Google Scholar * Menendez, J.
A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. _Nature Rev. Cancer_ 7, 763–777 (2007). Article CAS PubMed Google Scholar * Simon, G. M. &
Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. _J. Biol. Chem._ 285, 11051–11055 (2010). Article CAS PubMed PubMed Central Google
Scholar * Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. _Cell_ 140, 49–61 (2010). Article CAS PubMed PubMed Central
Google Scholar * Steuber, H. & Hilgenfeld, R. Recent advances in targeting viral proteases for the discovery of novel antivirals. _Curr. Top. Med. Chem._ 10, 323–345 (2010). Article
CAS PubMed Google Scholar * White, M. J. et al. The HtrA-like serine protease PepD interacts with and modulates the _Mycobacterium tuberculosis_ 35-kDa antigen outer envelope protein.
_PLoS ONE_ 6, e18175 (2011). Article CAS PubMed PubMed Central Google Scholar * Damblon, C. et al. The catalytic mechanism of β-lactamases: NMR titration of an active-site lysine
residue of the TEM-1 enzyme. _Proc. Natl Acad. Sci. USA_ 93, 1747–1752 (1996). Article CAS PubMed PubMed Central Google Scholar * Bachovchin, D. A. et al. Superfamily-wide portrait of
serine hydrolase inhibition achieved by library-versus-library screening. _Proc. Natl Acad. Sci. USA_ 107, 20941–20946 (2010). THIS PAPER REPORTS THE FINDINGS OF A GLOBAL SURVEY OF
CARBAMATE-CONTAINING COMPOUNDS FOR INHIBITION AGAINST A LARGE PANEL OF SERINE HYDROLASES. Article CAS PubMed PubMed Central Google Scholar * Li, W., Blankman, J. L. & Cravatt, B. F.
A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. _J. Am. Chem. Soc._ 129, 9594–9595 (2007). Article CAS PubMed Google Scholar * Johnson, D. S. et
al. Discovery of PF-04457845: a highly potent, orally bioavailable, and selective urea FAAH inhibitor. _ACS Med. Chem. Lett._ 2, 91–96 (2011). Article CAS PubMed Google Scholar *
Adibekian, A. et al. Click-generated triazole ureas as ultrapotent _in vivo_-active serine hydrolase inhibitors. _Nature Chem. Biol._ 7, 469–478 (2011). Article CAS Google Scholar *
Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B. F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. _Nature Biotech._ 21, 687–691 (2003).
Article CAS Google Scholar * Hoover, H. S., Blankman, J. L., Niessen, S. & Cravatt, B. F. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein
profiling. _Bioorg. Med. Chem. Lett._ 18, 5838–5841 (2008). Article CAS PubMed PubMed Central Google Scholar * Tew, D. G., Boyd, H. F., Ashman, S., Theobald, C. & Leach, C. A.
Mechanism of inhibition of LDL phospholipase A2 by monocyclic-β-lactams. Burst kinetics and the effect of stereochemistry. _Biochemistry_ 37, 10087–10093 (1998). Article CAS PubMed Google
Scholar * Stedman, E. & Barger, G. J. Physostigmine (eserine). Part III. _J. Chem. Soc._ 127, 247–258 (1925). Article CAS Google Scholar * Weibel, E. K., Hadvary, P., Hochuli, E.,
Kupfer, E. & Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase, produced by _Streptomyces toxytricini_. I. Producing organism, fermentation, isolation and biological activity.
_J. Antibiot._ 40, 1081–1085 (1987). Article CAS Google Scholar * Li, J., Wilk, E. & Wilk, S. Aminoacylpyrrolidine-2-nitriles: potent and stable inhibitors of dipeptidyl-peptidase IV
(CD 26). _Arch. Biochem. Biophys._ 323, 148–154 (1995). Article CAS PubMed Google Scholar * Flentke, G. R. et al. Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro
dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. _Proc. Natl Acad. Sci. USA_ 88, 1556–1559 (1991). Article CAS PubMed PubMed Central Google Scholar
* Perona, J. J. & Craik, C. S. Structural basis of substrate specificity in the serine proteases. _Protein Sci._ 4, 337–360 (1995). Article CAS PubMed PubMed Central Google Scholar
* Yousef, G. M., Kopolovic, A. D., Elliott, M. B. & Diamandis, E. P. Genomic overview of serine proteases. _Biochem. Biophys. Res. Commun._ 305, 28–36 (2003). Article CAS PubMed
Google Scholar * Holmes, R. S. et al. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. _Mamm. Genome_ 21, 427–441
(2010). Article CAS PubMed PubMed Central Google Scholar * Kienesberger, P. C., Oberer, M., Lass, A. & Zechner, R. Mammalian patatin domain containing proteins: a family with
diverse lipolytic activities involved in multiple biological functions. _J. Lipid Res._ 50, S63–S68 (2009). Article PubMed PubMed Central CAS Google Scholar * Shin, S. et al. Structure
of malonamidase E2 reveals a novel Ser-_cis_Ser-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. _EMBO J._ 21, 2509–2516 (2002). Article CAS PubMed PubMed
Central Google Scholar * Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C. & Cravatt, B. F. Structural adaptations in a membrane enzyme that terminates endocannabinoid
signaling. _Science_ 298, 1793–1796 (2002). Article CAS PubMed Google Scholar * Shi, Y. & Burn, P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity.
_Nature Rev. Drug Discov._ 3, 695–710 (2004). Article CAS Google Scholar * Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. _Nature Rev. Drug
Discov._ 10, 307–317 (2011). THIS IS A COMPREHENSIVE REVIEW OF THE ADVANTAGES AND CHALLENGES OF COVALENT DRUGS. Article CAS Google Scholar * Bar-On, P. et al. Kinetic and structural
studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. _Biochemistry_ 41, 3555–3564 (2002). Article CAS PubMed Google Scholar * Metzler, W. J. et al.
Involvement of DPP-IV catalytic residues in enzyme–saxagliptin complex formation. _Protein Sci._ 17, 240–250 (2008). Article CAS PubMed PubMed Central Google Scholar * Villhauer, E. B.
et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. _J.
Med. Chem._ 46, 2774–2789 (2003). Article CAS PubMed Google Scholar * Hadvary, P., Sidler, W., Meister, W., Vetter, W. & Wolfer, H. The lipase inhibitor tetrahydrolipstatin binds
covalently to the putative active site serine of pancreatic lipase. _J. Biol. Chem._ 266, 2021–2027 (1991). Article CAS PubMed Google Scholar * Kawabata, K. et al. ONO-5046, a novel
inhibitor of human neutrophil elastase. _Biochem. Biophys. Res. Commun._ 177, 814–820 (1991). Article CAS PubMed Google Scholar * Nakayama, Y. et al. Clarification of mechanism of human
sputum elastase inhibition by a new inhibitor, ONO-5046, using electrospray ionization mass spectrometry. _Bioorg. Med. Chem. Lett._ 12, 2349–2353 (2002). Article CAS PubMed Google
Scholar * Silver, L. L. Multi-targeting by monotherapeutic antibacterials. _Nature Rev. Drug Discov._ 6, 41–55 (2007). Article CAS Google Scholar * Flores, M. V., Strawbridge, J.,
Ciaramella, G. & Corbau, R. HCV-NS3 inhibitors: determination of their kinetic parameters and mechanism. _Biochim. Biophys. Acta_ 1794, 1441–1448 (2009). Article CAS PubMed Google
Scholar * Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. Carbapenems: past, present, and future. _Antimicrob. Agents Chemother._ 55, 4943–4960 (2011). Article CAS
PubMed PubMed Central Google Scholar * Llarrull, L. I., Testero, S. A., Fisher, J. F. & Mobashery, S. The future of the β-lactams. _Curr. Opin. Microbiol._ 13, 551–557 (2010).
Article CAS PubMed PubMed Central Google Scholar * Schlutter, J. Therapeutics: new drugs hit the target. _Nature_ 474, S5–S7 (2011). Article PubMed CAS Google Scholar * Mackman, N.
Triggers, targets and treatments for thrombosis. _Nature_ 451, 914–918 (2008). Article CAS PubMed PubMed Central Google Scholar * Macfarlane, R. G. An enzyme cascade in the blood
clotting mechanism, and its function as a biochemical amplifier. _Nature_ 202, 498–499 (1964). Article CAS PubMed Google Scholar * Gustafsson, D. et al. A new oral anticoagulant: the
50-year challenge. _Nature Rev. Drug Discov._ 3, 649–659 (2004). Article CAS Google Scholar * Markwardt, F. The development of hirudin as an antithrombotic drug. _Thromb. Res._ 74, 1–23
(1994). Article CAS PubMed Google Scholar * White, H. D. & Chew, D. P. Bivalirudin: an anticoagulant for acute coronary syndromes and coronary interventions. _Expert Opin.
Pharmacother._ 3, 777–788 (2002). Article CAS PubMed Google Scholar * Okamoto, S. A synthetic thrombin inhibitor taking extremely active stereostructure. _Thromb. Haemost._ 42, A205
(1979). Google Scholar * Walenga, J. M. An overview of the direct thrombin inhibitor argatroban. _Pathophysiol. Haemost. Thromb._ 32 (Suppl. 3), 9–14 (2002). Article CAS PubMed Google
Scholar * Boudes, P. F. The challenges of new drugs benefits and risks analysis: lessons from the ximelagatran FDA Cardiovascular Advisory Committee. _Contemp. Clin. Trials_ 27, 432–440
(2006). Article PubMed Google Scholar * Brandstetter, H. et al. Refined 2.3 Å X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin
inhibitors NAPAP, 4-TAPAP and MQPA. A starting point for improving antithrombotics. _J. Mol. Biol._ 226, 1085–1099 (1992). Article CAS PubMed Google Scholar * Hauel, N. H. et al.
Structure-based design of novel potent nonpeptide thrombin inhibitors. _J. Med. Chem._ 45, 1757–1766 (2002). Article CAS PubMed Google Scholar * Eisert, W. G. et al. Dabigatran: an oral
novel potent reversible nonpeptide inhibitor of thrombin. _Arterioscler. Thromb. Vasc. Biol._ 30, 1885–1889 (2010). Article CAS PubMed Google Scholar * Schulman, S. et al. Dabigatran
versus warfarin in the treatment of acute venous thromboembolism. _N. Engl. J. Med._ 361, 2342–2352 (2009). Article CAS PubMed Google Scholar * Fujikawa, K., Legaz, M. E., Kato, H. &
Davie, E. W. The mechanism of activation of bovine factor IX (Christmas factor) by bovine factor XIa (activated plasma thromboplastin antecedent). _Biochemistry_ 13, 4508–4516 (1974).
Article CAS PubMed Google Scholar * Nutt, E. et al. The amino acid sequence of antistasin. A potent inhibitor of factor Xa reveals a repeated internal structure. _J. Biol. Chem._ 263,
10162–10167 (1988). Article CAS PubMed Google Scholar * Tuszynski, G. P., Gasic, T. B. & Gasic, G. J. Isolation and characterization of antistasin. An inhibitor of metastasis and
coagulation. _J. Biol. Chem._ 262, 9718–9723 (1987). Article CAS PubMed Google Scholar * Waxman, L., Smith, D. E., Arcuri, K. E. & Vlasuk, G. P. Tick anticoagulant peptide (TAP) is a
novel inhibitor of blood coagulation factor Xa. _Science_ 248, 593–596 (1990). Article CAS PubMed Google Scholar * Bauer, K. A. et al. Fondaparinux, a synthetic pentasaccharide: the
first in a new class of antithrombotic agents — the selective factor Xa inhibitors. _Cardiovasc. Drug Rev._ 20, 37–52 (2002). Article CAS PubMed Google Scholar * Perzborn, E., Roehrig,
S., Straub, A., Kubitza, D. & Misselwitz, F. The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. _Nature Rev. Drug Discov._ 10, 61–75 (2011). Article CAS
Google Scholar * Becker, R. C., Alexander, J., Dyke, C. K. & Harrington, R. A. Development of DX-9065a, a novel direct factor Xa antagonist, in cardiovascular disease. _Thromb.
Haemost._ 92, 1182–1193 (2004). Article CAS PubMed Google Scholar * Sato, K. et al. YM-60828, a novel factor Xa inhibitor: separation of its antithrombotic effects from its prolongation
of bleeding time. _Eur. J. Pharmacol._ 339, 141–146 (1997). Article CAS PubMed Google Scholar * Lam, P. Y. et al. Structure-based design of novel guanidine/benzamidine mimics: potent and
orally bioavailable factor Xa inhibitors as novel anticoagulants. _J. Med. Chem._ 46, 4405–4418 (2003). Article CAS PubMed Google Scholar * Pinto, D. J. et al. Discovery of
1-[3-(aminomethyl)phenyl]-_N_-3-fluoro-2′-(methylsulfonyl)-[1,1′-biphenyl]-4 -yl]-3-(trifluoromethyl)-1_H_-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally
bioavailable inhibitor of blood coagulation factor Xa. _J. Med. Chem._ 44, 566–578 (2001). Article CAS PubMed Google Scholar * Roehrig, S. et al. Discovery of the novel antithrombotic
agent 5-chloro-_N_-({(5_S_)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene- 2-carboxamide (BAY 59–7939): an oral, direct factor Xa inhibitor. _J. Med. Chem._
48, 5900–5908 (2005). Article CAS PubMed Google Scholar * Eriksson, B. I., Quinlan, D. J. & Eikelboom, J. W. Novel oral factor Xa and thrombin inhibitors in the management of
thromboembolism. _Annu. Rev. Med._ 62, 41–57 (2011). Article CAS PubMed Google Scholar * Giacobini, E. Cholinesterases: new roles in brain function and in Alzheimer's disease.
_Neurochem. Res._ 28, 515–522 (2003). Article CAS PubMed Google Scholar * Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. Neurotransmitter-related enzymes and indices of
hypoxia in senile dementia and other abiotrophies. _Brain_ 99, 459–496 (1976). Article CAS PubMed Google Scholar * Davies, P. & Maloney, A. J. Selective loss of central cholinergic
neurons in Alzheimer's disease. _Lancet_ 2, 1403 (1976). Article CAS PubMed Google Scholar * Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H. & Tomlinson, B. E.
Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. _J. Neurol. Sci._ 34, 247–265 (1977).
Article CAS PubMed Google Scholar * Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. _Science_ 217, 408–414 (1982).
Article CAS PubMed Google Scholar * Hansen, R. A., Gartlehner, G., Kaufer, D. J., Lohr, K. N. & Carey, T. Drug class review on Alzheimer's drugs: final report. _Drug Class
Reviews_ (2006). * Ellis, J. M. Cholinesterase inhibitors in the treatment of dementia. _J. Am. Osteopath. Assoc._ 105, 145–158 (2005). PubMed Google Scholar * Casida, J. E. & Quistad,
G. B. Serine hydrolase targets of organophosphorus toxicants. _Chem. Biol. Interact._ 157–158, 277–283 (2005). Article PubMed CAS Google Scholar * Kawakami, Y. et al. The rationale for
E2020 as a potent acetylcholinesterase inhibitor. _Bioorg. Med. Chem._ 4, 1429–1446 (1996). Article CAS PubMed Google Scholar * Nochi, S., Asakawa, N. & Sato, T. Kinetic-study on the
inhibition of acetylcholinesterase by 1-benzyl-4-[(5,6-dimethoxy-L-indanon)-2-Yl]methylpiperidine hydrochloride (E2020). _Biol. Pharm. Bull._ 18, 1145–1147 (1995). Article CAS PubMed
Google Scholar * Sugimoto, H., Iimura, Y., Yamanishi, Y. & Yamatsu, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,
6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. _J. Med. Chem._ 38, 4821–4829 (1995). Article CAS PubMed Google Scholar * Harvey, A. L. The
pharmacology of galanthamine and its analogues. _Pharmacol. Ther._ 68, 113–128 (1995). Article CAS PubMed Google Scholar * Thomsen, T. & Kewitz, H. Selective inhibition of human
acetylcholinesterase by galanthamine _in vitro_ and _in vivo_. _Life Sci._ 46, 1553–1558 (1990). Article CAS PubMed Google Scholar * Thomsen, T., Bickel, U., Fischer, J. P. & Kewitz,
H. Stereoselectivity of cholinesterase inhibition by galanthamine and tolerance in humans. _Eur. J. Clin. Pharmacol._ 39, 603–605 (1990). Article CAS PubMed Google Scholar * Hemsworth,
B. A. & West, G. B. The anticholinesterase activity of physostigmine. _J. Pharm. Pharmacol._ 20, 406–407 (1968). Article CAS PubMed Google Scholar * Kennedy, J. S. et al.
Preferential cerebrospinal fluid acetylcholinesterase inhibition by rivastigmine in humans. _J. Clin. Psychopharmacol._ 19, 513–521 (1999). Article CAS PubMed Google Scholar * Kathuria,
S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. _Nature Med._ 9, 76–81 (2003). Article CAS PubMed Google Scholar * Long, J. Z. et al. Selective blockade of
2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. _Nature Chem. Biol._ 5, 37–44 (2009). Article CAS Google Scholar * Bongers, J., Lambros, T., Ahmad, M. &
Heimer, E. P. Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. _Biochim. Biophys. Acta_ 1122, 147–153 (1992). Article CAS PubMed Google
Scholar * Rosenblum, J. S. & Kozarich, J. W. Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. _Curr. Opin. Chem. Biol._ 7, 496–504 (2003). Article
CAS PubMed Google Scholar * Murphy, K. G., Dhillo, W. S. & Bloom, S. R. Gut peptides in the regulation of food intake and energy homeostasis. _Endocr. Rev._ 27, 719–727 (2006).
Article CAS PubMed Google Scholar * Thorens, B. Glucagon-like peptide-1 and control of insulin secretion. _Diabetes Metab._ 21, 311–318 (1995). CAS Google Scholar * Meier, J. J.,
Nauck, M. A., Schmidt, W. E. & Gallwitz, B. Gastric inhibitory polypeptide: the neglected incretin revisited. _Regul. Pept._ 107, 1–13 (2002). Article CAS PubMed Google Scholar *
Drucker, D. J. Biological actions and therapeutic potential of the glucagon-like peptides. _Gastroenterology_ 122, 531–544 (2002). Article CAS PubMed Google Scholar * Holst, J. J. &
Deacon, C. F. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. _Diabetes_ 47, 1663–1670 (1998). Article CAS PubMed Google Scholar * Feng, J. et
al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. _J. Med. Chem._ 50, 2297–2300 (2007). Article CAS PubMed Google
Scholar * Lambeir, A. M. et al. Dipeptide-derived diphenyl phosphonate esters: mechanism-based inhibitors of dipeptidyl peptidase IV. _Biochim. Biophys. Acta_ 1290, 76–82 (1996). Article
PubMed Google Scholar * Hughes, T. E., Mone, M. D., Russell, M. E., Weldon, S. C. & Villhauer, E. B. NVP-DPP728
(1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(_S_)-pyrrolidine), a slow-binding inhibitor of dipeptidyl peptidase IV. _Biochemistry_ 38, 11597–11603 (1999). Article CAS
PubMed Google Scholar * Oefner, C. et al. High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with
1-[([2-[(5-iodopyridin-2-yl)amino]-ethyl]amino)-acetyl]-2-cyano-(_S_)-pyrrol idine. _Acta Crystallogr. D Biol. Crystallogr._ 59, 1206–1212 (2003). Article PubMed Google Scholar *
Villhauer, E. B. et al. 1-[2-[(5-cyanopyridin-2-yl)amino]ethylamino]acetyl-2-(_S_)-pyrrolidinecarbon itrile: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor
with antihyperglycemic properties. _J. Med. Chem._ 45, 2362–2365 (2002). Article CAS PubMed Google Scholar * Magnin, D. R. et al. Synthesis of novel potent dipeptidyl peptidase IV
inhibitors with enhanced chemical stability: interplay between the N-terminal amino acid alkyl side chain and the cyclopropyl group of α-aminoacyl-l-_cis_-4,5-methanoprolinenitrile-based
inhibitors. _J. Med. Chem._ 47, 2587–2598 (2004). Article CAS PubMed Google Scholar * Augeri, D. J. et al. Discovery and preclinical profile of saxagliptin (BMS-477118): a highly potent,
long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. _J. Med. Chem._ 48, 5025–5037 (2005). Article CAS PubMed Google Scholar * Kim, D. et
al. (2_R_)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8_H_)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor
for the treatment of type 2 diabetes. _J. Med. Chem._ 48, 141–151 (2005). Article CAS PubMed Google Scholar * Eckhardt, M. et al.
8-(3-(_R_)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin -2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally
bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. _J. Med. Chem._ 50, 6450–6453 (2007). Article CAS PubMed Google Scholar * Xu, J. et al. Discovery of potent and
selective β-homophenylalanine based dipeptidyl peptidase IV inhibitors. _Bioorg. Med. Chem. Lett._ 14, 4759–4762 (2004). Article CAS PubMed Google Scholar * Cravatt, B. F. et al.
Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. _Nature_ 384, 83–87 (1996). Article CAS PubMed Google Scholar * Naidu, P. S. et al. Evaluation of
fatty acid amide hydrolase inhibition in murine models of emotionality. _Psychopharmacology_ 192, 61–70 (2007). Article CAS PubMed Google Scholar * Cravatt, B. F. et al.
Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. _Proc. Natl Acad. Sci. USA_ 98, 9371–9376 (2001). Article CAS
PubMed PubMed Central Google Scholar * Lichtman, A. H. et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of
potency and selectivity. _J. Pharmacol. Exp. Ther._ 311, 441–448 (2004). Article CAS PubMed Google Scholar * Russo, R. et al. The fatty acid amide hydrolase inhibitor URB597
(cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. _J. Pharmacol. Exp. Ther._ 322, 236–242 (2007). Article CAS PubMed
Google Scholar * Justinova, Z. et al. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. _Biol. Psychiatry_ 64, 930–937
(2008). Article CAS PubMed PubMed Central Google Scholar * Ahn, K. et al. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. _Biochemistry_
46, 13019–13030 (2007). Article CAS PubMed Google Scholar * Ahn, K. et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. _Chem.
Biol._ 16, 411–420 (2009). Article CAS PubMed PubMed Central Google Scholar * Khanna, I. K. & Alexander, C. W. Fatty acid amide hydrolase inhibitors — progress and potential. _CNS
Neurol. Disord. Drug Targets_ 10, 545–558 (2011). THIS IS A DETAILED REVIEW OF THE CURRENT PANEL OF FAAH INHIBITORS, WHICH INCLUDES AN ARRAY OF HYDROLASE-DIRECTED CHEMOTYPES. Article CAS
PubMed Google Scholar * Zalewski, A., Macphee, C. & Nelson, J. J. Lipoprotein-associated phospholipase A2: a potential therapeutic target for atherosclerosis. _Curr. Drug Targets
Cardiovasc. Haematol. Disord._ 5, 527–532 (2005). Article CAS PubMed Google Scholar * Packard, C. J. et al. Lipoprotein-associated phospholipase A2 as an independent predictor of
coronary heart disease. West of Scotland Coronary Prevention Study Group. _N. Engl. J. Med._ 343, 1148–1155 (2000). Article CAS PubMed Google Scholar * MacPhee, C. H. et al.
Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel
inhibitor. _Biochem. J._ 338, 479–487 (1999). Article CAS PubMed PubMed Central Google Scholar * Davis, B. et al. Electrospray ionization mass spectrometry identifies substrates and
products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. _J. Biol. Chem._ 283, 6428–6437 (2008). Article CAS PubMed Google Scholar * Blackie, J. A.
et al. The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. _Bioorg. Med. Chem. Lett._ 13, 1067–1070 (2003). Article CAS
PubMed Google Scholar * Boyd, H. F. et al. 2-(alkylthio)pyrimidin-4-ones as novel, reversible inhibitors of lipoprotein-associated phospholipase A2. _Bioorg. Med. Chem. Lett._ 10, 395–398
(2000). Article CAS PubMed Google Scholar * Wilensky, R. L. et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development.
_Nature Med._ 14, 1059–1066 (2008). Article CAS PubMed Google Scholar * Mallela, J., Yang, J. & Shariat-Madar, Z. Prolylcarboxypeptidase: a cardioprotective enzyme. _Int. J. Biochem.
Cell Biol._ 41, 477–481 (2009). Article CAS PubMed Google Scholar * Wallingford, N. et al. Prolylcarboxypeptidase regulates food intake by inactivating α-MSH in rodents. _J. Clin.
Invest._ 119, 2291–2303 (2009). CAS PubMed PubMed Central Google Scholar * Zhou, C. et al. Design and synthesis of prolylcarboxypeptidase (PrCP) inhibitors to validate PrCP as a
potential target for obesity. _J. Med. Chem._ 53, 7251–7263 (2010). Article CAS PubMed Google Scholar * Shen, H. C. et al. Discovery of benzimidazole pyrrolidinyl amides as
prolylcarboxypeptidase inhibitors. _Bioorg. Med. Chem. Lett._ 21, 1299–1305 (2011). Article CAS PubMed Google Scholar * Lehner, R. & Verger, R. Purification and characterization of a
porcine liver microsomal triacylglycerol hydrolase. _Biochemistry_ 36, 1861–1868 (1997). Article CAS PubMed Google Scholar * Lehner, R. & Vance, D. E. Cloning and expression of a
cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol. _Biochem. J._ 343, 1–10 (1999). Article CAS PubMed PubMed Central Google Scholar * Dolinsky, V. W.,
Gilham, D., Alam, M., Vance, D. E. & Lehner, R. Triacylglycerol hydrolase: role in intracellular lipid metabolism. _Cell. Mol. Life Sci._ 61, 1633–1651 (2004). Article CAS PubMed
Google Scholar * Wei, E. et al. Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and increases energy expenditure. _Cell Metab._ 11, 183–193 (2010). Article CAS
PubMed Google Scholar * Gilham, D. et al. Inhibitors of hepatic microsomal triacylglycerol hydrolase decrease very low density lipoprotein secretion. _FASEB J._ 17, 1685–1687 (2003).
Article CAS PubMed Google Scholar * Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R. & Lass, A. Adipose triglyceride lipase and the lipolytic catabolism of cellular
fat stores. _J. Lipid Res._ 50, 3–21 (2009). Article CAS PubMed Google Scholar * Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. _Science_ 333,
233–238 (2011). Article CAS PubMed Google Scholar * McCoy, M. G. et al. Characterization of the lipolytic activity of endothelial lipase. _J. Lipid Res._ 43, 921–929 (2002). Article CAS
PubMed Google Scholar * Ma, K. et al. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. _Proc. Natl Acad. Sci. USA_
100, 2748–2753 (2003). Article CAS PubMed PubMed Central Google Scholar * Ishida, T. et al. Endothelial lipase is a major determinant of HDL level. _J. Clin. Invest._ 111, 347–355
(2003). Article CAS PubMed PubMed Central Google Scholar * Goodman, K. B. et al. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. _Bioorg. Med. Chem.
Lett._ 19, 27–30 (2009). Article CAS PubMed Google Scholar * Kato, T., Okada, M. & Nagatsu, T. Distribution of post-proline cleaving enzyme in human brain and the peripheral tissues.
_Mol. Cell. Biochem._ 32, 117–121 (1980). Article CAS PubMed Google Scholar * Wilk, S. Prolyl endopeptidase. _Life Sci._ 33, 2149–2157 (1983). Article CAS PubMed Google Scholar *
Lopez, A., Tarrago, T. & Giralt, E. Low molecular weight inhibitors of prolyl oligopeptidase: a review of compounds patented from 2003 to 2010. _Expert Opin. Ther. Pat._ 21, 1023–1044
(2011). Article PubMed CAS Google Scholar * Bakker, A. V., Jung, S., Spencer, R. W., Vinick, F. J. & Faraci, W. S. Slow tight-binding inhibition of prolyl endopeptidase by
benzyloxycarbonyl-prolyl-prolinal. _Biochem. J._ 271, 559–562 (1990). Article CAS PubMed PubMed Central Google Scholar * Toide, K., Iwamoto, Y., Fujiwara, T. & Abe, H. JTP-4819: a
novel prolyl endopeptidase inhibitor with potential as a cognitive enhancer. _J. Pharmacol. Exp. Ther._ 274, 1370–1378 (1995). CAS PubMed Google Scholar * Barelli, H. et al. S 17092–1, a
highly potent, specific and cell permeant inhibitor of human proline endopeptidase. _Biochem. Biophys. Res. Commun._ 257, 657–661 (1999). Article CAS PubMed Google Scholar * Bellemere,
G., Morain, P., Vaudry, H. & Jegou, S. Effect of S 17092, a novel prolyl endopeptidase inhibitor, on substance P and α-melanocyte-stimulating hormone breakdown in the rat brain. _J.
Neurochem._ 84, 919–929 (2003). Article CAS PubMed Google Scholar * Nolte, W. M., Tagore, D. M., Lane, W. S. & Saghatelian, A. Peptidomics of prolyl endopeptidase in the central
nervous system. _Biochemistry_ 48, 11971–11981 (2009). Article CAS PubMed Google Scholar * Toide, K. et al. Effect of a novel prolyl endopeptidase inhibitor, JTP-4819, on neuropeptide
metabolism in the rat brain. _Naunyn Schmiedebergs Arch. Pharmacol._ 353, 355–362 (1996). Article CAS PubMed Google Scholar * Shinoda, M., Okamiya, K. & Toide, K. Effect of a novel
prolyl endopeptidase inhibitor, JTP-4819, on thyrotropin-releasing hormone-like immunoreactivity in the cerebral cortex and hippocampus of aged rats. _Jpn J. Pharmacol._ 69, 273–276 (1995).
Article CAS PubMed Google Scholar * Schneider, J. S., Giardiniere, M. & Morain, P. Effects of the prolyl endopeptidase inhibitor S 17092 on cognitive deficits in chronic low dose
MPTP-treated monkeys. _Neuropsychopharmacology_ 26, 176–182 (2002). Article CAS PubMed Google Scholar * Morain, P. et al. S 17092: a prolyl endopeptidase inhibitor as a potential
therapeutic drug for memory impairment. Preclinical and clinical studies. _CNS Drug Rev._ 8, 31–52 (2002). Article CAS PubMed PubMed Central Google Scholar * Morain, P., Boeijinga, P.
H., Demazieres, A., De Nanteuil, G. & Luthringer, R. Psychotropic profile of S 17092, a prolyl endopeptidase inhibitor, using quantitative EEG in young healthy volunteers.
_Neuropsychobiology_ 55, 176–183 (2007). Article CAS PubMed Google Scholar * Lambeir, A. M. Translational research on prolyl oligopeptidase inhibitors: the long road ahead. _Expert Opin.
Ther. Pat._ 21, 977–981 (2011). Article CAS PubMed Google Scholar * Puustinen, P. et al. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase
2A-mediated inactivation in human malignant glioma. _Cancer Res._ 69, 2870–2877 (2009). Article CAS PubMed PubMed Central Google Scholar * Andreasen, P. A., Egelund, R. & Petersen,
H. H. The plasminogen activation system in tumor growth, invasion, and metastasis. _Cell. Mol. Life Sci._ 57, 25–40 (2000). Article CAS PubMed Google Scholar * Nomura, D. K., Dix, M. M.
& Cravatt, B. F. Activity-based protein profiling for biochemical pathway discovery in cancer. _Nature Rev. Cancer_ 10, 630–638 (2010). THIS REVIEW SUMMARIZES THE USE OF ABPP TO PROVIDE
INFORMATION ON THE METABOLIC AND SIGNALLING ENZYMES IN CANCER AND TO ENABLE THE DEVELOPMENT OF SELECTIVE CHEMICAL PROBES TO CHARACTERIZE THEIR FUNCTIONS. Article CAS Google Scholar *
Scanlan, M. J. et al. Molecular cloning of fibroblast activation protein α, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. _Proc.
Natl Acad. Sci. USA_ 91, 5657–5661 (1994). Article CAS PubMed PubMed Central Google Scholar * Rettig, W. J. et al. Regulation and heteromeric structure of the fibroblast activation
protein in normal and transformed cells of mesenchymal and neuroectodermal origin. _Cancer Res._ 53, 3327–3335 (1993). CAS PubMed Google Scholar * Garin-Chesa, P., Old, L. J. &
Rettig, W. J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. _Proc. Natl Acad. Sci. USA_ 87, 7235–7239 (1990). Article
CAS PubMed PubMed Central Google Scholar * Cheng, J. D. et al. Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. _Cancer Res._
62, 4767–4772 (2002). CAS PubMed Google Scholar * Cheng, J. D. et al. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. _Mol. Cancer Ther._ 4,
351–360 (2005). Article CAS PubMed Google Scholar * Adams, S. et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated
cytotoxicity via a novel immune mechanism. _Cancer Res._ 64, 5471–5480 (2004). Article CAS PubMed Google Scholar * Kraman, M. et al. Suppression of antitumor immunity by stromal cells
expressing fibroblast activation protein-α. _Science_ 330, 827–830 (2010). Article CAS PubMed Google Scholar * Edosada, C. Y. et al. Selective inhibition of fibroblast activation protein
protease based on dipeptide substrate specificity. _J. Biol. Chem._ 281, 7437–7444 (2006). Article CAS PubMed Google Scholar * Wolf, B. B., Quan, C., Tran, T., Wiesmann, C. &
Sutherlin, D. On the edge of validation — cancer protease fibroblast activation protein. _Mini Rev. Med. Chem._ 8, 719–727 (2008). Article CAS PubMed Google Scholar * Patterson, S. D.
& Aebersold, R. H. Proteomics: the first decade and beyond. _Nature Genet._ 33, S311–S323 (2003). Article CAS Google Scholar * Yates, J. R. Mass spectral analysis in proteomics.
_Annu. Rev. Biophys. Biomol. Struct._ 33, 297–316 (2004). Article CAS PubMed Google Scholar * Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. _Science_ 312, 212–217
(2006). Article CAS PubMed Google Scholar * Cravatt, B. F., Simon, G. M. & Yates, J. R. The biological impact of mass-spectrometry-based proteomics. _Nature_ 450, 991–1000 (2007).
Article CAS PubMed Google Scholar * Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. _Science_ 286, 531–537
(1999). Article CAS PubMed Google Scholar * Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. _Nature Genet._ 21, 33–37 (1999). Article CAS
PubMed Google Scholar * Evans, M. J. & Cravatt, B. F. Mechanism-based profiling of enzyme families. _Chem. Rev._ 106, 3279–3301 (2006). Article CAS PubMed Google Scholar * Cravatt,
B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. _Annu. Rev. Biochem._ 77, 383–414 (2008). THIS IS A REVIEW OF THE
PRINCIPLES AND APPLICATIONS OF ABPP. Article CAS PubMed Google Scholar * Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. _Proc.
Natl Acad. Sci. USA_ 96, 14694–14699 (1999). Article CAS PubMed PubMed Central Google Scholar * Weerapana, E., Simon, G. M. & Cravatt, B. F. Disparate proteome reactivity profiles
of carbon electrophiles. _Nature Chem. Biol._ 4, 405–407 (2008). Article CAS Google Scholar * Kato, D. et al. Activity-based probes that target diverse cysteine protease families. _Nature
Chem. Biol._ 1, 33–38 (2005). Article CAS Google Scholar * Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. _Nature_ 468, 790–795
(2010). Article CAS PubMed PubMed Central Google Scholar * Patricelli, M. P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. _Biochemistry_ 46, 350–358
(2007). Article CAS PubMed Google Scholar * Salisbury, C. M. & Cravatt, B. F. Activity-based probes for proteomic profiling of histone deacetylase complexes. _Proc. Natl Acad. Sci.
USA_ 104, 1171–1176 (2007). Article CAS PubMed PubMed Central Google Scholar * Salisbury, C. M. & Cravatt, B. F. Optimization of activity-based probes for proteomic profiling of
histone deacetylase complexes. _J. Am. Chem. Soc._ 130, 2184–2194 (2008). Article CAS PubMed Google Scholar * Madsen, M. A., Deryugina, E. I., Niessen, S., Cravatt, B. F. & Quigley,
J. P. Activity-based protein profiling implicates urokinase activation as a key step in human fibrosarcoma intravasation. _J. Biol. Chem._ 281, 15997–16005 (2006). Article CAS PubMed
Google Scholar * Pan, Z. et al. Development of activity-based probes for trypsin-family serine proteases. _Bioorg. Med. Chem. Lett._ 16, 2882–2885 (2006). Article CAS PubMed Google
Scholar * Jessani, N. et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth _in vivo_. _Proc. Natl Acad. Sci. USA_ 101, 13756–13761 (2004). Article CAS
PubMed PubMed Central Google Scholar * Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. _Nature Methods_ 2, 691–697 (2005).
Article CAS PubMed Google Scholar * Blankman, J. L., Simon, G. M. & Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol.
_Chem. Biol._ 14, 1347–1356 (2007). Article CAS PubMed PubMed Central Google Scholar * Mahrus, S. & Craik, C. S. Selective chemical functional probes of granzymes A and B reveal
granzyme B is a major effector of natural killer cell-mediated lysis of target cells. _Chem. Biol._ 12, 567–577 (2005). Article CAS PubMed Google Scholar * Barglow, K. T. & Cravatt,
B. F. Discovering disease-associated enzymes by proteome reactivity profiling. _Chem. Biol._ 11, 1523–1531 (2004). Article CAS PubMed Google Scholar * Morak, M. et al. Differential
activity-based gel electrophoresis for comparative analysis of lipolytic and esterolytic activities. _J. Lipid Res._ 50, 1281–1292 (2009). Article CAS PubMed PubMed Central Google
Scholar * Kaschani, F. et al. Diversity of serine hydrolase activities of unchallenged and botrytis-infected _Arabidopsis thaliana_. _Mol. Cell. Proteomics_ 8, 1082–1093 (2009). Article
CAS PubMed PubMed Central Google Scholar * Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell
invasiveness. _Proc. Natl Acad. Sci. USA_ 99, 10335–10340 (2002). Article CAS PubMed PubMed Central Google Scholar * Chiang, K. P., Niessen, S., Saghatelian, A. & Cravatt, B. F. An
enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. _Chem. Biol._ 13, 1041–1050 (2006). Article CAS PubMed Google Scholar * Chang, J.
W., Nomura, D. K. & Cravatt, B. F. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. _Chem. Biol._ 18, 476–484 (2011). Article CAS PubMed
PubMed Central Google Scholar * Nomura, D. K. et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. _Chem. Biol._
18, 846–856 (2011). Article CAS PubMed PubMed Central Google Scholar * Long, J. Z., Nomura, D. K. & Cravatt, B. F. Characterization of monoacylglycerol lipase inhibition reveals
differences in central and peripheral endocannabinoid metabolism. _Chem. Biol._ 16, 744–753 (2009). Article CAS PubMed PubMed Central Google Scholar * Kinsey, S. G. et al. Blockade of
endocannabinoid-degrading enzymes attenuates neuropathic pain. _J. Pharmacol. Exp. Ther._ 330, 902–910 (2009). Article CAS PubMed PubMed Central Google Scholar * Nomura, D. K. et al.
Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. _Science_ 334, 809–813 (2011). Article CAS PubMed PubMed Central Google Scholar * Woitach, J.
T., Zhang, M., Niu, C. H. & Thorgeirsson, S. S. A retinoblastoma-binding protein that affects cell-cycle control and confers transforming ability. _Nature Genet._ 19, 371–374 (1998).
Article CAS PubMed Google Scholar * Shields, D. J. et al. RBBP9: a tumor-associated serine hydrolase activity required for pancreatic neoplasia. _Proc. Natl Acad. Sci. USA_ 107,
2189–2194 (2010). Article CAS PubMed Google Scholar * Bachovchin, D. A., Brown, S. J., Rosen, H. & Cravatt, B. F. Identification of selective inhibitors of uncharacterized enzymes by
high-throughput screening with fluorescent activity-based probes. _Nature Biotech._ 27, 387–394 (2009). THIS PAPER DESCRIBES THE INTRODUCTION OF COMPETITIVE ABPP FOR HIGH-THROUGHPUT
SCREENING. Article CAS Google Scholar * Bachovchin, D. A. et al. Oxime esters as selective, covalent inhibitors of the serine hydrolase retinoblastoma-binding protein 9 (RBBP9). _Bioorg.
Med. Chem. Lett._ 20, 2254–2258 (2010). Article CAS PubMed PubMed Central Google Scholar * Kidd, D., Liu, Y. & Cravatt, B. F. Profiling serine hydrolase activities in complex
proteomes. _Biochemistry_ 40, 4005–4015 (2001). Article CAS PubMed Google Scholar * Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. _Mol. Cell.
Proteomics_ 1, 60–68 (2002). Article CAS PubMed Google Scholar * Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme
inhibitors. _Future Med. Chem._ 2, 949–964 (2010). Article CAS PubMed Google Scholar * Potashman, M. H. & Duggan, M. E. Covalent modifiers: an orthogonal approach to drug design.
_J. Med. Chem._ 52, 1231–1246 (2009). Article CAS PubMed Google Scholar * Knuckley, B. et al. A fluopol-ABPP HTS assay to identify PAD inhibitors. _Chem. Commun. (Camb.)_ 46, 7175–7177
(2010). Article CAS Google Scholar * Bachovchin, D. A. et al. Organic synthesis toward small-molecule probes and drugs special feature: academic cross-fertilization by public screening
yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. _Proc. Natl Acad. Sci. USA_ 108, 6811–6816 (2011). Article CAS PubMed PubMed Central Google Scholar * Lee,
J., Chen, Y., Tolstykh, T. & Stock, J. A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. _Proc. Natl Acad. Sci. USA_ 93,
6043–6047 (1996). Article CAS PubMed PubMed Central Google Scholar * Sontag, J. M., Nunbhakdi-Craig, V., Mitterhuber, M., Ogris, E. & Sontag, E. Regulation of protein phosphatase 2A
methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells. _J. Neurochem._ 115, 1455–1465 (2010). Article CAS PubMed PubMed Central Google Scholar
* Bachovchin, D. A. et al. Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1. _J. Med. Chem._ 54, 5229–5236
(2011). Article CAS PubMed PubMed Central Google Scholar * Berlin, J. M. & Fu, G. C. Enantioselective nucleophilic catalysis: the synthesis of aza-β-lactams through [2 + 2]
cycloadditions of ketenes with azo compounds. _Angew. Chem. Int. Ed. Engl._ 47, 7048–7050 (2008). Article CAS PubMed PubMed Central Google Scholar * Wood, W. J., Patterson, A. W.,
Tsuruoka, H., Jain, R. K. & Ellman, J. A. Substrate activity screening: a fragment-based method for the rapid identification of nonpeptidic protease inhibitors. _J. Am. Chem. Soc._ 127,
15521–15527 (2005). Article CAS PubMed Google Scholar * Patterson, A. W. et al. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity
screening method. _J. Med. Chem._ 49, 6298–6307 (2006). Article CAS PubMed Google Scholar * Salisbury, C. M. & Ellman, J. A. Rapid identification of potent nonpeptidic serine
protease inhibitors. _Chembiochem._ 7, 1034–1037 (2006). Article CAS PubMed Google Scholar * Edwards, P. D., Zottola, M. A., Davis, M., Williams, J. & Tuthill, P. A. Peptidyl
α-ketoheterocyclic inhibitors of human neutrophil elastase. 3. _In vitro_ and _in vivo_ potency of a series of peptidyl α-ketobenzoxazoles. _J. Med. Chem._ 38, 3972–3982 (1995). Article CAS
PubMed Google Scholar * Erlanson, D. A. et al. Site-directed ligand discovery. _Proc. Natl Acad. Sci. USA_ 97, 9367–9372 (2000). Article CAS PubMed PubMed Central Google Scholar *
Erlanson, D. A., Wells, J. A. & Braisted, A. C. Tethering: fragment-based drug discovery. _Annu. Rev. Biophys. Biomol. Struct._ 33, 199–223 (2004). Article CAS PubMed Google Scholar
* Hagel, M. et al. Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine. _Nature Chem. Biol._ 7, 22–24 (2011). Article CAS Google Scholar * Levy, J. H.
& O'Donnell, P. S. The therapeutic potential of a kallikrein inhibitor for treating hereditary angioedema. _Expert Opin. Investig. Drugs_ 15, 1077–1090 (2006). Article CAS PubMed
Google Scholar * Stoop, A. A. & Craik, C. S. Engineering of a macromolecular scaffold to develop specific protease inhibitors. _Nature Biotech._ 21, 1063–1068 (2003). Article CAS
Google Scholar * Dennis, M. S. & Lazarus, R. A. Kunitz domain inhibitors of tissue factor–factor VIIa. II. Potent and specific inhibitors by competitive phage selection. _J. Biol.
Chem._ 269, 22137–22144 (1994). Article CAS PubMed Google Scholar * Xuan, J. A. et al. Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of
prostate and ovarian tumor cells in culture. _Cancer Res._ 66, 3611–3619 (2006). Article CAS PubMed Google Scholar * Sun, J., Pons, J. & Craik, C. S. Potent and selective inhibition
of membrane-type serine protease 1 by human single-chain antibodies. _Biochemistry_ 42, 892–900 (2003). Article CAS PubMed Google Scholar * Lazarus, R. A., Olivero, A. G., Eigenbrot, C.
& Kirchhofer, D. Inhibitors of tissue factor. Factor VIIa for anticoagulant therapy. _Curr. Med. Chem._ 11, 2275–2290 (2004). Article CAS PubMed Google Scholar * Edwards, A. M. et
al. Too many roads not taken. _Nature_ 470, 163–165 (2011). Article CAS PubMed Google Scholar * Subramanian, A. R., Kaufmann, M. & Morgenstern, B. DIALIGN-TX: greedy and progressive
approaches for segment-based multiple sequence alignment. _Algorithms Mol. Biol._ 3, 6 (2008). Article PubMed PubMed Central CAS Google Scholar Download references ACKNOWLEDGEMENTS We
thank the Cravatt laboratory for helpful discussions. This work was supported by grants from the US National Institutes of Health (DA025285, GM090294, CA132630, DA017259, DA009789 and
CA087660), the National Science Foundation (predoctoral fellowship to D.A.B.), the California Breast Cancer Research Program (predoctoral fellowship to D.A.B.), and The Skaggs Institute for
Chemical Biology. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N.
Torrey Pines Road, La Jolla, 92037, California, USA Daniel A. Bachovchin & Benjamin F. Cravatt Authors * Daniel A. Bachovchin View author publications You can also search for this author
inPubMed Google Scholar * Benjamin F. Cravatt View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Benjamin F.
Cravatt. ETHICS DECLARATIONS COMPETING INTERESTS Benjamin F. Cravatt is a co-founder and advisor for a biotechnology company interested in developing inhibitors for serine hydrolase as
therapeutic targets. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION S1 (TABLE) Drugs that target viral and bacterial serine hydrolases. (PDF 283 kb) SUPPLEMENTARY INFORMATION S2 (TABLE)
The human serine hydrolases. (PDF 188 kb) RELATED LINKS RELATED LINKS FURTHER INFORMATION The Cravatt Laboratory GLOSSARY * Warheads Reactive chemical groups that covalently bind to
specific amino acid residues of the target enzyme. * Zymogens Inactive enzyme precursors, or pro-enzymes, that require a biochemical event (for example, a hydrolysis reaction) to convert
them into active enzymes. * Thrombi Aggregations of platelets, fibrin and cells. * Coagulation cascade A stepwise process involving the sequential activation of several serine protease
zymogens by limited proteolysis that results in the formation of fibrin blood clots. * Prodrug A pharmacological entity administered in a largely inactive form that is metabolized _in vivo_
into an active drug. * Cachexia A wasting syndrome characterized by the uncontrolled loss of muscle and adipose tissue. * Fluorescence polarization A measure of the apparent size of a
fluorophore; it is widely used to study molecular interactions. Briefly, a fluorophore excited with plane-polarized light will emit polarized light parallel to the plane of excitation unless
it rotates in the excited state. As the speed of rotational diffusion is inversely proportional to molecular volume, the resulting extent of depolarization gives a relative estimate of the
size of the fluorophore. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Bachovchin, D., Cravatt, B. The pharmacological landscape and therapeutic
potential of serine hydrolases. _Nat Rev Drug Discov_ 11, 52–68 (2012). https://doi.org/10.1038/nrd3620 Download citation * Published: 03 January 2012 * Issue Date: January 2012 * DOI:
https://doi.org/10.1038/nrd3620 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently
available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative