An integrated bacterial system for the discovery of chemical rescuers of disease-associated protein misfolding

An integrated bacterial system for the discovery of chemical rescuers of disease-associated protein misfolding


Play all audios:


ABSTRACT Protein misfolding and aggregation are common pathological features of several human diseases, including Alzheimer’s disease and type 2 diabetes. Here, we report an integrated and


generalizable bacterial system for the facile discovery of chemical rescuers of disease-associated protein misfolding. In this system, large combinatorial libraries of macrocyclic molecules


are biosynthesized in _Escherichia coli_ cells and simultaneously screened for their ability to rescue pathogenic protein misfolding and aggregation using a flow cytometric assay. We


demonstrate the effectiveness of this approach by identifying drug-like, head-to-tail cyclic peptides that modulate the aggregation of the Alzheimer’s disease-associated amyloid β peptide.


Biochemical, biophysical and biological assays using isolated amyloid β peptide, primary neurons and various established Alzheimer’s disease nematode models showed that the selected


macrocycles potently inhibit the formation of neurotoxic amyloid β peptide aggregates. We also applied the system to the identification of misfolding rescuers of mutant Cu/Zn superoxide


dismutase—an enzyme linked with inherited forms of amyotrophic lateral sclerosis. Overall, the system enables the identification of molecules with therapeutic potential for rescuing the


misfolding of disease-associated polypeptides. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to


this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS RAPID DISCOVERY OF CYCLIC PEPTIDE PROTEIN AGGREGATION INHIBITORS BY CONTINUOUS SELECTION Article 13 January 2025 PROTEIN


MIMETIC 2D FAST RESCUES ALPHA SYNUCLEIN AGGREGATION MEDIATED EARLY AND POST DISEASE PARKINSON’S PHENOTYPES Article Open access 30 April 2024 A RAPID IN VIVO PIPELINE TO IDENTIFY SMALL


MOLECULE INHIBITORS OF AMYLOID AGGREGATION Article Open access 27 September 2024 CHANGE HISTORY * _ 02 JANUARY 2018 In the version of this Article originally published, in Fig. 1c–e, on the


x axes, the lines labelled ‘Aβ42’ and ‘Aβ42(F19S;L34P)’ grouped the data incorrectly; the line labelled Aβ42 should have grouped the data for Random 1–2 and Clones 1–10, and the line


labelled Aβ42(F19S;L34P) should have only grouped the data for Random 1–2 on the right end of the plots and blots. These figures have now been corrected in all versions of the Article. _


REFERENCES * Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. _Annu. Rev. Biochem._ 75, 333–366 (2006). Article  CAS  PubMed  Google Scholar  *


Gavrin, L. K., Denny, R. A. & Saiah, E. Small molecules that target protein misfolding. _J. Med. Chem._ 55, 10823–10843 (2012). Article  CAS  PubMed  Google Scholar  * Soto, C. et al.


β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. _Nat. Med._ 4, 822–826 (1998). Article  CAS  PubMed  Google


Scholar  * Ma, K., Thomason, L. A. M. & McLaurin, J. Scyllo-inositol, preclinical, and clinical data for Alzheimer’s disease. _Adv. Pharmacol._ 64, 177–212 (2012). Article  CAS  PubMed 


Google Scholar  * Gervais, F. et al. Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. _Neurobiol. Aging_ 28, 537–547 (2007). Article  CAS  PubMed 


Google Scholar  * Necula, M. et al. Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. _Biochemistry_ 46, 8850–8860 (2007). Article  CAS  PubMed  Google Scholar


  * Habchi, J. et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer’s disease. _Sci. Adv._ 2,


e1501244 (2016). Article  PubMed  PubMed Central  Google Scholar  * Bodles, A. M., El-Agnaf, O. M., Greer, B., Guthrie, D. J. & Irvine, G. B. Inhibition of fibril formation and toxicity


of a fragment of α-synuclein by an N-methylated peptide analogue. _Neurosci. Lett._ 359, 89–93 (2004). Article  CAS  PubMed  Google Scholar  * Hu, Q. et al. Baicalein inhibits α-synuclein


oligomer formation and prevents progression of α-synuclein accumulation in a rotenone mouse model of Parkinson’s disease. _Biochim. Biophys. Acta_ 1862, 1883–1890 (2016). Article  CAS 


PubMed  Google Scholar  * Ehrnhoefer, D. E. et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. _Nat. Struct. Mol. Biol._ 15, 558–566 (2008). Article 


CAS  PubMed  Google Scholar  * Coelho, T. et al. Mechanism of action and clinical application of tafamidis in hereditary transthyretin amyloidosis. _Neurol. Ther._ 5, 1–25 (2016). Article 


PubMed  PubMed Central  Google Scholar  * Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. _Proc. Natl Acad. Sci. USA_ 105, 10360–10365


(2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. _Nature_ 475,


96–100 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nagai, Y. et al. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage


display screening. _J. Biol. Chem._ 275, 10437–10442 (2000). Article  CAS  PubMed  Google Scholar  * Josephson, K., Ricardo, A. & Szostak, J. W. mRNA display: from basic principles to


macrocycle drug discovery. _Drug Discov. Today_ 19, 388–399 (2014). Article  CAS  PubMed  Google Scholar  * Eisenberg, D.S. & Sawaya, M.R. Structural studies of amyloid proteins at the


molecular level. _Annu. Rev. Biochem_. 86, 69–95 (2017). Article  CAS  PubMed  Google Scholar  * Saunders, J. C. et al. An in vivo platform for identifying inhibitors of protein aggregation.


_Nat. Chem. Biol._ 12, 94–101 (2016). Article  CAS  PubMed  Google Scholar  * Kim, W. et al. A high-throughput screen for compounds that inhibit aggregation of the Alzheimer’s peptide. _ACS


Chem. Biol._ 1, 461–469 (2006). Article  CAS  PubMed  Google Scholar  * Zhang, X. et al. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and


suppresses neurodegeneration in vivo. _Proc. Natl Acad. Sci. USA_ 102, 892–897 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kritzer, J. A. et al. Rapid selection of cyclic


peptides that reduce alpha-synuclein toxicity in yeast and animal models. _Nat. Chem. Biol._ 5, 655–663 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tardiff, D. F. et al.


Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons. _Science_ 342, 979–983 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee,


L. L. et al. Discovery of amyloid-beta aggregation inhibitors using an engineered assay for intracellular protein folding and solubility. _Protein Sci._ 18, 277–286 (2009). Article  CAS 


PubMed  Google Scholar  * Neumann, H. & Neumann-Staubitz, P. Synthetic biology approaches in drug discovery and pharmaceutical biotechnology. _Appl. Microbiol. Biotechnol._ 87, 75–86


(2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Craik, D. J. Seamless proteins tie up their loose ends. _Science_ 311, 1563–1564 (2006). Article  PubMed  Google Scholar  *


Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C. & Benkovic, S. J. Production of cyclic peptides and proteins in vivo. _Proc. Natl Acad. Sci. USA_ 96, 13638–13643 (1999). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Scott, C. P., Abel-Santos, E., Jones, A. D. & Benkovic, S. J. Structural requirements for the biosynthesis of backbone cyclic peptide


libraries. _Chem. Biol._ 8, 801–815 (2001). Article  CAS  PubMed  Google Scholar  * Paulus, H. Protein splicing and related forms of protein autoprocessing. _Annu. Rev. Biochem._ 69, 447–496


(2000). Article  CAS  PubMed  Google Scholar  * Wurth, C., Guimard, N. K. & Hecht, M. H. Mutations that reduce aggregation of the Alzheimer’s Aβ42 peptide: an unbiased search for the


sequence determinants of Aβ amyloidogenesis. _J. Mol. Biol._ 319, 1279–1290 (2002). Article  CAS  PubMed  Google Scholar  * De Groot, N. S. & Ventura, S. Protein activity in bacterial


inclusion bodies correlates with predicted aggregation rates. _J. Biotechnol._ 125, 110–113 (2006). Article  PubMed  Google Scholar  * Levine, H. Thioflavine T interaction with synthetic


Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. _Protein Sci._ 2, 404–410 (1993). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Vandersteen, A. et al. Molecular plasticity regulates oligomerization and cytotoxicity of the multipeptide-length amyloid-β peptide pool. _J. Biol. Chem._ 287, 36732–36743 (2012). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Ahmed, M. et al. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. _Nat. Struct. Mol. Biol._ 17, 561–567 (2010). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. _Nature_


416, 535–539 (2002). Article  CAS  PubMed  Google Scholar  * Jin, S. et al. Amyloid-β(1–42) aggregation initiates its cellular uptake and cytotoxicity. _J. Biol. Chem._ 291, 19590–19606


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * De Felice, F. G. et al. Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent


mechanism that is blocked by the Alzheimer drug memantine. _J. Biol. Chem._ 282, 11590–11601 (2007). Article  CAS  PubMed  Google Scholar  * De Felice, F. G. et al. Alzheimer’s disease-type


neuronal tau hyperphosphorylation induced by Aβ oligomers. _Neurobiol. Aging_ 29, 1334–1347 (2008). Article  CAS  PubMed  Google Scholar  * Alexander, A. G., Marfil, V. & Li, C. Use of


_Caenorhabditis elegans_ as a model to study Alzheimer’s disease and other neurodegenerative diseases. _Front. Genet_. 5, 279 (2014). Article  PubMed  PubMed Central  Google Scholar  *


Lührs, T. et al. 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. _Proc. Natl Acad. Sci. USA_ 102, 17342–17347 (2005). Article  PubMed  PubMed Central  Google Scholar  * Waldo, G. S.,


Standish, B. M., Berendzen, J. & Terwilliger, T. C. Rapid protein-folding assay using green fluorescent protein. _Nat. Βiotechnol._ 17, 691–695 (1999). Article  CAS  Google Scholar  *


Valentine, J. S., Doucette, P. A. & Zittin Potter, S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. _Annu. Rev. Biochem._ 74, 563–593 (2005). Article  CAS  PubMed 


Google Scholar  * Münch, C. & Bertolotti, A. Exposure of hydrophobic surfaces initiates aggregation of diverse ALS-causing superoxide dismutase-1 mutants. _J. Mol. Biol._ 399, 512–525


(2010). Article  PubMed  PubMed Central  Google Scholar  * Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. _Nat. Rev. Genet._ 16, 379–394 (2015). Article  CAS


  PubMed  Google Scholar  * Wright, G. S., Antonyuk, S. V., Kershaw, N. M., Strange, R. W. & Samar Hasnain, S. Ligand binding and aggregation of pathogenic SOD1. _Nat. Commun._ 4, 1758


(2013). Article  PubMed  PubMed Central  Google Scholar  * Soragni, A. et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. _Cancer Cell_ 29,


90–103 (2016). Article  CAS  PubMed  Google Scholar  * Frost, J. R., Jacob, N. T., Papa, L. J., Owens, A. E. & Fasan, R. Ribosomal synthesis of macrocyclic peptides in vitro and in vivo


mediated by genetically encoded aminothiol unnatural amino acids. _ACS Chem. Biol._ 10, 1805–1816 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bionda, N. & Fasan, R.


Ribosomal synthesis of natural‐product‐like bicyclic peptides in _Escherichia coli_. _ChemBioChem_ 16, 2011–2016 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maksimov, M.


O., Pelczer, I. & Link, A. J. Precursor-centric genome-mining approach for lasso peptide discovery. _Proc. Natl Acad. Sci. USA_ 109, 15223–15228 (2012). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Austin, J., Wang, W., Puttamadappa, S., Shekhtman, A. & Camarero, J. A. Biosynthesis and biological screening of a genetically encoded library based on the


cyclotide MCoTI‐I. _ChemBioChem_ 10, 2663–2670 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified


peptide natural products: overview and recommendations for a universal nomenclature. _Nat. Prod. Rep._ 30, 108–160 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, C. C.


& Schultz, P. G. Adding new chemistries to the genetic code. _Annu. Rev. Biochem._ 79, 413–444 (2010). Article  CAS  PubMed  Google Scholar  * Young, T. S. et al. Evolution of cyclic


peptide protease inhibitors. _Proc. Natl Acad. Sci. USA_ 108, 11052–11056 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Driggers, E. M., Hale, S. P., Lee, J. & Terrett,


N. K. The exploration of macrocycles for drug discovery—an underexploited structural class. _Nat. Rev. Drug Discov._ 7, 608–624 (2008). Article  CAS  PubMed  Google Scholar  * Broersen, K.


et al. A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. _Protein Eng. Des. Sel._ 24, 743–750


(2011). Article  CAS  PubMed  Google Scholar  * Brewer, G. J. & Torricelli, J. R. Isolation and culture of adult neurons and neurospheres. _Nat. Protoc._ 2, 1490–1498 (2007). Article 


CAS  PubMed  Google Scholar  * Friedman, W. et al. Differential actions of neurotrophins in the locus coeruleus and basal forebrain. _Exp. Neurol._ 119, 72–78 (1993). Article  CAS  PubMed 


Google Scholar  * Dietrich, P., Rideout, H. J., Wang, Q. & Stefanis, L. Lack of p53 delays apoptosis, but increases ubiquitinated inclusions, in proteasomal inhibitor-treated cultured


cortical neurons. _Mol. Cell. Neurosci._ 24, 430–441 (2003). Article  CAS  PubMed  Google Scholar  * Link, C. D. Expression of human beta-amyloid peptide in transgenic _Caenorhabditis


elegans_. _Proc. Natl Acad. Sci. USA_ 92, 9368–9372 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Drake, J., Link, C. D. & Butterfield, D. A. Oxidative stress precedes


fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1–42) in a transgenic _Caenorhabditis elegans_ model. _Neurobiol. Aging_ 24, 415–420 (2003). Article  CAS  PubMed  Google


Scholar  * Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. _J. Comput. Chem._


31, 455–461 (2010). CAS  PubMed  PubMed Central  Google Scholar  * Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. _J. Comput.


Chem._ 30, 2785–2791 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sanner, M. F. Python: a programming language for software integration and development. _J. Mol. Graph.


Model._ 17, 57–61 (1999). CAS  PubMed  Google Scholar  * Case, D. A. et al. _AMBER 12_ http://www.ambermd.org (Univ. California, San Francisco, CA, 2012).  Google Scholar  * Hornak, V. et


al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. _Proteins_ 65, 712–725 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Hou, T. J., Wang, J. M., Li, Y. Y. & Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular


dynamics simulations. _J. Chem. Inf. Model._ 51, 69–82 (2011). Article  CAS  PubMed  Google Scholar  * Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding


affinities. _Expert Opin. Drug Dis._ 10, 449–461 (2015). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank S. Benkovic (Penn State University) and M. H.


Hecht (Princeton University) for the plasmids, D. Walsh (Brigham and Women’s Hospital), L. Stefanis (University of Athens) and M. Paravatou-Petsotas (National Center for Scientific Research


'Demokritos') for the cell lines, C. D. Link (University of Colorado Boulder) for the _C. elegans_ CL2331 strain and P. Mehta (Institute for Basic Research in Developmental


Disabilities) for the antibodies. The nematode strains used in this study were provided by the Caenorhabditis Genetics Center, supported by the United States National Institutes of Health


National Center for Research Resources. We also thank D. Gialama for technical assistance with the initial expression vector construction and E. Megalou for bacterial sample preparations for


the _C. elegans_ feeding assays. We gratefully acknowledge G. Georgiou (University of Texas at Austin) for facilitating the flow cytometric sorting experiments and V. Papadimitriou and A.


Xenakis for the dynamic light scattering experiments. This work was funded by the following projects: NEUROTHERAPY in the framework of the research grant 'Aristeia', financed by


the Hellenic General Secretariat of Research and Technology and the National Strategic Reference Framework (to G.S.); CYCLIPAD in the framework of the research grant 'Thalis',


financed by the Hellenic Ministry of Education, Research and Religious Affairs and the National Strategic Reference Framework (to E.S.G., G.S., F.N.K., M.P., M.M. and S.E.); the John S.


Latsis Public Benefit Foundation (to N.C. and G.S.); and the Synthetic Biology research infrastructure OMIC-ENGINE, financed by the Hellenic General Secretariat of Research and Technology


and the National Strategic Reference Framework. S.B. and Z.I.L. are recipients of fellowships for post-doctoral research by the Hellenic State Scholarships Foundation "IKY Fellowships


of Excellence for Postgraduate Studies in Greece - Siemens Program". The Graphics Processing Unit (GPU)-accelerated molecular dynamics simulations were performed at the LinkSCEEM


Cy-Tera GPU cluster, supported by the LinkSCEEM-2 project and funded by the European Union FP7 Capacities Research Infrastructure, INFRA-2010-1.2.3 Virtual Research Communities (grant


agreement RI-261600). The molecular mechanics Poisson–Boltzmann surface area calculations were supported by computational time granted by the Greek Research and Technology Network in the


National High Performance Computing Facility Advanced Research Information System under project identification pr001017. AUTHOR INFORMATION Author notes * Konstantinos D. Papavasileiou


Present address: Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310, Athens, Greece AUTHORS AND AFFILIATIONS * Institute of Biology,


Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece Ilias Matis, Dafni Chrysanthi Delivoria, Nikoletta Papaevgeniou, Stefania Panoutsou, 


Stamatia Bellou, Konstantinos D. Papavasileiou, Zacharoula I. Linardaki, Efstathios S. Gonos, Manthos G. Papadopoulos, Niki Chondrogianni & Georgios Skretas * School of Chemical


Engineering, National Technical University of Athens, 15780, Athens, Greece Ilias Matis, Dafni Chrysanthi Delivoria & Fragiskos N. Kolisis * Institute of Biosciences and Applications,


National Center for Scientific Research “Demokritos”, 15310, Athens, Greece Barbara Mavroidi & Maria Pelecanou * Faculty of Biology and Pharmacy, Institute of Nutrition, Friedrich


Schiller University of Jena, 07743, Jena, Germany Nikoletta Papaevgeniou * Department of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece Stefania Panoutsou, 


Alexandra V. Stavropoulou & Spiros Efthimiopoulos * Department of Biology, University of Patras, 26504, Patras, Greece Zacharoula I. Linardaki & Marigoula Margarity * Department of


Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece Kostas Vekrellis * Institute of Nanoscience and Nanotechnology,


National Center for Scientific Research “Demokritos”, 15310, Athens, Greece Nikos Boukos * Medical School, Örebro University, 70182, Örebro, Sweden Efstathios S. Gonos Authors * Ilias Matis


View author publications You can also search for this author inPubMed Google Scholar * Dafni Chrysanthi Delivoria View author publications You can also search for this author inPubMed Google


Scholar * Barbara Mavroidi View author publications You can also search for this author inPubMed Google Scholar * Nikoletta Papaevgeniou View author publications You can also search for


this author inPubMed Google Scholar * Stefania Panoutsou View author publications You can also search for this author inPubMed Google Scholar * Stamatia Bellou View author publications You


can also search for this author inPubMed Google Scholar * Konstantinos D. Papavasileiou View author publications You can also search for this author inPubMed Google Scholar * Zacharoula I.


Linardaki View author publications You can also search for this author inPubMed Google Scholar * Alexandra V. Stavropoulou View author publications You can also search for this author


inPubMed Google Scholar * Kostas Vekrellis View author publications You can also search for this author inPubMed Google Scholar * Nikos Boukos View author publications You can also search


for this author inPubMed Google Scholar * Fragiskos N. Kolisis View author publications You can also search for this author inPubMed Google Scholar * Efstathios S. Gonos View author


publications You can also search for this author inPubMed Google Scholar * Marigoula Margarity View author publications You can also search for this author inPubMed Google Scholar * Manthos


G. Papadopoulos View author publications You can also search for this author inPubMed Google Scholar * Spiros Efthimiopoulos View author publications You can also search for this author


inPubMed Google Scholar * Maria Pelecanou View author publications You can also search for this author inPubMed Google Scholar * Niki Chondrogianni View author publications You can also


search for this author inPubMed Google Scholar * Georgios Skretas View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS G.S. conceived and


coordinated the project. G.S., N.C., M.P., K.D.P. and S.E. designed the research. G.S., E.S.G., M.P., S.E., M.M., K.V., N.C. and F.N.K. attracted funding. I.M., D.C.D., B.M., N.P., S.P.,


S.B., K.D.P., Z.I.L., A.V.S., N.B., K.V. and G.S. performed the research. I.M., D.C.D., B.M., N.P., S.P., S.B., K.D.P., Z.I.L., K.V., S.E., M.P., N.C. and G.S. analysed the data. G.S., N.C.,


M.P., Ν.Β., K.V., S.E. and M.G.P. supervised the research. G.S. wrote the paper with contributions from I.M., D.C.D., B.M., N.P., S.P., K.D.P., Z.I.L., S.E., N.C. and M.P. All authors read


and approved the final version of the paper. CORRESPONDING AUTHOR Correspondence to Georgios Skretas. ETHICS DECLARATIONS COMPETING INTERESTS G.S. is the inventor on patent applications for


AβC5-34, AβC5-116, SOD1C5-4 and other Aβ- and SOD1-targeting peptide macrocyclic sequences described in this article. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral


with regard to jurisdictional claims in published maps and institutional affiliations. A correction to this article is available online at https://doi.org/10.1038/s41551-017-0164-z.


ELECTRONIC SUPPLEMENTARY MATERIAL SUPPLEMENTARY INFORMATION Supplementary figures and tables LIFE SCIENCES REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Matis, I., Delivoria, D.C., Mavroidi, B. _et al._ An integrated bacterial system for the discovery of chemical rescuers of disease-associated protein misfolding.


_Nat Biomed Eng_ 1, 838–852 (2017). https://doi.org/10.1038/s41551-017-0144-3 Download citation * Received: 06 June 2017 * Accepted: 06 September 2017 * Published: 10 October 2017 * Issue


Date: October 2017 * DOI: https://doi.org/10.1038/s41551-017-0144-3 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative