Structural basis for duplex rna recognition and cleavage by archaeoglobus fulgidus c3po

Structural basis for duplex rna recognition and cleavage by archaeoglobus fulgidus c3po


Play all audios:


ABSTRACT Oligomeric complexes of Trax and Translin proteins, known as C3POs, participate in several eukaryotic nucleic acid metabolism pathways, including RNA interference and tRNA


processing. In RNA interference in humans and _Drosophila_, C3PO activates the RNA-induced silencing complex (RISC) by removing the passenger strand of the small interfering RNA precursor


duplex, using nuclease activity present in Trax. How C3POs engage with nucleic acid substrates is unknown. Here we identify a single protein from _Archaeoglobus fulgidus_ that assembles into


an octamer highly similar to human C3PO. The structure in complex with duplex RNA reveals that the octamer entirely encapsulates a single 13-base-pair RNA duplex inside a large inner


cavity. Trax-like-subunit catalytic sites target opposite strands of the duplex for cleavage separated by 7 base pairs. The structure provides insight into the mechanism of RNA recognition


and cleavage by an archaeal C3PO-like complex. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DYNAMIC MECHANISMS OF CRISPR INTERFERENCE BY _ESCHERICHIA COLI_ CRISPR-CAS3 Article Open


access 30 August 2022 RPA TRANSFORMS RNASE H1 TO A BIDIRECTIONAL EXORIBONUCLEASE FOR PROCESSIVE RNA–DNA HYBRID CLEAVAGE Article Open access 29 August 2024 NUCLEIC-ACID-TRIGGERED NADASE


ACTIVATION OF A SHORT PROKARYOTIC ARGONAUTE Article 02 October 2023 ACCESSION CODES PRIMARY ACCESSIONS PROTEIN DATA BANK * 3ZC0 * 3ZC1 REFERENCED ACCESSIONS PROTEIN DATA BANK * 3PJA


REFERENCES * Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. _Nat. Rev. Genet._ 10, 94–108 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Kim, V.N.,


Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. _Nat. Rev. Mol. Cell Biol._ 10, 126–139 (2009). CAS  PubMed  Google Scholar  * Czech, B. & Hannon, G.J. Small RNA sorting:


matchmaking for Argonautes. _Nat. Rev. Genet._ 12, 19–31 (2011). CAS  PubMed  Google Scholar  * Kawamata, T. & Tomari, Y. Making RISC. _Trends Biochem. Sci._ 35, 368–376 (2010). CAS 


PubMed  Google Scholar  * Nykänen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. _Cell_ 107, 309–321 (2001). PubMed 


Google Scholar  * Tomari, Y. et al. RISC assembly defects in the _Drosophila_ RNAi mutant armitage. _Cell_ 116, 831–841 (2004). CAS  PubMed  Google Scholar  * Pham, J.W., Pellino, J.L., Lee,


Y.S., Carthew, R.W. & Sontheimer, E.J.A. Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in _Drosophila_. _Cell_ 117, 83–94 (2004). CAS  PubMed  Google Scholar  *


Kawamata, T., Seitz, H. & Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. _Nat. Struct. Mol. Biol._ 16, 953–960 (2009). CAS  PubMed 


Google Scholar  * Yoda, M. et al. ATP-dependent human RISC assembly pathways. _Nat. Struct. Mol. Biol._ 17, 17–23 (2010). CAS  PubMed  Google Scholar  * Iwasaki, S. et al. Hsc70/Hsp90


chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. _Mol. Cell_ 39, 292–299 (2010). CAS  PubMed  Google Scholar  * Miyoshi, T., Takeuchi, A., Siomi, H. &


Siomi, M.C. A direct role for Hsp90 in pre-RISC formation in _Drosophila_. _Nat. Struct. Mol. Biol._ 17, 1024–1026 (2010). CAS  PubMed  Google Scholar  * Johnston, M., Geoffroy, M.C.,


Sobala, A., Hay, R. & Hutvagner, G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. _Mol. Biol. Cell_ 21, 1462–1469 (2010). CAS  PubMed 


PubMed Central  Google Scholar  * Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the _Drosophila_ RNAi pathway. _Science_ 301, 1921–1925 (2003). CAS  PubMed 


Google Scholar  * Lee, Y.S. et al. Distinct roles for _Drosophila_ Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. _Cell_ 117, 69–81 (2004). CAS  PubMed  Google Scholar  * Liu,


X., Jiang, F., Kalidas, S., Smith, D. & Liu, Q. Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. _RNA_ 12, 1514–1520 (2006). CAS  PubMed  PubMed


Central  Google Scholar  * Liu, Y. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. _Science_ 325, 750–753 (2009). CAS  PubMed  PubMed Central  Google


Scholar  * Ye, X. et al. Structure of C3PO and mechanism of human RISC activation. _Nat. Struct. Mol. Biol._ 18, 650–657 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Schwarz, D.S.


et al. Asymmetry in the assembly of the RNAi enzyme complex. _Cell_ 115, 199–208 (2003). CAS  PubMed  Google Scholar  * Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and


miRNAs exhibit strand bias. _Cell_ 115, 209–216 (2003). CAS  PubMed  Google Scholar  * Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M.C. Slicer function of _Drosophila_


Argonautes and its involvement in RISC formation. _Genes Dev._ 19, 2837–2848 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2


cleaves the anti-guide strand of siRNA during RISC activation. _Cell_ 123, 621–629 (2005). CAS  PubMed  Google Scholar  * Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D.


Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. _Cell_ 123, 607–620 (2005). CAS  PubMed  Google Scholar  * Leuschner, P.J., Ameres, S.L.,


Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. _EMBO Rep._ 7, 314–320 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Wang,


Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. _Nature_ 456, 209–213 (2008). CAS  PubMed  PubMed Central 


Google Scholar  * Schirle, N.T. & MacRae, I.J. The crystal structure of human Argonaute2. _Science_ 336, 1037–1040 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Nakanishi, K.,


Weinberg, D.E., Bartel, D.P. & Patel, D.J. Structure of yeast Argonaute with guide RNA. _Nature_ 486, 368–374 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Elkayam, E. et al.


The structure of human Argonaute-2 in complex with miR-20a. _Cell_ 150, 100–110 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Jaendling, A. & McFarlane, R.J. Biological roles of


translin and translin-associated factor-X: RNA metabolism comes to the fore. _Biochem. J._ 429, 225–234 (2010). CAS  PubMed  Google Scholar  * Li, L. et al. The translin-TRAX complex (C3PO)


is a ribonuclease in tRNA processing. _Nat. Struct. Mol. Biol._ 19, 824–830 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Tian, Y. et al. Multimeric assembly and biochemical


characterization of the Trax-translin endonuclease complex. _Nat. Struct. Mol. Biol._ 18, 658–664 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Pascal, J.M., Hart, P.J., Hecht, N.B.


& Robertus, J.D. Crystal structure of TB-RBP, a novel RNA-binding and regulating protein. _J. Mol. Biol._ 319, 1049–1057 (2002). CAS  PubMed  Google Scholar  * Sugiura, I. et al.


Structure of human translin at 2.2 Å resolution. _Acta Crystallogr. D Biol. Crystallogr._ 60, 674–679 (2004). PubMed  Google Scholar  * Chennathukuzhi, V. et al. Mice deficient for


testis-brain RNA-binding protein exhibit a coordinate loss of TRAX, reduced fertility, altered gene expression in the brain, and behavioral changes. _Mol. Cell. Biol._ 23, 6419–6434 (2003).


CAS  PubMed  PubMed Central  Google Scholar  * Yang, S. et al. Translin-associated factor X is post-transcriptionally regulated by its partner protein TB-RBP, and both are essential for


normal cell proliferation. _J. Biol. Chem._ 279, 12605–12614 (2004). CAS  PubMed  Google Scholar  * Gupta, G.D. et al. Co-expressed recombinant human Translin-Trax complex binds DNA. _FEBS


Lett._ 579, 3141–3146 (2005). CAS  PubMed  Google Scholar  * Claussen, M., Koch, R., Jin, Z.Y. & Suter, B. Functional characterization of _Drosophila_ Translin and Trax. _Genetics_ 174,


1337–1347 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Jaendling, A., Ramayah, S., Pryce, D.W. & McFarlane, R.J. Functional characterisation of the _Schizosaccharomyces pombe_


homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX. _Biochim. Biophys. Acta_ 1783, 203–213 (2008). CAS  PubMed  Google


Scholar  * Aoki, K., Suzuki, K., Ishida, R. & Kasai, M. The DNA binding activity of Translin is mediated by a basic region in the ring-shaped structure conserved in evolution. _FEBS


Lett._ 443, 363–366 (1999). CAS  PubMed  Google Scholar  * Chennathukuzhi, V.M., Kurihara, Y., Bray, J.D. & Hecht, N.B. Trax (translin-associated factor X), a primarily cytoplasmic


protein, inhibits the binding of TB-RBP (translin) to RNA. _J. Biol. Chem._ 276, 13256–13263 (2001). CAS  PubMed  Google Scholar  * Eliahoo, E. et al. Mapping of interaction sites of the


_Schizosaccharomyces pombe_ protein Translin with nucleic acids and proteins: a combined molecular genetics and bioinformatics study. _Nucleic Acids Res._ 38, 2975–2989 (2010). CAS  PubMed 


PubMed Central  Google Scholar  * Gupta, G.D. & Kumar, V. Identification of nucleic acid binding sites on translin-associated factor X (TRAX) protein. _PLoS ONE_ 7, e33035 (2012). CAS 


PubMed  PubMed Central  Google Scholar  * Heidenreich, O., Pieken, W. & Eckstein, F. Chemically modified RNA: approaches and applications. _FASEB J._ 7, 90–96 (1993). CAS  PubMed  Google


Scholar  * Parker, J.S., Roe, S.M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. _EMBO J._ 23, 4727–4737 (2004). CAS 


PubMed  PubMed Central  Google Scholar  * Winter, G. _xia2_: an expert system for macromolecular crystallography data reduction. _J. Appl. Crystallogr._ 43, 186–190 (2010). CAS  Google


Scholar  * Kabsch, W. XDS. _Acta Crystallogr. D Biol. Crystallogr._ 66, 125–132 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Evans, P.R. An introduction to data reduction:


space-group determination, scaling and intensity statistics. _Acta Crystallogr. D Biol. Crystallogr._ 67, 282–292 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Collaborative


Computational Project. N. The CCP4 suite: programs for protein crystallography. _Acta Crystallogr. D Biol. Crystallogr._ 50, 760–763 (1994). * Blessing, R.H. & Smith, G.D. Difference


structure-factor normalization for heavy-atom or anomalous-scattering substructure determinations. _J. Appl. Crystallogr._ 32, 664–670 (1999). CAS  Google Scholar  * Weeks, C.M. &


Miller, R. The design and implementation of _SnB_ v2.0. _J. Appl. Crystallogr._ 32, 120–124 (1999). CAS  Google Scholar  * Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated


structure solution with autoSHARP. _Methods Mol. Biol._ 364, 215–230 (2007). CAS  PubMed  Google Scholar  * Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular


structure solution. _Acta Crystallogr. D Biol. Crystallogr._ 66, 213–221 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features


and development of _Coot_. _Acta Crystallogr. D Biol. Crystallogr._ 66, 486–501 (2010). CAS  PubMed  PubMed Central  Google Scholar  * McCoy, A.J. et al. _Phaser_ crystallographic software.


_J. Appl. Crystallogr._ 40, 658–674 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Bond, C.S. & Schuttelkopf, A.W. _ALINE_: a WYSIWYG protein-sequence alignment editor for


publication-quality alignments. _Acta Crystallogr. D Biol. Crystallogr._ 65, 510–512 (2009). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank staff at Diamond Light


Source, UK for help with data collection. This work was funded by a UK Medical Research Council Career Development Award to J.S.P. (grant no. G0600097). The pTwo-E vector was a gift from A.


Oliver, University of Sussex, Brighton, UK. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biochemistry, University of Oxford, Oxford, UK Eneida A Parizotto, Edward D Lowe 


& James S Parker Authors * Eneida A Parizotto View author publications You can also search for this author inPubMed Google Scholar * Edward D Lowe View author publications You can also


search for this author inPubMed Google Scholar * James S Parker View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS E.A.P. produced and


purified the proteins, grew the crystals and performed the biochemical assays. E.D.L. provided advice, maintained facilities and assisted with X-ray data collection. J.S.P. collected X-ray


data, determined the structures and wrote the manuscript. CORRESPONDING AUTHOR Correspondence to James S Parker. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Figures 1–6 (PDF 3102 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Parizotto, E., Lowe, E. & Parker, J. Structural basis for duplex RNA recognition and cleavage by _Archaeoglobus fulgidus_ C3PO. _Nat Struct Mol Biol_ 20, 380–386 (2013).


https://doi.org/10.1038/nsmb.2487 Download citation * Received: 20 September 2012 * Accepted: 10 December 2012 * Published: 27 January 2013 * Issue Date: March 2013 * DOI:


https://doi.org/10.1038/nsmb.2487 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative