Bipartite interactions, antibiotic production and biosynthetic potential of the arabidopsis leaf microbiome

Bipartite interactions, antibiotic production and biosynthetic potential of the arabidopsis leaf microbiome


Play all audios:


ABSTRACT Plants are colonized by phylogenetically diverse microorganisms that affect plant growth and health. Representative genome-sequenced culture collections of bacterial isolates from


model plants, including _Arabidopsis thaliana_, have recently been established. These resources provide opportunities for systematic interaction screens combined with genome mining to


discover uncharacterized natural products. Here, we report on the biosynthetic potential of 224 strains isolated from the _A. thaliana_ phyllosphere. Genome mining identified more than 1,000


predicted natural product biosynthetic gene clusters (BGCs), hundreds of which are unknown compared to the MIBiG database of characterized BGCs. For functional validation, we used a


high-throughput screening approach to monitor over 50,000 binary strain combinations. We observed 725 inhibitory interactions, with 26 strains contributing to the majority of these. A


combination of imaging mass spectrometry and bioactivity-guided fractionation of the most potent inhibitor, the BGC-rich _Brevibacillus_ sp. Leaf182, revealed three distinct natural product


scaffolds that contribute to the observed antibiotic activity. Moreover, a genome mining-based strategy led to the isolation of a _trans_-acyltransferase polyketide synthase-derived


antibiotic, macrobrevin, which displays an unprecedented natural product structure. Our findings demonstrate that the phyllosphere is a valuable environment for the identification of


antibiotics and natural products with unusual scaffolds. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn


more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant


access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions *


Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EXPLORING THE SPECIALIZED METABOLOME OF THE PLANT PATHOGEN _STREPTOMYCES_ SP. 11-1-2 Article Open access 06


May 2024 GENOMIC AND METABOLOMIC INSIGHTS INTO THE ANTIMICROBIAL COMPOUNDS AND PLANT GROWTH-PROMOTING POTENTIAL OF _BACILLUS VELEZENSIS_ B115 Article Open access 28 March 2025 CORRELATIVE


METABOLOGENOMICS OF 110 FUNGI REVEALS METABOLITE–GENE CLUSTER PAIRS Article 06 March 2023 REFERENCES * Dewick, P. M. _Medicinal Natural Products: A Biosynthetic Approach_ 3rd edn (Wiley,


Chichester, 2009). * Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. _J. Nat. Prod._ 79, 629–661 (2016). Article  CAS  PubMed  Google Scholar  *


Mlot, C. Antibiotics in nature: beyond biological warfare. _Science_ 324, 1637–1639 (2009). Article  CAS  PubMed  Google Scholar  * Meiser, P., Bode, H. B. & Müller, R. The unique


DKxanthene secondary metabolite family from the myxobacterium _Myxococcus xanthus_ is required for developmental sporulation. _Proc. Natl Acad. Sci. USA_ 103, 19128–19133 (2006). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Hawver, L. A., Jung, S. A. & Ng, W. L. Specificity and complexity in bacterial quorum-sensing systems. _FEMS Microbiol. Rev._ 40, 738–752


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Höfer, I. et al. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite.


_Chem. Biol._ 18, 381–391 (2011). Article  CAS  PubMed  Google Scholar  * Phelan, V. V., Liu, W. T., Pogliano, K. & Dorrestein, P. C. Microbial metabolic exchange—the


chemotype-to-phenotype link. _Nat. Chem. Biol._ 8, 26–35 (2012). Article  CAS  Google Scholar  * Saha, R., Saha, N., Donofrio, R. S. & Bestervelt, L. L. Microbial siderophores: a mini


review. _J. Basic Microbiol._ 53, 303–317 (2013). Article  PubMed  Google Scholar  * Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire.


_Nature_ 506, 58–62 (2014). Article  CAS  PubMed  Google Scholar  * Lincke, T., Behnken, S., Ishida, K., Roth, M. & Hertweck, C. Closthioamide: an unprecedented polythioamide antibiotic


from the strictly anaerobic bacterium _Clostridium cellulolyticum_. _Angew. Chem._ 49, 2011–2013 (2010). Article  CAS  Google Scholar  * Pidot, S. J., Coyne, S., Kloss, F. & Hertweck, C.


Antibiotics from neglected bacterial sources. _Int. J. Med. Microbiol._ 304, 14–22 (2014). Article  CAS  PubMed  Google Scholar  * Wilson, M. C. & Piel, J. Metagenomic approaches for


exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. _Chem. Biol._ 20, 636–647 (2013). Article  CAS  PubMed  Google Scholar  * Rondon, M. R. et al. Cloning the


soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. _Appl. Environ. Microbiol._ 66, 2541–2547 (2000). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Banik, J. J. & Brady, S. F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. _Curr.


Opin. Microbiol._ 13, 603–609 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality:


opportunities of synthetic communities for plant microbiome research. _Cell Host Microbe_ 22, 142–155 (2017). Article  CAS  PubMed  Google Scholar  * Bai, Y. et al. Functional overlap of the


_Arabidopsis_ leaf and root microbiota. _Nature_ 528, 364–369 (2015). Article  CAS  PubMed  Google Scholar  * Vorholt, J. A. Microbial life in the phyllosphere. _Nat. Rev. Microbiol._ 10,


828–840 (2012). Article  CAS  PubMed  Google Scholar  * Ryffel, F. et al. Metabolic footprint of epiphytic bacteria on _Arabidopsis thaliana_ leaves. _ISME J._ 10, 632–643 (2016). Article 


CAS  PubMed  Google Scholar  * Blin, K. et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. _Nucleic Acids Res._ 45, W36–W41 (2017). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Medema, M. H. et al. Minimum information about a biosynthetic gene cluster. _Nat. Chem. Biol._ 11, 625–631 (2015). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Yang, S. C., Lin, C. H., Sung, C. T. & Fang, J. Y. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. _Front. Microbiol._ 5,


241 (2014). PubMed  PubMed Central  Google Scholar  * Helfrich, E. J. & Piel, J. Biosynthesis of polyketides by _trans_-AT polyketide synthases. _Nat. Prod. Rep._ 33, 231–316 (2016).


Article  CAS  PubMed  Google Scholar  * Blin, K., Medema, M. H., Kottmann, R., Lee, S. Y. & Weber, T. The antiSMASH database, a comprehensive database of microbial secondary metabolite


biosynthetic gene clusters. _Nucleic Acids Res._ 45, D555–D559 (2017). Article  CAS  PubMed  Google Scholar  * Hillenmeyer, M. E., Vandova, G. A., Berlew, E. E. & Charkoudian, L. K.


Evolution of chemical diversity by coordinated gene swaps in type II polyketide gene clusters. _Proc. Natl Acad. Sci. USA_ 112, 13952–13957 (2015). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Lazos, O. et al. Biosynthesis of the putative siderophore erythrochelin requires unprecedented crosstalk between separate nonribosomal peptide gene clusters. _Chem. Biol._


17, 160–173 (2010). Article  CAS  PubMed  Google Scholar  * Lombó, F. et al. Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression


in two _Streptomyces_ species. _ChemBioChem_ 7, 366–376 (2006). Article  CAS  PubMed  Google Scholar  * Arrebola, E. et al. Mangotoxin: a novel antimetabolite toxin produced by _Pseudomonas


syringae_ inhibiting ornithine/arginine biosynthesis. _Physiol. Mol. Plant Pathol._ 63, 117–127 (2003). Article  CAS  Google Scholar  * Bassler, B. L. & Losick, R. Bacterially speaking.


_Cell_ 125, 237–246 (2006). Article  CAS  PubMed  Google Scholar  * Pandey, S. S., Patnana, P. K., Rai, R. & Chatterjee, S. Xanthoferrin, the α-hydroxycarboxylate-type siderophore of


_Xanthomonas campestris_ pv. _campestris_, is required for optimum virulence and growth inside cabbage. _Mol. Plant Pathol._ 18, 949–962 (2017). Article  CAS  PubMed  Google Scholar  *


Barona-Gomez, F., Wong, U., Giannakopulos, A. E., Derrick, P. J. & Challis, G. L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in _Streptomyces


coelicolor_ M145. _J. Am. Chem. Soc._ 126, 16282–16283 (2004). Article  CAS  PubMed  Google Scholar  * Lee, J. Y. et al. Biosynthetic analysis of the petrobactin siderophore pathway from


_Bacillus anthracis_. _J. Bacteriol._ 189, 1698–1710 (2007). Article  CAS  PubMed  Google Scholar  * Barry, S. M. & Challis, G. L. Recent advances in siderophore biosynthesis. _Curr.


Opin. Chem. Biol._ 13, 205–215 (2009). Article  CAS  PubMed  Google Scholar  * Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. _Appl. Environ. Microbiol._ 69, 1875–1883


(2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lindow, S. E. & Leveau, J. H. Phyllosphere microbiology. _Curr. Opin. Biotechnol._ 13, 238–243 (2002). Article  CAS 


PubMed  Google Scholar  * Schöner, T. A. et al. Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. _ChemBioChem_ 17,


247–253 (2016). Article  CAS  PubMed  Google Scholar  * Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.


_Nat. Biotechnol._ 34, 828–837 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mootz, H. D. & Marahiel, M. A. The tyrocidine biosynthesis operon of Bacillus brevis:


complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. _J. Bacteriol._ 179, 6843–6850 (1997). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Gebhardt, K., Pukall, R. & Fiedler, H. P. Streptocidins A-D, novel cyclic decapeptide antibiotics produced by _Streptomyces_ sp. Tu 6071. I. Taxonomy, fermentation, isolation


and biological activities. _J. Antibiot._ 54, 428–433 (2001). Article  CAS  Google Scholar  * Zgurskaya, H. I., Löpez, C. A. & Gnanakaran, S. Permeability barrier of Gram-negative cell


envelopes and approaches to bypass it. _ACS Infect. Dis._ 1, 512–522 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou, X. et al. Marthiapeptide A, an anti-infective and


cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived _Marinactinospora thermotolerans_ SCSIO 00652. _J. Nat. Prod._ 75, 2251–2255 (2012). Article  CAS 


PubMed  Google Scholar  * Grubbs, K. J. et al. Large-scale bioinformatics analysis of _Bacillus_ genomes uncovers conserved roles of natural products in bacterial physiology. _mSystems_ 2,


e00040-17 (2017). Article  PubMed  PubMed Central  Google Scholar  * Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family


of antibiotics. _Cell_ 158, 1402–1414 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Russel, J., Røder, H. L., Madsen, J. S., Burmølle, M. & Sørensen, S. J. Antagonism


correlates with metabolic similarity in diverse bacteria. _Proc. Natl Acad. Sci. USA_ 114, 10684–10688 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maida, I. et al.


Antagonistic interactions between endophytic cultivable bacterial communities isolated from the medicinal plant _Echinacea purpurea_. _Environ. Microbiol._ 18, 2357–2365 (2016). Article  CAS


  PubMed  Google Scholar  * Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. _Microbiome_ 6, 58 (2018). Article  PubMed  PubMed Central  Google


Scholar  * Venturi, V. & Keel, C. Signaling in the rhizosphere. _Trends Plant Sci._ 21, 187–198 (2016). Article  CAS  PubMed  Google Scholar  * Chodkowski, J. L. & Shade, A. A


synthetic community system for probing microbial interactions driven by exometabolites. _mSystems_ 2, e00129-17 (2017). Article  PubMed  PubMed Central  Google Scholar  * Stringlis, I. A.,


Zhang, H., Pieterse, C. M. J., Bolton, M. D. & de Jonge, R. Microbial small molecules—weapons of plant subversion. _Nat. Prod. Rep._ 35, 410–433 (2018). Article  CAS  PubMed  Google


Scholar  * Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. _Annu. Rev. Phytopathol._ 50, 403–424


(2012). Article  CAS  PubMed  Google Scholar  * Peyraud, R. et al. Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. _Proc. Natl Acad. Sci. USA_ 106, 4846–4851 (2009).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and


metadata with GraPhlAn. _PeerJ_ 3, e1029 (2015). Article  PubMed  PubMed Central  Google Scholar  * Müller, D. B., Schubert, O. T., Rost, H., Aebersold, R. & Vorholt, J. A. Systems-level


proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. _Mol. Cell. Proteom._ 15, 3256–3269 (2016). Article  CAS  Google Scholar  *


Yamanaka, K. et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. _Proc. Natl Acad. Sci. USA_ 111, 1957–1962 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. _Nucleic Acids Res._ 44, 279–285 (2016).


Article  CAS  Google Scholar  * Ceniceros, A., Dijkhuizen, L., Petrusma, M. & Medema, M. H. Genome-based exploration of the specialized metabolic capacities of the genus _Rhodococcus_.


_BMC Genom._ 18, 593 (2017). Article  CAS  Google Scholar  * Yang, J. Y. et al. Primer on agar-based microbial imaging mass spectrometry. _J. Bacteriol._ 194, 6023–6028 (2012). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Ueoka, R. et al. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. _Nat. Chem. Biol._ 11, 705–712 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Durante-Rodríguez, G., de Lorenzo, V. & Martínez-García, E. The Standard European Vector Architecture (SEVA) plasmid toolkit.


_Methods Mol. Biol._ 1149, 469–478 (2014). Article  CAS  PubMed  Google Scholar  * Radeck, J. et al. The _Bacillus_ BioBrick Box: generation and evaluation of essential genetic building


blocks for standardized work with _Bacillus subtilis_. _J. Biol. Eng._ 7, 29 (2013). Article  PubMed  PubMed Central  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This work was


financially supported by SNF grant NRP72 to J.P. and J.A.V. and by European Research Council Advanced Grants (PhyMo to J.A.V. and SynPlex to J.P.). AUTHOR INFORMATION Author notes * These


authors contributed equally: Eric J. N. Helfrich, Christine M. Vogel. AUTHORS AND AFFILIATIONS * Institute of Microbiology, ETH Zurich, Zurich, Switzerland Eric J. N. Helfrich, Christine M.


Vogel, Reiko Ueoka, Martin Schäfer, Florian Ryffel, Daniel B. Müller, Silke Probst, Markus Kreuzer, Jörn Piel & Julia A. Vorholt Authors * Eric J. N. Helfrich View author publications


You can also search for this author inPubMed Google Scholar * Christine M. Vogel View author publications You can also search for this author inPubMed Google Scholar * Reiko Ueoka View


author publications You can also search for this author inPubMed Google Scholar * Martin Schäfer View author publications You can also search for this author inPubMed Google Scholar *


Florian Ryffel View author publications You can also search for this author inPubMed Google Scholar * Daniel B. Müller View author publications You can also search for this author inPubMed 


Google Scholar * Silke Probst View author publications You can also search for this author inPubMed Google Scholar * Markus Kreuzer View author publications You can also search for this


author inPubMed Google Scholar * Jörn Piel View author publications You can also search for this author inPubMed Google Scholar * Julia A. Vorholt View author publications You can also


search for this author inPubMed Google Scholar CONTRIBUTIONS E.J.N.H., C.M.V., R.U., M.S., F.R., D.B.M., J.P. and J.A.V. designed the research. C.M.V., M.S., F.R., D.B.M. and M.K. performed


binary interaction screens. E.J.N.H., C.M.V., F.R. and S.P. performed genome mining studies. C.M.V. and D.B.M. conducted statistical analyses. E.J.N.H., C.M.V. and M.S. conducted MALDI


imaging experiments. E.J.N.H., C.M.V., M.S., F.R. and S.P. conducted bioassays. E.J.N.H., C.M.V., R.U., F.R. and S.P. isolated and structure-elucidated metabolites. M.S. generated


_Brevibacillus_ knockout mutants. E.J.N.H., C.M.V., D.B.M., J.P. and J.A.V. wrote the manuscript with contributions from all authors. CORRESPONDING AUTHORS Correspondence to Jörn Piel or


Julia A. Vorholt. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figures 1–48, Supplementary Results 1, Supplementary


Methods, Supplementary References. REPORTING SUMMARY SUPPLEMENTARY TABLE Supplementary Tables 1–26. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Helfrich, E.J.N., Vogel, C.M., Ueoka, R. _et al._ Bipartite interactions, antibiotic production and biosynthetic potential of the _Arabidopsis_ leaf microbiome. _Nat Microbiol_ 3, 909–919


(2018). https://doi.org/10.1038/s41564-018-0200-0 Download citation * Received: 22 September 2017 * Accepted: 18 June 2018 * Published: 23 July 2018 * Issue Date: August 2018 * DOI:


https://doi.org/10.1038/s41564-018-0200-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative