The dissipation of the solar nebula constrained by impacts and core cooling in planetesimals

The dissipation of the solar nebula constrained by impacts and core cooling in planetesimals


Play all audios:


ABSTRACT Rapid cooling of planetesimal cores has been inferred for several iron meteorite parent bodies on the basis of metallographic cooling rates, and linked to the loss of their


insulating mantles during impacts. However, the timing of these disruptive events is poorly constrained. Here, we used the short-lived 107Pd–107Ag decay system to date rapid core cooling by


determining Pd–Ag ages for iron meteorites. We show that closure times for the iron meteorites equate to cooling in the time frame ~7.8–11.7 Myr after calcium–aluminium-rich inclusion


formation, and that they indicate that an energetic inner Solar System persisted at this time. This probably results from the dissipation of gas in the protoplanetary disk, after which the


damping effect of gas drag ceases. An early giant planet instability between 5 and 14 Myr after calcium–aluminium-rich inclusion formation could have reinforced this effect. This correlates


well with the timing of impacts recorded by the Pd–Ag system for iron meteorites. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS RECURRENT PLANETESIMAL FORMATION IN AN OUTER PART OF THE EARLY SOLAR SYSTEM


Article Open access 01 July 2024 COMMON FEEDSTOCKS OF LATE ACCRETION FOR THE TERRESTRIAL PLANETS Article 30 September 2021 RAPID FORMATION OF EXOPLANETESIMALS REVEALED BY WHITE DWARFS


Article 14 November 2022 DATA AVAILABILITY All data are available within this Article and its Supplementary Information, or available from the authors on request. REFERENCES * Kruijer, T.


S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. _Proc. Natl. Acad. Sci. USA_ 114, 6712–6716 (2017).


Article  ADS  Google Scholar  * Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. _Nature_ 435,


459–461 (2005). Article  ADS  Google Scholar  * Walsh, K. J. & Morbidelli, A. The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation.


_Astron. Astrophys._ 526, A126 (2011). Article  ADS  Google Scholar  * Yang, J., Goldstein, J. I. & Scott, E. R. D. Iron meteorite evidence for early formation and catastrophic


disruption of protoplanets. _Nature_ 446, 888–891 (2007). Article  ADS  Google Scholar  * Goldstein, J. I., Scott, E. R. D. & Chabot, N. L. Iron meteorites: crystallization, thermal


history, parent bodies, and origin. _Geochemistry_ 69, 293–325 (2009). Article  Google Scholar  * Matthes, M., van Orman, J. A. & Kleine, T. Closure temperature of the Pd–Ag system and


the crystallization and cooling history of IIIAB iron meteorites. _Geochim. Cosmochim. Acta_ 285, 193–206 (2020). Article  ADS  Google Scholar  * Kelly, W. R. & Wasserburg, G. J.


Evidence for the existence of 107Pd in the early Solar System. _Geophys. Res. Lett._ 5, 1079–1082 (1978). Article  ADS  Google Scholar  * Woodland, S. J. et al. Accurate measurement of


silver isotopic compositions in geological materials including low Pd/Ag meteorites. _Geochim. Cosmochim. Acta_ 69, 2153–2163 (2005). Article  ADS  Google Scholar  * Theis, K. J. et al.


Palladium–silver chronology of IAB iron meteorites. _Earth Planet. Sci. Lett._ 361, 402–411 (2013). Article  ADS  Google Scholar  * Leya, I. & Masarik, J. Thermal neutron capture effects


in radioactive and stable nuclide systems. _Meteorit. Planet. Sci._ 48, 665–685 (2013). Article  ADS  Google Scholar  * Matthes, M., Fischer-Gödde, M., Kruijer, T. S., Leya, I. &


Kleine, T. Pd–Ag chronometry of iron meteorites: correction of neutron capture-effects and application to the cooling history of differentiated protoplanets. _Geochim. Cosmochim. Acta_ 169,


45–62 (2015). Article  ADS  Google Scholar  * Matthes, M., Fischer-Gödde, M., Kruijer, T. S. & Kleine, T. Pd–Ag chronometry of IVA iron meteorites and the crystallization and cooling of


a protoplanetary core. _Geochim. Cosmochim. Acta_ 220, 82–95 (2018). Article  ADS  Google Scholar  * Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Silver


isotope variations in chondrites: volatile depletion and the initial 107Pd abundance of the Solar System. _Geochim. Cosmochim. Acta_ 72, 5330–5341 (2008). Article  ADS  Google Scholar  *


Hunt, A. C. et al. Late metal–silicate separation on the IAB parent asteroid: constraints from combined W and Pt isotopes and thermal modelling. _Earth Planet. Sci. Lett._ 482, 490–500


(2018). Article  ADS  Google Scholar  * Hunt, A. C., Ek, M. & Schönbächler, M. Platinum isotopes in iron meteorites: galactic cosmic ray effects and nucleosynthetic homogeneity in the


_p-_process isotope 190Pt and the other platinum isotopes. _Geochim. Cosmochim. Acta_ 216, 82–95 (2017). Article  ADS  Google Scholar  * Kruijer, T. S. et al. Protracted core formation and


rapid accretion of protoplanets. _Science_ 344, 1150–1154 (2014). Article  ADS  Google Scholar  * Wasson, J. T. & Kallemeyn, G. W. The IAB iron-meteorite complex: a group, five


sub-groups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. _Geochim. Cosmochim. Acta_ 66, 2445–2473 (2002). Article  ADS  Google Scholar


  * Benedix, G. K., McCoy, T. J., Keil, K. & Love, S. G. A petrologic study of the IAB iron meteorites: constraints on the formation of the IAB-winonaite parent body. _Meteorit. Planet.


Sci._ 35, 1127–1141 (2000). Article  ADS  Google Scholar  * Hilton, C. D. & Walker, R. J. New implications for the origin of the IAB main group iron meteorites and the isotopic evolution


of the noncarbonaceous (NC) reservoir. _Earth Planet. Sci. Lett._ 540, 116248 (2020). Article  Google Scholar  * Pravdivtseva, O., Meshik, A., Hohenberg, C. M. & Kurat, G. I–Xe ages of


Campo del Cielo silicates as a record of the complex early history of the IAB parent body. _Meteorit. Planet. Sci._ 48, 2480–2490 (2013). Article  ADS  Google Scholar  * Schulz, T., Munker,


C., Mezger, K. & Palme, H. Hf–W chronometry of primitive achondrites. _Geochim. Cosmochim. Acta_ 74, 1706–1718 (2010). Article  ADS  Google Scholar  * Schulz, T., Münker, C., Palme, H.


& Mezger, K. Hf–W chronometry of the IAB iron meteorite parent body. _Earth Planet. Sci. Lett._ 280, 185–193 (2009). Article  ADS  Google Scholar  * Kruijer, T. S., Kleine, T.,


Fischer-Gödde, M., Burkhardt, C. & Wieler, R. Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. _Earth Planet. Sci. Lett._ 403, 317–327 (2014).


Article  ADS  Google Scholar  * Kleine, T. et al. Hf–W thermochronometry: closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. _Earth


Planet. Sci. Lett._ 270, 106–118 (2008). Article  ADS  Google Scholar  * Worsham, E. A., Bermingham, K. R. & Walker, R. J. Characterizing cosmochemical materials with genetic affinities


to the Earth: genetic and chronological diversity within the IAB iron meteorite complex. _Earth Planet. Sci. Lett._ 467, 157–166 (2017). Article  ADS  Google Scholar  * Lichtenberg, T.,


Golabek, G. J., Gerya, T. V. & Meyer, M. R. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. _Icarus_ 274, 350–365 (2016).


Article  ADS  Google Scholar  * Trinquier, A., Birck, J.-L. & Allègre, C. Widespread 54Cr heterogeneity in the inner Solar System. _Astrophys. J._ 655, 1179–1185 (2007). Article  ADS 


Google Scholar  * Wasson, J. T. & Huber, H. Compositional trends among IID irons; their possible formation from the P-rich lower magma in a two-layer core. _Geochim. Cosmochim. Acta_ 70,


6153–6167 (2006). Article  ADS  Google Scholar  * Spitzer, F., Burkhardt, C., Pape, J. & Kleine, T. Collisional mixing between inner and outer solar system planetesimals inferred from


the Nedagolla iron meteorite. _Meteorit. Planet. Sci._ 57, 261–276 (2022). Article  ADS  Google Scholar  * Hellmann, J. L., Kruijer, T. S., Van Orman, J. A., Metzler, K. & Kleine, T.


Hf–W chronology of ordinary chondrites. _Geochim. Cosmochim. Acta_ 258, 290–309 (2019). Article  ADS  Google Scholar  * Davison, T. M., O’Brien, D. P., Ciesla, F. J. & Collins, G. S. The


early impact histories of meteorite parent bodies. _Meteorit. Planet. Sci._ 48, 1894–1918 (2013). Article  ADS  Google Scholar  * Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S.


N. & Walsh, K. J. Building terrestrial planets. _Annu. Rev. Earth Planet. Sci._ 40, 251–275 (2012). Article  ADS  Google Scholar  * Walsh, K. J. & Levison, H. F. Planetesimals to


terrestrial planets: collisional evolution amidst a dissipating gas disk. _Icarus_ 329, 88–100 (2019). Article  ADS  Google Scholar  * Haisch, K. E., Lada, E. A. & Lada, C. J. Disk


frequencies and lifetimes in young clusters. _Astrophys. J. Lett._ 553, L153 (2001). Article  ADS  Google Scholar  * Ikoma, M., Nakazawa, K. & Emori, H. Formation of giant planets:


dependences on core accretion rate and grain opacity. _Astrophys. J._ 537, 1013–1025 (2000). Article  ADS  Google Scholar  * Raymond, S. N. & Izidoro, A. Origin of water in the inner


Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. _Icarus_ 297, 134–148 (2017). Article  ADS  Google Scholar  * Johnson, B. C., Walsh, K. J.,


Minton, D. A., Krot, A. N. & Levison, H. F. Timing of the formation and migration of giant planets as constrained by CB chondrites. _Sci. Adv._ 2, e1601658 (2016). Article  ADS  Google


Scholar  * Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. _Nature_ 475, 206–209 (2011).


Article  ADS  Google Scholar  * Turrini, D., Magni, G. & Coradini, A. Probing the history of Solar System through the cratering records on Vesta and Ceres. _Mon. Not. R. Astron. Soc._


413, 2439–2466 (2011). Article  ADS  Google Scholar  * Turrini, D., Coradini, A. & Magni, G. Jovian early bombardment: planetesimal erosion in the inner asteroid belt. _Astrophys. J._


750, 8 (2012). Article  ADS  Google Scholar  * Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial


planets. _Nature_ 435, 466–469 (2005). Article  ADS  Google Scholar  * Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar


System planets from the Patroclus–Menoetius binary Jupiter Trojan. _Nat. Astron._ 2, 878–882 (2018). Article  ADS  Google Scholar  * Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K.


& Levison, H. F. Constructing the secular architecture of the Solar System II: the terrestrial planets. _Astron. Astrophys._ 507, 1053–1065 (2009). Article  ADS  Google Scholar  *


Boehnke, P. & Harrison, T. M. Illusory Late Heavy Bombardments. _Proc. Natl Acad. Sci. USA_ 113, 10802–10806 (2016). * Quarles, B. & Kaib, N. Instabilities in the early Solar System


due to a self-gravitating disk. _Astron. J_. 157, 67 (2019). * Ribeiro, Rd. S. et al. Dynamical evidence for an early giant planet instability. _Icarus_ 339, 113605 (2020). Article  Google


Scholar  * Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. _Icarus_ 311, 340–356 (2018). Article  ADS  Google


Scholar  * Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E. & Walsh, K. J. The early instability scenario: terrestrial planet formation during the giant planet instability,


and the effect of collisional fragmentation. _Icarus_ 321, 778–790 (2019). Article  ADS  Google Scholar  * Liu, B., Raymond, S. N. & Jacobson, S. B. Early Solar System instability


triggered by dispersal of the gaseous disk. _Nature_ 604, 643–646 (2022). Article  ADS  Google Scholar  * Hunt, A. C., Ek, M. & Schönbächler, M. Separation of platinum from palladium and


iridium in iron meteorites and accurate high-precision determination of platinum isotopes by multi-collector ICP-MS. _Geostand. Geoanalytical Res._ 41, 633–647 (2017). Article  Google


Scholar  * Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. High precision Ag isotope measurements in geologic materials by multiple-collector ICPMS: an


evaluation of dry versus wet plasma. _Int. J. Mass Spectrom._ 261, 183–191 (2007). Article  Google Scholar  * Blichert-Toft, J., Moynier, F., Lee, C.-T. A., Telouk, P. & Albarède, F. The


early formation of the IVA iron meteorite parent body. _Earth Planet. Sci. Lett._ 296, 469–480 (2010). Article  ADS  Google Scholar  * Chabot, N. L. Sulfur contents of the parental metallic


cores of magmatic iron meteorites. _Geochim. Cosmochim. Acta_ 68, 3607–3618 (2004). Article  ADS  Google Scholar  * Randich, E. & Goldstein, J. I. Cooling rates of seven hexahedrites.


_Geochim. Cosmochim. Acta_ 42, 221–233 (1978). Article  ADS  Google Scholar  * Ludwig, K. R. _ISOPLOT 3.00. A Geochronological Toolkit for Microsoft Excel_ Special Publication 4 (Berkeley


Geochronological Center, 2003). Download references ACKNOWLEDGEMENTS This work was supported by the European Research Council under the European Union’s Seventh Framework Programme


(FP7/2007–2013/ERC grant agreement 279779, M.S.). We gratefully acknowledge funding from STFC (ST/F002157/1 and ST/J001260/1, M.R.; ST/J001643/1, M.S.) and funding from the Swiss National


Science Foundation (project 200020_179129, M.S.). A.C.H. wishes to thank M. Ek and M. Fehr for laboratory assistance at ETH Zürich during this study. M.S. would like to thank R. Carlson and


M. Horan (DTM, Carnegie Institution) for their support and the opportunity to analyse Ag isotopes in May 2006. We also thank C. Smith and D. Cassey (Natural History Museum, London) and J.


Hoskin (Smithsonian Institution National Museum of Natural History) for the loan of samples used in this work. AUTHOR INFORMATION Author notes * Karen J. Theis Present address: The Photon


Science Institute, The University of Manchester, Manchester, UK AUTHORS AND AFFILIATIONS * Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland Alison C. Hunt & Maria


Schönbächler * School of Earth and Environmental Sciences, The University of Manchester, Manchester, UK Karen J. Theis * Department of Earth Science & Engineering, Imperial College


London, London, UK Mark Rehkämper * Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia Gretchen K. Benedix *


Department of Earth and Planetary Sciences, Western Australian Museum, Perth, Western Australia, Australia Gretchen K. Benedix * Department of Geoscience, Aarhus University, Aarhus, Denmark


Rasmus Andreasen Authors * Alison C. Hunt View author publications You can also search for this author inPubMed Google Scholar * Karen J. Theis View author publications You can also search


for this author inPubMed Google Scholar * Mark Rehkämper View author publications You can also search for this author inPubMed Google Scholar * Gretchen K. Benedix View author publications


You can also search for this author inPubMed Google Scholar * Rasmus Andreasen View author publications You can also search for this author inPubMed Google Scholar * Maria Schönbächler View


author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.S. designed the study. A.C.H., K.J.T. and M.S. prepared samples for isotope analyses and


conducted the isotopic measurements. All authors were involved in the data interpretation and writing of the manuscript. CORRESPONDING AUTHOR Correspondence to Alison C. Hunt. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Astronomy_ thanks James Van Orman and the other, anonymous,


reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published


maps and institutional affiliations. EXTENDED DATA EXTENDED DATA FIG. 1 COVARIATION OF Ε192PT AND Ε196PT FOR THE IAB, IIAB AND IIIAB IRON METEORITES. The GCR model calculations10 are shown


for Ir/Pt ratios measured for these groups (dashed lines; Ir/Pt ratios for individual samples are given in Supplementary Materials Table 1). Uncertainties are 2 S.D. EXTENDED DATA FIG. 2


ISOCHRON DIAGRAMS FOR A) IAB, B) IIAB, AND C) IIIAB IRON METEORITES FOR THE PD–AG SYSTEM. In each case, ε107Ag is plotted against 108Pd/109Ag for both GCR-corrected (filled symbols) and


GCR-uncorrected data (unfilled symbols). Uncertainties on GCR-uncorrected data are 2 S.D. and within the size of the symbol (Table 1), while uncertainties for ε107Ag for GCR-corrected data


represent the propagated 2 S.D. uncertainties of the GCR correction (Table 2). Isochrons are determined using GCR-corrected data and ISOPLOT55. *denotes GCR-corrected data from source11,


shown for comparison but not included in the regressions. EXTENDED DATA FIG. 3 IAB PARENT BODY EVOLUTION FOR BOTH METAL COOLING TIMES. In both scenarios the parent body accreted relatively


late at ~1.4 Myr and then underwent limited metal-silicate differentiation at ~6.0 Myr after CAI14. For metal cooling at ~12.8 Myr, the catastrophic impact event occurred in the timeframe


~11–13.6 Myr. This was followed by fast cooling and closure of the Pd–Ag system at ~12.8 +3.1/-4.6 Myr. For metal cooling at ~7.9 Myr after CAI the body was disrupted at about 6 Myr, while


at or near its peak temperature. It then cooled quickly, leading to closure of the Pd–Ag system at 7.9 +1.0/-1.1 Myr. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TABLE 1 Summary of concentration


and isotope data for Pd–Ag and Pt for IAB, IIAB and IIIAB iron meteorites. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Hunt, A.C., Theis, K.J.,


Rehkämper, M. _et al._ The dissipation of the solar nebula constrained by impacts and core cooling in planetesimals. _Nat Astron_ 6, 812–818 (2022).


https://doi.org/10.1038/s41550-022-01675-2 Download citation * Received: 22 November 2021 * Accepted: 01 April 2022 * Published: 23 May 2022 * Issue Date: July 2022 * DOI:


https://doi.org/10.1038/s41550-022-01675-2 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative