The new nanophysiology: regulation of ionic flow in neuronal subcompartments

The new nanophysiology: regulation of ionic flow in neuronal subcompartments


Play all audios:


ABSTRACT Cable theory and the Goldman–Hodgkin–Huxley–Katz models for the propagation of ions and voltage within a neuron have provided a theoretical foundation for electrophysiology and been


responsible for many cornerstone advances in neuroscience. However, these theories break down when they are applied to small neuronal compartments, such as dendritic spines, synaptic


terminals or small neuronal processes, because they assume spatial and ionic homogeneity. Here we discuss a broader theory that uses the Poisson–Nernst–Planck (PNP) approximation and


electrodiffusion to more accurately model the constraints that neuronal nanostructures place on electrical current flow. This extension of traditional cable theory could advance our


understanding of the physiology of neuronal nanocompartments. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A FIRST-PASSAGE APPROACH TO DIFFUSION-INFLUENCED REVERSIBLE BINDING AND ITS


INSIGHTS INTO NANOSCALE SIGNALING AT THE PRESYNAPSE Article Open access 08 March 2021 NEURAL SIGNAL PROPAGATION ATLAS OF _CAENORHABDITIS ELEGANS_ Article Open access 01 November 2023


DENDRITIC EXCITATIONS GOVERN BACK-PROPAGATION VIA A SPIKE-RATE ACCELEROMETER Article Open access 04 February 2025 REFERENCES * Goldman, D. E. Potential, impedance, and rectification in


membranes. _J. Gen. Physiol._ 27, 37–60 (1943). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and


its application to conduction and excitation in nerve. _J. Physiol._ 117, 500–544 (1952). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bart, D. & Bart, J. Sir William Thomson,


on the 150th Anniversary of the Atlantic Cable. _Antique Wireless Association Rev._ 21, 121–164 (2008). Google Scholar  * Hille, B. _Ionic Channels in Excitable Membranes_ 2nd edn (Sinauer,


1992). Google Scholar  * Tuckwell, H. C. _Introduction to Theoretical Neurobiology_ (Cambridge Univ. Press, 1988). Book  Google Scholar  * Koch, C. _Biophysics of Computation: Information


Processing in Single Neurons_ (Oxford Univ. Press, 2004). Google Scholar  * Stuart, G., Spruston, N. & Hausser, M. _Dendrites_ (Oxford Univ. Press, 1999). Google Scholar  * Butera, R.


J., Rinzel, J. & Smith, J. C. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. _J. Neurophysiol._ 82, 382–397 (1999). Article  PubMed


  Google Scholar  * Kennedy, M. B., Beale, H. C., Carlisle, H. J. & Washburn, L. R. Integration of biochemical signalling in spines. _Nat. Rev. Neurosci._ 6, 423–434 (2005). Article  CAS


  PubMed  Google Scholar  * Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. _Annu. Rev. Neurosci._ 25, 103–126 (2002). Article  CAS  PubMed  Google


Scholar  * Sabatini, B. L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. _Nature_ 408, 589–593 (2000). Article  CAS  PubMed  Google


Scholar  * Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spine. _Neuron_ 20, 847–854 (1998). Article  CAS  PubMed  Google Scholar  * Dunaevsky,


A., Tashiro, A., Majewska, A., Mason, C. A. & Yuste, R. Developmental regulation of spine motility in mammalian CNS. _Proc. Natl Acad. Sci. USA_ 96, 13438–13443 (1999). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Lendvai, B., Stern, E., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex _in


vivo_. _Nature_ 404, 876–881 (2000). Article  CAS  PubMed  Google Scholar  * Hoze, N. & Holcman, D. Residence times of receptors in dendritic spines analyzed by stochastic simulations in


empirical domains. _Biophys. J._ 107, 3008–3017 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hoze, N. et al. Heterogeneity of AMPA receptor trafficking and molecular


interactions revealed by superresolution analysis of live cell imaging. _Proc. Natl Acad. Sci. USA_ 109, 17052–17057 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Araya,


R., Jiang, J., Eisenthal, K. B. & Yuste, R. The spine neck filters membrane potentials. _Proc. Natl Acad. Sci. USA_ 103, 17961–17966 (2006). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Tonnesen, J., Katona, G., Rozsa, B. & Nagerl, U. V. Spine neck plasticity regulates compartmentalization of synapses. _Nat. Neurosci._ 17, 678–685 (2014). Article  CAS  PubMed


  Google Scholar  * Araya, R., Vogels, T. P. & Yuste, R. Activity-dependent dendritic spine neck changes are correlated with synaptic strength. _Proc. Natl Acad. Sci. USA_ 111,


E2895–E2904 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction


microscopy (STORM). _Nat. Methods_ 3, 793–795 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Biess, A., Korkotian, E. & Holcman, D. Diffusion in a dendritic spine: the


role of geometry. _Phys. Rev. E Stat. Nonlin. Soft Matter Phys._ 76, 021922 (2007). Article  CAS  PubMed  Google Scholar  * Svoboda, K., Tank, D. W. & Denk, W. Direct measurement of


coupling between dendritic spines and shafts. _Science_ 272, 716–719 (1996). Article  CAS  PubMed  Google Scholar  * Holcman, D. & Schuss, Z. Diffusion laws in dendritic spines. _J.


Math. Neurosci._ 1, 10 (2011). Article  PubMed  PubMed Central  Google Scholar  * Franks, K. M., Bartol, T. M. Jr & Sejnowski, T. J. A Monte Carlo model reveals independent signaling at


central glutamatergic synapses. _Biophys. J._ 83, 2333–2348 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Franks, K. M. & Sejnowski, T. J. Complexity of calcium


signaling in synaptic spines. _BioEssays_ 24, 1130–1144 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Holcman, D., Schuss, Z. & Korkotian, E. Calcium dynamics in


dendritic spines and spine motility. _Biophys. J._ 87, 81–91 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jackson, J. D. _Classical Electrodynamics_ 3rd edn (Wiley, 1998).


Google Scholar  * Savtchenko, L. P., Kulahin, N., Korogod, S. M. & Rusakov, D. A. Electric fields of synaptic currents could influence diffusion of charged neurotransmitter molecules.


_Synapse_ 51, 270–278 (2004). Article  CAS  PubMed  Google Scholar  * Sylantyev, S. et al. Electric fields due to synaptic currents sharpen excitatory transmission. _Science_ 319, 1845–1849


(2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sylantyev, S., Savtchenko, L. P., Ermolyuk, Y., Michaluk, P. & Rusakov, D. A. Spike-driven glutamate electrodiffusion


triggers synaptic potentiation via a homer-dependent mGluR–NMDAR link. _Neuron_ 77, 528–541 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Corry, B., Kuyucak, S. &


Chung, S. H. Dielectric self-energy in Poisson–Boltzmann and Poisson–Nernst–Planck models of ion channels. _Biophys. J._ 84, 3594–3606 (2003). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Mamonov, A. B., Coalson, R. D., Nitzan, A. & Kurnikova, M. G. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling


single-channel currents. _Biophys. J._ 84, 3646–3661 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Eisenberg, R. S. From structure to function in open ionic channels. _J.


Membr. Biol._ 171, 1–24 (1999). Article  CAS  PubMed  Google Scholar  * Gillespie, D. et al. A physical mechanism for large-ion selectivity of ion channels. _Phys. Chem. Chem. Phys._ 4,


4763–4769 (2002). Article  CAS  Google Scholar  * Blunck, R., Chanda, B. & Bezanilla, F. Nano to micro — fluorescence measurements of electric fields in molecules and genetically


specified neurons. _J. Membr. Biol._ 208, 91–102 (2005). Article  CAS  PubMed  Google Scholar  * Qian, N. & Sejnowski, T. J. An electro-diffusion model for computing membrane potentials


and ionic concentrations in branching dendrites, spines and axons. _Biol. Cybern._ 62, 1–15 (1989). Article  Google Scholar  * Holcman, D. & Schuss, Z. Control of flux by narrow passages


and hidden targets in cellular biology. Reports on progress in physics. _Phys. Soc._ 76, 074601 (2013). CAS  Google Scholar  * Bloodgood, B. L. & Sabatini, B. L. Neuronal activity


regulates diffusion across the neck of dendritic spines. _Science_ 310, 866–869 (2005). Article  CAS  PubMed  Google Scholar  * McLaughlin, S. & Poo, M. M. The role of electro-osmosis in


the electric-field-induced movement of charged macromolecules on the surfaces of cells. _Biophys. J._ 34, 85–93 (1981). Article  CAS  PubMed  PubMed Central  Google Scholar  * Korkotian, E.


& Segal, M. Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons. _J. Physiol._ 589, 5987–5995 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Alivisatos, A. P. Less is more in medicine. _Sci. Am._ 285, 66–73 (2001). Article  CAS  PubMed  Google Scholar  * Rall, W. Branching dendritic trees and motoneuron


membrane resistivity. _Exp. Neurol._ 1, 491–527 (1959). Article  CAS  PubMed  Google Scholar  * Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L. & Magee, J. C. Synaptic


amplification by dendritic spines enhances input cooperativity. _Nature_ 491, 599–602 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schikorski, T. & Stevens, C. F.


Morphological correlates of functionally defined synaptic vesicle populations. _Nat. Neurosci._ 4, 391–395 (2001). Article  CAS  PubMed  Google Scholar  * Karube, F., Kubota, Y. &


Kawaguchi, Y. Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes. _J. Neurosci._ 24, 2853–2865 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Pannasch, U. et al. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. _Nat. Neurosci._ 17, 549–558 (2014). Article  CAS  PubMed  Google Scholar  * Peters, A.


& Paley, S. L. & Webster, H. D. _Fine Structure of the Nervous System_ Saunders, 1976). Google Scholar  * North, G. & Greenspan, R. J. _Invertebrate Neurobiology_ (Cold Spring


Harbor Press, 2008). Google Scholar  * Nagerl, U. V., Willig, K. I., Hein, B., Hell, S. W. & Bonhoeffer, T. Live-cell imaging of dendritic spines by STED microscopy. _Proc. Natl Acad.


Sci. USA_ 105, 18982–18987 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ding, J. B., Takasaki, K. T. & Sabatini, B. L. Supraresolution imaging in brain slices using


stimulated-emission depletion two-photon laser scanning microscopy. _Neuron_ 63, 429–437 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arellano, J. I., Benavides-Piccione,


R., Defelipe, J. & Yuste, R. Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. _Front. Neurosci._ 1, 131–143 (2007). Article  PubMed  PubMed


Central  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank A Fairhill and members of both laboratories for their comments, and R.Y. thanks the Holcman group and the


Ecole Normale Superieure for hosting him. R.Y. is supported by grants MH101218 and MH100561. This material is based upon work supported by, or in part by, the US Army Research Laboratory and


the US Army Research Office under contract number W911NF-12-1-0594 (MURI). Research in D.H.'s laboratory is supported by the generosity of N. Rouach. The authors also thank J.


Cartailler from the D.H. laboratory. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Computational Biology and Applied Mathematics (IBENS), Ecole Normale Superieure, Paris, 75005, France David


Holcman * Department of Biological Sciences and Neuroscience, Neurotechnology Center, Columbia University, New York, 10027, New York, USA Rafael Yuste Authors * David Holcman View author


publications You can also search for this author inPubMed Google Scholar * Rafael Yuste View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING


AUTHOR Correspondence to David Holcman. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT


SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 GLOSSARY * Back-propagating action potential The wave propagation of an action potential that is due to the opening and closing of ion channels,


moving in the direction of the soma. * Debye length The length after which an electric charge is screened from the effects of an electric field by water or other polar molecules. *


Dielectric medium A media in which charged particles can become polarized, the properties of which are characterized by a dielectric constant (_ε_). The dielectric constant characterizes the


response of the medium to an electric field. * Diffusional coupling Coupling of two compartments that is due to the exchange of diffusing particles, such as ions or molecules. * Diffusional


flux The number of particles per unit of time entering through a surface. * Electrodiffusion The combination of diffusion and electrostatic forces that are applied to a charged particle.


The particle motion results from the sum of these two forces. * Ficks's diffusion law A macroscopic law that assumes that the diffusion flux is proportional to the gradient of


concentration. * Monte Carlo simulations Numerical simulations in which each particle (molecules or ions) is assumed to move through Brownian motion. This simulation allows all particle


trajectories to be monitored at any moment of time. * Nanostructures Complex geometrical domains with a clear identified electrophysiological function and with a characteristic length in a


range from tens to hundreds of nanometres. Examples include dendritic spines, cilia, synapses, parts of sensory cells, protrusions and the endoplasmic reticulum. * Neuronal ensembles Sets of


neurons connected by synapses. A neuronal ensemble can sustain a network activity such as synchronization, oscillation or rhythm. * Steady-state regime A system state described by


stationary parameters that are by definition independent of time. * Transient regime Period of time during which the parameters describing the state of a system vary and converge toward the


steady-state regime. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Holcman, D., Yuste, R. The new nanophysiology: regulation of ionic flow in neuronal


subcompartments. _Nat Rev Neurosci_ 16, 685–692 (2015). https://doi.org/10.1038/nrn4022 Download citation * Published: 14 October 2015 * Issue Date: November 2015 * DOI:


https://doi.org/10.1038/nrn4022 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative