
Bacterial morphogenesis and the enigmatic mreb helix
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:

ABSTRACT Work over the past decade has highlighted the pivotal role of the actin-like MreB family of proteins in the determination and maintenance of rod cell shape in bacteria. Early images
of MreB localization revealed long helical filaments, which were suggestive of a direct role in governing cell wall architecture. However, several more recent, higher-resolution studies
have questioned the existence or importance of the helical structures. In this Opinion article, I navigate a path through these conflicting reports, revive the helix model and summarize the
key questions that remain to be answered. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access
through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *
Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional
subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CYTOSKELETAL COMPONENTS CAN TURN WALL-LESS SPHERICAL BACTERIA INTO KINKING HELICES Article
Open access 14 November 2022 SELF-ASSOCIATION OF MREC AS A REGULATORY SIGNAL IN BACTERIAL CELL WALL ELONGATION Article Open access 20 May 2021 CELL WALL SYNTHESIS AND REMODELLING DYNAMICS
DETERMINE DIVISION SITE ARCHITECTURE AND CELL SHAPE IN _ESCHERICHIA COLI_ Article Open access 12 September 2022 REFERENCES * Siefert, J. L. & Fox, G. E. Phylogenetic mapping of bacterial
morphology. _Microbiology_ 144, 2803–2808 (1998). Article CAS Google Scholar * Koch, A. L. Were Gram-positive rods the first bacteria? _Trends Microbiol._ 11, 166–170 (2003). Article
CAS PubMed Google Scholar * Errington, J. L-form bacteria, cell walls and the origins of life. _Open Biol._ 3, 120143 (2013). Article PubMed PubMed Central CAS Google Scholar *
Abhayawardhane, Y. & Stewart, G. C. _Bacillus subtilis_ possesses a second determinant with extensive sequence similarity to the _Escherichia coli mreB_ morphogene. _J. Bacteriol._ 177,
765–773 (1995). Article CAS PubMed PubMed Central Google Scholar * Doi, M. et al. Determinations of the DNA sequence of the _mreB_ gene and of the gene products of the _mre_ region that
function in formation of the rod shape of _Escherichia coli_ cells. _J. Bacteriol._ 170, 4619–4624 (1988). Article CAS PubMed PubMed Central Google Scholar * Levin, P. A., Margolis, P.
S., Setlow, P., Losick, R. & Sun, D. Identification of _Bacillus subtilis_ genes for septum placement and shape determination. _J. Bacteriol._ 174, 6717–6728 (1992). Article CAS
PubMed PubMed Central Google Scholar * Normark, S. Mutation in _Escherichia coli_ K-12 mediating spherelike envelopes and changes tolerance to ultraviolet irradiation and some
antibiotics. _J. Bacteriol._ 98, 1274–1277 (1969). Article CAS PubMed PubMed Central Google Scholar * Varley, A. W. & Stewart, G. C. The _divIVB_ region of the _Bacillus subtilis_
chromosome encodes homologs of _Escherichia coli_ septum placement (MinCD) and cell shape (MreBCD) determinants. _J. Bacteriol._ 174, 6729–6742 (1992). Article CAS PubMed PubMed Central
Google Scholar * Wachi, M. et al. Mutant isolation and molecular cloning of _mre_ genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in
_Escherichia coli_. _J. Bacteriol._ 169, 4935–4940 (1987). Article CAS PubMed PubMed Central Google Scholar * Jones, L. J. F., Carballido-López, R. & Errington, J. Control of cell
shape in bacteria: helical, actin-like filaments in _Bacillus subtilis_. _Cell_ 104, 913–922 (2001). Article CAS PubMed Google Scholar * Daniel, R. A. & Errington, J. Control of cell
morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. _Cell_ 113, 767–776 (2003). Article CAS PubMed Google Scholar * Brown, P. J. et al. Polar growth in the
Alphaproteobacterial order Rhizobiales. _Proc. Natl Acad. Sci. USA_ 109, 1697–1701 (2012). Article CAS PubMed PubMed Central Google Scholar * de Pedro, M. A., Young, K. D., Holtje, J.
V. & Schwarz, H. Branching of _Escherichia coli_ cells arises from multiple sites of inert peptidoglycan. _J. Bacteriol._ 185, 1147–1152 (2003). Article CAS PubMed PubMed Central
Google Scholar * Mobley, H. L., Koch, A. L., Doyle, R. J. & Streips, U. N. Insertion and fate of the cell wall in _Bacillus subtilis_. _J. Bacteriol._ 158, 169–179 (1984). Article CAS
PubMed PubMed Central Google Scholar * Pooley, H. M. Turnover and spreading of old wall during surface growth of _Bacillus subtilis_. _J. Bacteriol._ 125, 1127–1138 (1976). Article CAS
PubMed PubMed Central Google Scholar * Divakaruni, A. V., Loo, R. R., Xie, Y., Loo, J. A. & Gober, J. W. The cell-shape protein MreC interacts with extracytoplasmic proteins
including cell wall assembly complexes in _Caulobacter crescentus_. _Proc. Natl Acad. Sci. USA_ 102, 18602–18607 (2005). Article CAS PubMed PubMed Central Google Scholar * Divakaruni,
A. V., Baida, C., White, C. L. & Gober, J. W. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes. _Mol. Microbiol._ 66, 174–188
(2007). Article CAS PubMed Google Scholar * Kawai, Y., Daniel, R. A. & Errington, J. Regulation of cell wall morphogenesis in _Bacillus subtilis_ by recruitment of PBP1 to the MreB
helix. _Mol. Microbiol._ 71, 1131–1144 (2009). Article CAS PubMed Google Scholar * Lee, T. K. et al. A dynamically assembled cell wall synthesis machinery buffers cell growth. _Proc.
Natl Acad. Sci. USA_ 111, 4554–4559 (2014). Article CAS PubMed PubMed Central Google Scholar * Mohammadi, T. et al. The essential peptidoglycan glycosyltransferase MurG forms a complex
with proteins involved in lateral envelope growth as well as with proteins involved in cell division in _Escherichia coli_. _Mol. Microbiol._ 65, 1106–1121 (2007). Article CAS PubMed
PubMed Central Google Scholar * White, C. L., Kitich, A. & Gober, J. W. Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. _Mol.
Microbiol._ 76, 616–633 (2010). Article CAS PubMed Google Scholar * Favini-Stabile, S., Contreras-Martel, C., Thielens, N. & Dessen, A. MreB and MurG as scaffolds for the cytoplasmic
steps of peptidoglycan biosynthesis. _Environ. Microbiol._ 15, 3218–3228 (2013). Article CAS PubMed Google Scholar * Rueff, A. S. et al. An early cytoplasmic step of peptidoglycan
synthesis is associated to MreB in _Bacillus subtilis_. _Mol. Microbiol._ 91, 348–362 (2014). Article CAS PubMed Google Scholar * Formstone, A., Carballido-López, R., Noirot, P.,
Errington, J. & Scheffers, D. J. Localization and interactions of teichoic acid synthetic enzymes in _Bacillus subtilis_. _J. Bacteriol._ 190, 1812–1821 (2008). Article CAS PubMed
Google Scholar * Kawai, Y. et al. A widespread family of bacterial cell wall assembly proteins. _EMBO J._ 30, 4931–4941 (2011). Article CAS PubMed PubMed Central Google Scholar *
Carballido-López, R. et al. Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. _Dev. Cell_ 11, 399–409 (2006). Article PubMed CAS Google
Scholar * Domínguez-Cuevas, P., Porcelli, I., Daniel, R. A. & Errington, J. Differentiated roles for MreB-actin isologues and autolytic enzymes in _Bacillus subtilis_ morphogenesis.
_Mol. Microbiol._ 89, 1084–1098 (2013). Article PubMed PubMed Central CAS Google Scholar * Höltje, J. V. Growth of the stress-bearing and shape-maintaining murein sacculus of
_Escherichia coli_. _Microbiol. Mol. Biol. Rev._ 62, 181–203 (1998). Article PubMed PubMed Central Google Scholar * Vollmer, W. & Bertsche, U. Murein (peptidoglycan) structure,
architecture and biosynthesis in _Escherichia coli_. _Biochim. Biophys. Acta_ 1778, 1714–1734 (2008). Article CAS PubMed Google Scholar * Kruse, T., Bork-Jensen, J. & Gerdes, K. The
morphogenetic MreBCD proteins of _Escherichia coli_ form an essential membrane-bound complex. _Mol. Microbiol._ 55, 78–89 (2005). Article CAS PubMed Google Scholar * Leaver, M. &
Errington, J. Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in _Bacillus subtilis_. _Mol. Microbiol._ 57, 1196–1209 (2005). Article CAS PubMed Google
Scholar * Defeu Soufo, H. J. & Graumann, P. L. _Bacillus subtilis_ actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D
and other actin-like proteins for proper localization. _BMC Cell Biol._ 6, 10 (2005). Article PubMed PubMed Central CAS Google Scholar * Shiomi, D., Sakai, M. & Niki, H.
Determination of bacterial rod shape by a novel cytoskeletal membrane protein. _EMBO J._ 27, 3081–3091 (2008). Article CAS PubMed PubMed Central Google Scholar * Bendezu, F. O., Hale,
C. A., Bernhardt, T. G. & de Boer, P. A. RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in _E. coli_. _EMBO J._ 28, 193–204 (2009). Article
CAS PubMed Google Scholar * Alyahya, S. A. et al. RodZ, a component of the bacterial core morphogenic apparatus. _Proc. Natl Acad. Sci. USA_ 106, 1239–1244 (2009). Article CAS PubMed
PubMed Central Google Scholar * van den Ent, F., Johnson, C. M., Persons, L., de Boer, P. & Löwe, J. Bacterial actin MreB assembles in complex with cell shape protein RodZ. _EMBO J._
29, 1081–1090 (2010). Article CAS PubMed PubMed Central Google Scholar * Muchova, K., Chromikova, Z. & Barak, I. Control of _Bacillus subtilis_ cell shape by RodZ. _Environ.
Microbiol._ 15, 3259–3271 (2013). Article CAS PubMed Google Scholar * Strahl, H., Burmann, F. & Hamoen, L. W. The actin homologue MreB organizes the bacterial cell membrane. _Nature
Commun._ 5, 3442 (2014). Article CAS Google Scholar * Fenton, A. K. & Gerdes, K. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in _Escherichia
coli_. _EMBO J._ 32, 1953–1965 (2013). Article CAS PubMed PubMed Central Google Scholar * Figge, R. M., Divakaruni, A. V. & Gober, J. W. MreB, the cell shape-determining bacterial
actin homologue, co-ordinates cell wall morphogenesis in _Caulobacter crescentus_. _Mol. Microbiol._ 51, 1321–1332 (2004). Article CAS PubMed Google Scholar * Slovak, P. M., Wadhams, G.
H. & Armitage, J. P. Localization of MreB in _Rhodobacter sphaeroides_ under conditions causing changes in cell shape and membrane structure. _J. Bacteriol._ 187, 54–64 (2005). Article
CAS PubMed PubMed Central Google Scholar * Lee, S. & Price, C. W. The _minCD_ locus of _Bacillus subtilis_ lacks the _minE_ determinant that provides topological specificity to cell
division. _Mol. Microbiol._ 7, 601–610 (1993). Article CAS PubMed Google Scholar * Defeu Soufo, H. J. & Graumann, P. L. Dynamic localization and interaction with other _Bacillus
subtilis_ actin-like proteins are important for the function of MreB. _Mol. Microbiol._ 62, 1340–1356 (2006). Article CAS PubMed Google Scholar * Kawai, Y., Asai, K. & Errington, J.
Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of _Bacillus subtilis_. _Mol. Microbiol._ 73, 719–731 (2009). Article CAS PubMed Google Scholar
* Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. _Proc. Natl Acad. Sci. USA_ 89,
7290–7294 (1992). Article CAS PubMed PubMed Central Google Scholar * van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. _Nature_ 413, 39–44
(2001). Article CAS PubMed Google Scholar * Esue, O., Cordero, M., Wirtz, D. & Tseng, Y. The assembly of MreB, a prokaryotic homolog of actin. _J. Biol. Chem._ 280, 2628–2635 (2005).
Article CAS PubMed Google Scholar * Salje, J., van den Ent, F., de Boer, P. & Löwe, J. Direct membrane binding by bacterial actin MreB. _Mol. Cell_ 43, 478–487 (2011). Article CAS
PubMed PubMed Central Google Scholar * Van den Ent, F., Izore, T., Bharat, T. A., Johnson, C. M. & Löwe, J. Bacterial actin MreB forms antiparallel double filaments. _eLife_ 3,
e02634 (2014). Article PubMed PubMed Central CAS Google Scholar * Carballido-López, R. & Errington, J. The bacterial cytoskeleton: _in vivo_ dynamics of the actin-like protein Mbl
of _Bacillus subtilis_. _Dev. Cell_ 4, 19–28 (2003). Article PubMed Google Scholar * Defeu Soufo, H. J. & Graumann, P. L. Dynamic movement of actin-like proteins within bacterial
cells. _EMBO Rep._ 5, 789–794 (2004). Article CAS PubMed PubMed Central Google Scholar * Kruse, T., Møller-Jensen, J., Løbner-Olesen, A. & Gerdes, K. Dysfunctional MreB inhibits
chromosome segregation in _Escherichia coli_. _EMBO J._ 22, 5283–5292 (2003). Article CAS PubMed PubMed Central Google Scholar * Gitai, Z., Dye, N. & Shapiro, L. An actin-like gene
can determine cell polarity in bacteria. _Proc. Natl Acad. Sci. USA_ 101, 8643–8648 (2004). Article CAS PubMed PubMed Central Google Scholar * Vats, P. & Rothfield, L. Duplication
and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle. _Proc. Natl Acad. Sci. USA_ 104, 17795–17800 (2007). Article CAS PubMed PubMed Central Google Scholar
* Shih, Y. L., Le, T. & Rothfield, L. Division site selection in _Escherichia coli_ involves dynamic redistribution of Min proteins within coiled structures that extend between the two
cell poles. _Proc. Natl Acad. Sci. USA_ 100, 7865–7870 (2003). Article CAS PubMed PubMed Central Google Scholar * Espeli, O., Nurse, P., Levine, C., Lee, C. & Marians, K. J. SetB:
an integral membrane protein that affects chromosome segregation in _Escherichia coli_. _Mol. Microbiol._ 50, 495–509 (2003). Article CAS PubMed Google Scholar * Campo, N. et al.
Subcellular sites for bacterial protein export. _Mol. Microbiol._ 53, 1583–1599 (2004). Article CAS PubMed Google Scholar * Foulquier, E., Pompeo, F., Bernadac, A., Espinosa, L. &
Galinier, A. The YvcK protein is required for morphogenesis via localization of PBP1 under gluconeogenic growth conditions in _Bacillus subtilis_. _Mol. Microbiol._ 80, 309–318 (2011).
Article CAS PubMed Google Scholar * Tiyanont, K. et al. Imaging peptidoglycan biosynthesis in _Bacillus subtilis_ with fluorescent antibiotics. _Proc. Natl Acad. Sci. USA_ 103,
11033–11038 (2006). Article CAS PubMed PubMed Central Google Scholar * Swulius, M. T. et al. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped
bacteria. _Biochem. Biophys. Res. Commun._ 407, 650–655 (2011). Article CAS PubMed PubMed Central Google Scholar * Swulius, M. T. & Jensen, G. J. The helical MreB cytoskeleton in
_Escherichia coli_ MC1000/pLE7 is an artifact of the N-terminal yellow fluorescent protein tag. _J. Bacteriol._ 194, 6382–6386 (2012). Article CAS PubMed PubMed Central Google Scholar *
Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in _B. subtilis_. _Science_ 333, 222–225 (2011). Article CAS PubMed PubMed
Central Google Scholar * Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. _Science_ 333, 225–228 (2011). Article PubMed
CAS Google Scholar * van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. _Proc. Natl Acad. Sci. USA_ 108, 15822–15827 (2011). Article
CAS PubMed PubMed Central Google Scholar * Strahl, H. & Hamoen, L. W. Membrane potential is important for bacterial cell division. _Proc. Natl Acad. Sci. USA_ 107, 12281–12286
(2010). Article CAS PubMed PubMed Central Google Scholar * Reimold, C., Defeu Soufo, H. J., Dempwolff, F. & Graumann, P. L. Motion of variable-length MreB filaments at the bacterial
cell membrane influences cell morphology. _Mol. Biol. Cell_ 24, 2340–2349 (2013). Article CAS PubMed PubMed Central Google Scholar * Kawai, Y., Mercier, R. & Errington, J.
Bacterial cell morphogenesis does not require a preexisting template structure. _Curr. Biol._ 24, 863–867 (2014). Article CAS PubMed PubMed Central Google Scholar * Schaechter, M.,
Maaloe, O. & Kjelgaard, N. O. Dependency on medium and temperature on cell size and chemical coposition during balanced growth of _Salmonella typhimurium_. _J. Gen. Microbiol._ 19,
592–606 (1958). Article CAS PubMed Google Scholar * Olshausen, P. V. et al. Superresolution imaging of dynamic MreB filaments in _B. subtilis_—a multiple-motor-driven transport?
_Biophys. J._ 105, 1171–1181 (2013). Article PubMed PubMed Central CAS Google Scholar * Ursell, T. S. et al. Rod-like bacterial shape is maintained by feedback between cell curvature
and cytoskeletal localization. _Proc. Natl Acad. Sci. USA_ 111, E1025–E1034 (2014). Article CAS PubMed PubMed Central Google Scholar * Wang, S. & Wingreen, N. S. Cell shape can
mediate the spatial organization of the bacterial cytoskeleton. _Biophys. J._ 104, 541–552 (2013). Article CAS PubMed PubMed Central Google Scholar * Huang, K. C., Mukhopadhyay, R.,
Wen, B., Gitai, Z. & Wingreen, N. S. Cell shape and cell-wall organization in Gram-negative bacteria. _Proc. Natl Acad. Sci. USA_ 105, 19282–19287 (2008). Article CAS PubMed PubMed
Central Google Scholar * Kuru, E. et al. _In situ_ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. _Angew. Chem. Int. Ed. Engl._ 51, 12519–12523
(2012). Article CAS PubMed PubMed Central Google Scholar * Lebar, M. D. et al. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall
synthesis. _J. Am. Chem. Soc._ 136, 10874–10877 (2014). Article CAS PubMed PubMed Central Google Scholar * Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of
peptidoglycan synthesis to bacterial growth and morphology. _Nature Rev. Microbiol._ 10, 123–136 (2012). Article CAS Google Scholar * Lovering, A. L., Safadi, S. S. & Strynadka, N. C.
Structural perspective of peptidoglycan biosynthesis and assembly. _Annu. Rev. Biochem._ 81, 451–478 (2012). Article CAS PubMed Google Scholar * Cava, F. & de Pedro, M. A.
Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. _Curr. Opin. Microbiol._ 18, 46–53 (2014). Article CAS PubMed
Google Scholar * Kandler, O. Cell wall biochemistry in Archaea and its phylogenetic implications. _J. Biol. Phys._ 20, 165–169 (1994). Article CAS Google Scholar * Barreteau, H. et al.
Cytoplasmic steps of peptidoglycan biosynthesis. _FEMS Microbiol. Rev._ 32, 168–207 (2008). Article CAS PubMed Google Scholar * Vollmer, W., Joris, B., Charlier, P. & Foster, S.
Bacterial peptidoglycan (murein) hydrolases. _FEMS Microbiol. Rev._ 32, 259–286 (2008). Article CAS PubMed Google Scholar Download references ACKNOWLEDGEMENTS Work on cell wall synthesis
in the Errington laboratory is supported by grant BB/G015902/1 from the UK Biotechnology and Biological Sciences Research Council. The author thanks W. Vollmer, L. J. Wu and K. Gerdes for
helpful discussions and comments on the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Jeff Errington is at the Centre for Bacterial Cell Biology, Medical Faculty, Newcastle
University, Richardson Road, Newcastle-upon-Tyne NE2 4AX, UK., Jeff Errington Authors * Jeff Errington View author publications You can also search for this author inPubMed Google Scholar
CORRESPONDING AUTHOR Correspondence to Jeff Errington. ETHICS DECLARATIONS COMPETING INTERESTS The author declares no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR
FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR TABLE 1 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Errington, J.
Bacterial morphogenesis and the enigmatic MreB helix. _Nat Rev Microbiol_ 13, 241–248 (2015). https://doi.org/10.1038/nrmicro3398 Download citation * Published: 12 January 2015 * Issue
Date: April 2015 * DOI: https://doi.org/10.1038/nrmicro3398 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a
shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative