Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through skp2-mediated proteasomal degradation of tpl2

Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through skp2-mediated proteasomal degradation of tpl2


Play all audios:


ABSTRACT While mechanisms for metastasis were extensively studied in cancer cells from patients with detectable tumors, pathways underlying metastatic dissemination from early lesions before


primary tumors appear are poorly understood. Her2 promotes breast cancer early dissemination by suppressing p38, but how Her2 downregulates p38 is unclear. Here, we demonstrate that in


early lesion breast cancer models, Her2 inhibits p38 by inducing Skp2 through Akt-mediated phosphorylation, which promotes ubiquitination and proteasomal degradation of Tpl2, a p38 MAP3K.


The early disseminating cells are Her2+Skp2highTpl2lowp-p38lowE-cadherinlow in the MMTV-Her2 breast cancer model. In human breast carcinoma, high Skp2 and low Tpl2 expression are associated


with the Her2+ status; Tpl2 expression positively correlates with that of activated p38; Skp2 expression negatively correlates with that of Tpl2 and activated p38. Moreover, the


Her2-Akt-Skp2-Tpl2-p38 axis plays a key role in the disseminating phenotypes in early lesion breast cancer cells; inhibition of Tpl2 enhances early dissemination in vivo. These findings


identify the Her2-Akt-Skp2-Tpl2-p38 cascade as a novel mechanism mediating breast cancer early dissemination and a potential target for novel therapies targeting early metastatic


dissemination. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 50 print issues and online access $259.00 per year only $5.18 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HER2 PROMOTES EARLY DISSEMINATION OF BREAST CANCER BY SUPPRESSING THE P38-MK2-HSP27 PATHWAY THAT IS TARGETABLE BY WIP1


INHIBITION Article 26 August 2020 THE EXTRACELLULAR-REGULATED PROTEIN KINASE 5 (ERK5) ENHANCES METASTATIC BURDEN IN TRIPLE-NEGATIVE BREAST CANCER THROUGH FOCAL ADHESION PROTEIN KINASE


(FAK)-MEDIATED REGULATION OF CELL ADHESION Article Open access 12 May 2021 PAK5 PROMOTES THE TRASTUZUMAB RESISTANCE BY INCREASING HER2 NUCLEAR ACCUMULATION IN HER2-POSITIVE BREAST CANCER


Article Open access 21 April 2025 CHANGE HISTORY * _ 11 FEBRUARY 2021 A Correction to this paper has been published: https://doi.org/10.1038/s41388-021-01652-5 _ REFERENCES * Fidler IJ. The


pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8. Article  CAS  PubMed  Google Scholar  * Narod SA, Iqbal J, Giannakeas V, Sopik V,


Sun P. Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol. 2015;1:888–96. Article  PubMed  Google Scholar  * Pantel K, Brakenhoff RH. Dissecting the metastatic


cascade. Nat Rev Cancer. 2004;4:448–56. Article  CAS  PubMed  Google Scholar  * Abbruzzese JL, Abbruzzese MC, Hess KR, Raber MN, Lenzi R, Frost P. Unknown primary carcinoma: natural history


and prognostic factors in 657 consecutive patients. J Clin Oncol. 1994;12:1272–80. Article  CAS  PubMed  Google Scholar  * Riethmuller G, Klein CA. Early cancer cell dissemination and late


metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin Cancer Biol. 2001;11:307–11. Article  CAS  PubMed  Google Scholar  *


Lopez-Lazaro M. The migration ability of stem cells can explain the existence of cancer of unknown primary site. Rethinking metastasis. Oncoscience. 2015;2:467–75. Article  PubMed  PubMed


Central  Google Scholar  * Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of


melanoma. J Clin Invest. 2010;120:2030–9. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models


and cancer patients. Cancer Cell. 2013;23:573–81. Article  CAS  PubMed  PubMed Central  Google Scholar  * Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in


development and disease. Cell. 2009;139:871–90. Article  CAS  PubMed  Google Scholar  * Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression


by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107–19. Article  CAS  PubMed  Google Scholar  * Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein


interactions and their implications for cadherin function. J Cell Biochem. 1996;61:514–23. Article  CAS  PubMed  Google Scholar  * Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F,


Mareel MM, et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a


temperature-sensitive v-SRC gene. J Cell Biol. 1993;120:757–66. Article  CAS  PubMed  Google Scholar  * Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science.


2004;303:1483–7. Article  CAS  PubMed  PubMed Central  Google Scholar  * Enslen H, Raingeaud J, Davis RJ. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the


MAP kinase kinases MKK3 and MKK6. J Biol Chem. 1998;273:1741–8. Article  CAS  PubMed  Google Scholar  * Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J.


2010;429:403–17. Article  CAS  PubMed  Google Scholar  * Shi Y, Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem.


2002;383:1519–36. Article  CAS  PubMed  Google Scholar  * Gantke T, Sriskantharajah S, Sadowski M, Ley SC. IkappaB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol Rev.


2012;246:168–82. Article  PubMed  Google Scholar  * Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP


kinase kinase kinase. EMBO J. 1996;15:817–26. Article  CAS  PubMed  PubMed Central  Google Scholar  * Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, et al. TNF-alpha


induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell. 2000;103:1071–83. Article  CAS  PubMed  Google Scholar  * Pattison MJ, Mitchell O, Flynn HR, Chen


CS, Yang HT, Ben-Addi H, et al. TLR and TNF-R1 activation of the MKK3/MKK6-p38alpha axis in macrophages is mediated by TPL-2 kinase. Biochem J. 2016;473:2845–61. Article  CAS  PubMed 


Google Scholar  * Senger K, Pham VC, Varfolomeev E, Hackney JA, Corzo CA, Collier J, et al. The kinase TPL2 activates ERK and p38 signaling to promote neutrophilic inflammation. Sci Signal.


2017;10. * Gong J, Fang C, Zhang P, Wang PX, Qiu Y, Shen LJ, et al. Tumor progression locus 2 in hepatocytes potentiates both liver and systemic metabolic disorders in mice. Hepatology.


2019;69:524–44. Article  CAS  PubMed  Google Scholar  * Beinke S, Robinson MJ, Hugunin M, Ley SC. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase


mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol Cell Biol. 2004;24:9658–67. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Dodhiawala PB, Khurana N, Zhang D, Cheng Y, Li L, Wei Q, et al. TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations. J Clin Invest.


2020;130:4771–90. Article  CAS  PubMed  PubMed Central  Google Scholar  * Cho J, Melnick M, Solidakis GP, Tsichlis PN. Tpl2 (tumor progression locus 2) phosphorylation at Thr290 is induced


by lipopolysaccharide via an Ikappa-B Kinase-beta-dependent pathway and is required for Tpl2 activation by external signals. J Biol Chem. 2005;280:20442–8. Article  CAS  PubMed  Google


Scholar  * Bulavin DV, Fornace AJ Jr. p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res. 2004;92:95–118. Article  CAS  PubMed  Google Scholar  * Zheng H, Seit-Nebi A, Han


X, Aslanian A, Tat J, Liao R, et al. A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence. Mol Cell. 2013;50:699–710. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Ellinger-Ziegelbauer H, Kelly K, Siebenlist U. Cell cycle arrest and reversion of Ras-induced transformation by a conditionally activated form of


mitogen-activated protein kinase kinase kinase 3. Mol Cell Biol. 1999;19:3857–68. Article  CAS  PubMed  PubMed Central  Google Scholar  * She QB, Bode AM, Ma WY, Chen NY, Dong Z.


Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. 2001;61:1604–10. CAS  PubMed  Google Scholar  *


Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, et al. p38alpha signaling induces anoikis and lumen formation during mammary morphogenesis. Sci Signal. 2011;4:ra34.


Article  PubMed  PubMed Central  Google Scholar  * Huang S, New L, Pan Z, Han J, Nemerow GR. Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrix


invasion by breast cancer cells requires constitutive p38alpha mitogen-activated protein kinase activity. J Biol Chem. 2000;275:12266–72. Article  CAS  PubMed  Google Scholar  * Anwar T,


Arellano-Garcia C, Ropa J, Chen YC, Kim HS, Yoon E, et al. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun.


2018;9:2801. Article  PubMed  PubMed Central  Google Scholar  * Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a


TET-TNFalpha-p38-MAPK signaling axis. Cancer Res. 2015;75:3912–24. Article  CAS  PubMed  Google Scholar  * Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism


of early dissemination and metastasis in Her2(+) mammary cancer. Nature. 2016;540:588–92. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim G, Khanal P, Kim JY, Yun HJ, Lim SC,


Shim JH, et al. COT phosphorylates prolyl-isomerase Pin1 to promote tumorigenesis in breast cancer. Mol Carcinog. 2015;54:440–8. Article  CAS  PubMed  Google Scholar  * Kim K, Kim G, Kim JY,


Yun HJ, Lim SC, Choi HS. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis. 2014;35:1352–61. Article  CAS  PubMed  Google


Scholar  * Decicco-Skinner KL, Trovato EL, Simmons JK, Lepage PK, Wiest JS. Loss of tumor progression locus 2 (tpl2) enhances tumorigenesis and inflammation in two-stage skin


carcinogenesis. Oncogene. 2011;30:389–97. Article  CAS  PubMed  Google Scholar  * Gkirtzimanaki K, Gkouskou KK, Oleksiewicz U, Nikolaidis G, Vyrla D, Liontos M, et al. TPL2 kinase is a


suppressor of lung carcinogenesis. Proc Natl Acad Sci USA. 2013;110:E1470–1479. Article  CAS  PubMed  PubMed Central  Google Scholar  * Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge


JS. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol. 2001;3:785–92. Article  CAS  PubMed  PubMed Central  Google Scholar 


* Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13:58–68. Article  PubMed  Google Scholar  *


Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15. Article  CAS  PubMed


  PubMed Central  Google Scholar  * Xu L, Chen S, Bergan RC. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell


invasion in human prostate cancer. Oncogene. 2006;25:2987–98. Article  CAS  PubMed  Google Scholar  * Han Y, Zhang L, Wang W, Li J, Song M. Livin promotes the progression and metastasis of


breast cancer through the regulation of epithelialmesenchymal transition via the p38/GSK3beta pathway. Oncol Rep. 2017;38:3574–82. CAS  PubMed  Google Scholar  * Yan MH, Hao JH, Zhang XG,


Shen CC, Zhang DJ, Zhang KS, et al. Advancement in TPL2-regulated innate immune response. Immunobiology. 2019;224:383–7. Article  CAS  PubMed  Google Scholar  * Slack DN, Seternes OM,


Gabrielsen M, Keyse SM. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem.


2001;276:16491–500. Article  CAS  PubMed  Google Scholar  * Candas D, Lu CL, Fan M, Chuang FY, Sweeney C, Borowsky AD, et al. Mitochondrial MKP1 is a target for therapy-resistant


HER2-positive breast cancer cells. Cancer Res. 2014;74:7498–509. Article  CAS  PubMed  PubMed Central  Google Scholar  * Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang


H, et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol. 2001;11:263–7. Article  CAS  PubMed  Google


Scholar  * Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol.


2009;11:397–408. Article  CAS  PubMed  PubMed Central  Google Scholar  * Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, et al. Phosphorylation-dependent regulation of cytosolic


localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol. 2009;11:420–32. Article  CAS  PubMed  PubMed Central  Google Scholar  * Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng


Z, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012;149:1098–111. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Ruiz-Saenz A, Dreyer C, Campbell MR, Steri V, Gulizia N, Moasser MM. HER2 amplification in tumors activates PI3K/Akt signaling independent of HER3. Cancer Res. 2018;78:3645–58.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Wisinski KB, Tevaarwerk AJ, Burkard ME, Rampurwala M, Eickhoff J, Bell MC, et al. Phase I study of an AKT Inhibitor (MK-2206) combined


with lapatinib in adult solid tumors followed by dose expansion in advanced HER2+ breast cancer. Clin Cancer Res. 2016;22:2659–67. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Krcova Z, Ehrmann J, Krejci V, Eliopoulos A, Kolar Z. Tpl-2/Cot and COX-2 in breast cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008;152:21–25. Article  PubMed  Google


Scholar  * del Barco Barrantes I, Nebreda AR. Roles of p38 MAPKs in invasion and metastasis. Biochem Soc Trans. 2012;40:79–84. Article  PubMed  Google Scholar  * Sosa MS, Avivar-Valderas A,


Bragado P, Wen HC, Aguirre-Ghiso JA. ERK1/2 and p38alpha/beta signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin Cancer Res. 2011;17:5850–7. Article


  CAS  PubMed  PubMed Central  Google Scholar  * Chan CH, Lee SW, Wang J, Lin HK. Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal.


2010;10:1001–15. Article  CAS  PubMed  PubMed Central  Google Scholar  * Weidensdorfer D, Stohr N, Baude A, Lederer M, Kohn M, Schierhorn A, et al. Control of c-myc mRNA stability by


IGF2BP1-associated cytoplasmic RNPs. RNA. 2009;15:104–15. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kato H, Asamitsu K, Sun W, Kitajima S, Yoshizawa-Sugata N, Okamoto T, et al.


Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization. Oncogene. 2020;39:3322–35. Article  CAS  PubMed  Google


Scholar  * Wei W, Shin YS, Xue M, Matsutani T, Masui K, Yang H, et al. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in


glioblastoma. Cancer Cell. 2016;29:563–73. Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS We thank Cell Engineering and Tumor Tissue and Pathology


Shared Resources of WFBCCC for support. This study was supported by NIH/NCI grants CA131231, CA172115, and P30CA012197 (PS) and Bilateral Inter-Governmental S&T Cooperation Project


grants from Ministry of Science and Technology of China (81972882 and 2018YFE0114300) (RX). PS is an Anderson Oncology Research Professor. AUTHOR INFORMATION Author notes * These authors


contributed equally: Guanwen Wang, Juan Wang AUTHORS AND AFFILIATIONS * Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC,


USA Guanwen Wang, Juan Wang, Antao Chang, Dongmei Cheng, Shan Huang, Dan Wu, Sherona Sirkisoon, Hui-Kuan Lin, Hui-Wen Lo & Peiqing Sun * Department of Immunology, School of Medicine,


Nankai University, Tianjin, China Guanwen Wang, Juan Wang, Antao Chang, Shan Huang, Shuang Yang & Rong Xiang Authors * Guanwen Wang View author publications You can also search for this


author inPubMed Google Scholar * Juan Wang View author publications You can also search for this author inPubMed Google Scholar * Antao Chang View author publications You can also search for


this author inPubMed Google Scholar * Dongmei Cheng View author publications You can also search for this author inPubMed Google Scholar * Shan Huang View author publications You can also


search for this author inPubMed Google Scholar * Dan Wu View author publications You can also search for this author inPubMed Google Scholar * Sherona Sirkisoon View author publications You


can also search for this author inPubMed Google Scholar * Shuang Yang View author publications You can also search for this author inPubMed Google Scholar * Hui-Kuan Lin View author


publications You can also search for this author inPubMed Google Scholar * Hui-Wen Lo View author publications You can also search for this author inPubMed Google Scholar * Rong Xiang View


author publications You can also search for this author inPubMed Google Scholar * Peiqing Sun View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS GW, JW, RX, and PS conceived and designed the study. GW, JW, MD, SH, AC, and DW executed the experiments; GW, JW, AC, KL, SS, HL, HL, and PS analyzed and interpreted the data.


GW, JW, HL, HL, RX, and PS wrote and/or reviewed the manuscript. CORRESPONDING AUTHORS Correspondence to Rong Xiang or Peiqing Sun. ETHICS DECLARATIONS CONFLICT OF INTEREST The authors


declare that they have no conflict of interest. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and


institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTAL INFORMATION RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Wang, G., Wang, J., Chang,


A. _et al._ Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through Skp2-mediated proteasomal degradation of Tpl2. _Oncogene_ 39, 7034–7050 (2020).


https://doi.org/10.1038/s41388-020-01481-y Download citation * Received: 26 February 2020 * Revised: 21 August 2020 * Accepted: 17 September 2020 * Published: 28 September 2020 * Issue Date:


19 November 2020 * DOI: https://doi.org/10.1038/s41388-020-01481-y SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative