Dzyaloshinskii–moriya-like interaction in ferroelectrics and antiferroelectrics

Dzyaloshinskii–moriya-like interaction in ferroelectrics and antiferroelectrics


Play all audios:


ABSTRACT The Dzyaloshinskii–Moriya interaction (DMI) between two magnetic moments m_i_ and m_j_ is of the form \({\rm{D}}_{ij} \cdot ({\rm{m}}_i \times {\rm{m}}_j)\). It originates from


spin–orbit coupling, and is at the heart of fascinating phenomena involving non-collinear magnetism, such as magnetic topological defects (for example, skyrmions) as well as spin–orbit


torques and magnetically driven ferroelectricity, that are of significant fundamental and technological interest. In sharp contrast, its electric counterpart, which is an electric DMI


characterized by its \({{\bf{D}}}_{ij}^{\prime}\) strength and describing an interaction between two polar displacements u_i_ and u_j_, has rarely been considered, despite the striking


possibility that it could also generate new features associated with non-collinear patterns of electric dipoles. Here we report first-principles simulations combined with group theoretical


symmetry analysis which not only demonstrate that electric DMI does exist and has a one-to-one correspondence with its magnetic analogue, but also reveals a physical source for it. These


findings can be used to explain and/or design phenomena of possible technological importance in ferroelectrics and multiferroics. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MAGNETOELECTRIC COUPLING OF DOMAINS, DOMAIN WALLS AND


VORTICES IN A MULTIFERROIC WITH INDEPENDENT MAGNETIC AND ELECTRIC ORDER Article Open access 25 May 2021 MULTIFERROIC KINKS AND SPIN-FLOP TRANSITION IN NI2INSBO6 FROM FIRST PRINCIPLES Article


Open access 03 June 2024 FRACTIONAL QUANTUM FERROELECTRICITY Article Open access 02 January 2024 DATA AVAILABILITY All the data (for example, raw data and Matplotlib-based scripts for


analysing and visualizing the data) supporting the present work are available from the corresponding author upon request. Please note that our data figures were prepared with the use of some


Matplotlib-based scripts (for example, with some mathematical processes such as post-processing of the data or fitting inside the scripts). Consequently, we prefer to share our raw data as


well as the scripts to interested readers on request, so that we can help them in case of need. We do not upload our data and scripts because the latter may depend on the version of Python.


CODE AVAILABILITY The VASP code for the numerical simulations in this work can be found at https://www.vasp.at; the code L-INVARIANT can be found at https://github.com/PaulChern/LINVARIANT/;


the Mathematica software is available at https://www.wolfram.com/mathematica; the Matplotlib is available at https://matplotlib.org; other codes and scripts can be obtained on request from


the corresponding author. REFERENCES * Dzyaloshinskii, I. E. Thermodynamic theory of ‘weak’ ferromagnetism in antiferromagnetic substances. _Sov. Phys. JETP_ 5, 1259–1266 (1957). Google


Scholar  * Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. _Phys. Rev._ 120, 91–98 (1960). CAS  Google Scholar  * Heinze, S. et al. Spontaneous atomic-scale


magnetic skyrmion lattice in two dimensions. _Nat. Phys._ 7, 713–718 (2011). CAS  Google Scholar  * Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new


twist for spintronics. _Nat. Rev. Mater._ 1, 16044 (2016). CAS  Google Scholar  * Bera, S. & Mandal, S. S. Theory of the skyrmion, meron, antiskyrmion, and antimeron in chiral magnets.


_Phys. Rev. Res._ 1, 033109 (2019). CAS  Google Scholar  * Im, M.-Y. et al. Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk. _Nat. Commun._ 3, 983


(2012). Google Scholar  * Kwon, H. Y., Kang, S. P., Wu, Y. Z. & Won, C. Magnetic vortex generated by Dzyaloshinskii–Moriya interaction. _J. Appl. Phys._ 113, 133911 (2013). Google


Scholar  * Pereiro, M. et al. Topological excitations in a kagome magnet. _Nat. Commun._ 5, 4815 (2014). CAS  Google Scholar  * Gao, N. et al. Creation and annihilation of topological meron


pairs in in-plane magnetized films. _Nat. Commun._ 10, 5603 (2019). CAS  Google Scholar  * Ishikuro, Y., Kawaguchi, M., Kato, N., Lau, Y.-C. & Hayashi, M. Dzyaloshinskii–Moriya


interaction and spin–orbit torque at the Ir/Co interface. _Phys. Rev. B_ 99, 134421 (2019). CAS  Google Scholar  * Dong, S., Xiang, H. & Dagotto, E. Magnetoelectricity in multiferroics:


a theoretical perspective. _Natl. Sci. Rev._ 6, 629–641 (2019). CAS  Google Scholar  * Dong, S., Liu, J.-M., Cheong, S.-W. & Ren, Z. Multiferroic materials and magnetoelectric physics:


symmetry, entanglement, excitation, and topology. _Adv. Phys._ 64, 519–626 (2015). CAS  Google Scholar  * Dubovik, V. & Tugushev, V. Toroid moments in electrodynamics and solid-state


physics. _Phys. Rep._ 187, 145–202 (1990). Google Scholar  * Lin, L.-F., Zhang, Y., Moreo, A., Dagotto, E. & Dong, S. Frustrated dipole order induces noncollinear proper ferrielectricity


in two dimensions. _Phys. Rev. Lett._ 123, 067601 (2019). CAS  Google Scholar  * Prosandeev, S., Malashevich, A., Raevski, I. P. & Bellaiche, L. Dynamical magnetoelectric effects


associated with ferroelectric domain walls. _Phys. Rev. B_ 91, 100101 (2015). Google Scholar  * Prosandeev, S. et al. Natural optical activity and its control by electric field in


electrotoroidic systems. _Phys. Rev. B_ 87, 195111 (2013). Google Scholar  * Prosandeev, S., Ponomareva, I., Naumov, I., Kornev, I. & Bellaiche, L. Original properties of dipole vortices


in zero-dimensional ferroelectrics. _J. Phys. Condens. Matter_ 20, 193201 (2008). Google Scholar  * Prosandeev, S., Kornev, I. & Bellaiche, L. Tensors in ferroelectric nanoparticles:


first-principles-based simulations. _Phys. Rev. B_ 76, 012101 (2007). Google Scholar  * Nahas, Y. et al. Discovery of stable skyrmionic state in ferroelectric nanocomposites. _Nat. Commun._


6, 8542 (2015). CAS  Google Scholar  * Lu, L. et al. Topological defects with distinct dipole configurations in PbTiO3/SrTiO3 multilayer films. _Phys. Rev. Lett._ 120, 177601 (2018). Google


Scholar  * Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. _Nature_ 530, 198–201 (2016). CAS  Google Scholar  * Jia, C.-L., Urban, K. W., Alexe, M., Hesse, D. &


Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. _Science_ 331, 1420–1423 (2011). CAS  Google Scholar  * Nelson,


C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. _Nano Lett._ 11, 828–834 (2011). CAS  Google Scholar  * Zhang, Q. et al. Nanoscale bubble domains and


topological transitions in ultrathin ferroelectric films. _Adv. Mater._ 29, 1702375 (2017). Google Scholar  * Das, S. et al. Observation of room-temperature polar skyrmions. _Nature_ 568,


368–372 (2019). CAS  Google Scholar  * Prosandeev, S. et al. In _Nanoscale Ferroelectrics and Multiferroics_ (eds Algueró, M. et al.) 700–728 (John Wiley, 2016). * Naumov, I. I., Bellaiche,


L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. _Nature_ 432, 737–740 (2004). CAS  Google Scholar  * Erb, K. C. & Hlinka, J. Vector, bidirector, and


Bloch skyrmion phases induced by structural crystallographic symmetry breaking. _Phys. Rev. B_ 102, 024110 (2020). CAS  Google Scholar  * Bellaiche, L., Gui, Z. & Kornev, I. A. A simple


law governing coupled magnetic orders in perovskites. _J. Phys. Condens. Matter_ 24, 312201 (2012). CAS  Google Scholar  * Zhao, H. J., Íñiguez, J., Chen, X. M. & Bellaiche, L. Origin of


the magnetization and compensation temperature in rare-earth orthoferrites and orthochromates. _Phys. Rev. B_ 93, 014417 (2016). Google Scholar  * White, R. L. Review of recent work on the


magnetic and spectroscopic properties of the rare-earth orthoferrites. _J. Appl. Phys._ 40, 1061–1069 (1969). CAS  Google Scholar  * Bousquet, E. & Cano, A. Non-collinear magnetism in


multiferroic perovskites. _J. Phys. Condens. Matter_ 28, 123001 (2016). Google Scholar  * Zhao, H. J., Ren, W., Yang, Y., Chen, X. M. & Bellaiche, L. Effect of chemical and hydrostatic


pressures on structural and magnetic properties of rare-earth orthoferrites: a first-principles study. _J. Phys. Condens. Matter_ 25, 466002 (2013). Google Scholar  * Varignon, J., Bristowe,


N. C. & Ghosez, P. Electric field control of Jahn–Teller distortions in bulk perovskites. _Phys. Rev. Lett._ 116, 057602 (2016). Google Scholar  * Yang, Y., Ren, W., Stengel, M., Yan,


X. H. & Bellaiche, L. Revisiting properties of ferroelectric and multiferroic thin films under tensile strain from first principles. _Phys. Rev. Lett._ 109, 057602 (2012). Google Scholar


  * Yang, Y., Stengel, M., Ren, W., Yan, X. H. & Bellaiche, L. Epitaxial short-period PbTiO3/BiFeO3 superlattices studied by first-principles calculations. _Phys. Rev. B_ 86, 144114


(2012). Google Scholar  * Zhao, H. J. et al. Creating multiferroics with large tunable electrical polarization from paraelectric rare-earth orthoferrites. _J. Phys.: Condens. Matter_ 26,


472201 (2014). Google Scholar  * Belik, A. A., Stefanovich, S. Y., Lazoryak, B. I. & Takayama-Muromachi, E. BiInO3: a polar oxide with GdFeO3-type perovskite structure. _Chem. Mater._


18, 1964–1968 (2006). CAS  Google Scholar  * Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. _Phys. Rev. Lett._ 95, 057205


(2005). Google Scholar  * Bellaiche, L. & Íñiguez, J. Universal collaborative couplings between oxygen-octahedral rotations and antiferroelectric distortions in perovskites. _Phys. Rev.


B_ 88, 014104 (2013). Google Scholar  * Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. _Nature_ 452, 732–736 (2008). CAS  Google Scholar  *


Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization–magnetization coupling. _Phys. Rev. Lett._ 106, 107204 (2011). Google Scholar 


* Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in


double perovskites and A3B2O7 Ruddlesden–Popper compounds. _Adv. Funct. Mater._ 23, 4810–4820 (2013). CAS  Google Scholar  * Rondinelli, J. M. & Fennie, C. J. Octahedral rotation-induced


ferroelectricity in cation ordered perovskites. _Adv. Mater._ 24, 1961–1968 (2012). CAS  Google Scholar  * Zhao, H. J., Íñiguez, J., Ren, W., Chen, X. M. & Bellaiche, L. Atomistic


theory of hybrid improper ferroelectricity in perovskites. _Phys. Rev. B_ 89, 174101 (2014). Google Scholar  * Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric


domain walls found from first principles. _Phys. Rev. Lett._ 112, 247603 (2014). Google Scholar  * Wang, Y. J., Chen, D., Tang, Y. L., Zhu, Y. L. & Ma, X. L. Origin of the Bloch-type


polarization components at the 180∘ domain walls in ferroelectric PbTiO3. _J. Appl. Phys._ 116, 224105 (2014). Google Scholar  * Hlinka, J. & Márton, P. Phenomenological model of a 90∘


domain wall in BaTiO3-type ferroelectrics. _Phys. Rev. B_ 74, 104104 (2006). Google Scholar  * Gonçalves, M. A. P., Escorihuela-Sayalero, C., Garca-Fernández, P., Junquera, J. & Íñiguez,


J. Theoretical guidelines to create and tune electric skyrmion bubbles. _Sci. Adv._ 5, eaau7023 (2019). Google Scholar  * Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab


initio total-energy calculations using a plane-wave basis set. _Phys. Rev. B_ 54, 11169–11186 (1996). CAS  Google Scholar  * Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to


the projector augmented-wave method. _Phys. Rev. B_ 59, 1758–1775 (1999). CAS  Google Scholar  * Csonka, G. I. et al. Assessing the performance of recent density functionals for bulk solids.


_Phys. Rev. B_ 79, 155107 (2009). Google Scholar  * Blöchl, P. E. Projector augmented-wave method. _Phys. Rev. B_ 50, 17953–17979 (1994). Google Scholar  * Koster, G. F., Dimmock, J. D.,


Wheeler, R. G. & Statz, H. _Properties of the Thirty-Two Point Group_ (MIT Press, 1963). * Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and


morphology data. _J. Appl. Crystal._ 44, 1272–1276 (2011). CAS  Google Scholar  * Hunter, J. D. Matplotlib: a 2D graphics environment. _Comput. Sci. Eng._ 9, 90–95 (2007). Google Scholar  *


Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. _Phys. Rev. Lett._ 45, 566–569 (1980). CAS  Google Scholar  * Dudarev, S. L., Botton, G. A.,


Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. _Phys. Rev. B_ 57, 1505–1509 (1998). CAS 


Google Scholar  Download references ACKNOWLEDGEMENTS H.J.Z and L.B. thank the Department of Energy, Office of Basic Energy Sciences, under award number DESC0002220 for the DFT simulations.


P.C. and S.P. acknowledge the Office of Naval Research under grant number N00014-17-1-2818 for symmetry analysis. The simulations based on DFT were done using the Arkansas High Performance


Computing Center. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA Hong Jian


Zhao, Peng Chen, Sergey Prosandeev & Laurent Bellaiche * Quantum Materials Theory, Italian Institute of Technology, Genoa, Italy Sergey Artyukhin Authors * Hong Jian Zhao View author


publications You can also search for this author inPubMed Google Scholar * Peng Chen View author publications You can also search for this author inPubMed Google Scholar * Sergey Prosandeev


View author publications You can also search for this author inPubMed Google Scholar * Sergey Artyukhin View author publications You can also search for this author inPubMed Google Scholar *


Laurent Bellaiche View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS L.B. and H.J.Z. conceived the work. H.J.Z. performed the DFT


simulations. H.J.Z., P.C., S.P. and S.A. carried out symmetry analysis. All authors participated in the discussion and preparation of this work. CORRESPONDING AUTHORS Correspondence to Peng


Chen or Laurent Bellaiche. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with


regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1-7, Discussion I–VII, Tables I–VI


and refs. 1–22. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zhao, H.J., Chen, P., Prosandeev, S. _et al._ Dzyaloshinskii–Moriya-like interaction in


ferroelectrics and antiferroelectrics. _Nat. Mater._ 20, 341–345 (2021). https://doi.org/10.1038/s41563-020-00821-3 Download citation * Received: 28 April 2020 * Accepted: 03 September 2020


* Published: 12 October 2020 * Issue Date: March 2021 * DOI: https://doi.org/10.1038/s41563-020-00821-3 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative