Phase-locked laser-wakefield electron acceleration

Phase-locked laser-wakefield electron acceleration


Play all audios:


ABSTRACT Subluminal and superluminal light pulses have attracted considerable attention in recent decades1,2,3,4, opening perspectives in telecommunications, optical storage and fundamental


physics5. Usually achieved in matter, superluminal propagation has also been demonstrated in vacuum with quasi-Bessel beams6,7 or spatio-temporal couplings8,9. Although, in the first case,


the propagation was diffraction free, but with hardly controllable pulse velocities and limited to moderate intensities, in the second, high tunability was achieved, but with substantially


lengthened pulse durations. Here we report a new concept that extends these approaches to relativistic intensities and ultrashort pulses by mixing spatio-temporal couplings and quasi-Bessel


beams to independently control the light velocity and intensity. When used to drive a laser-plasma accelerator10, this concept leads to a new regime that is dephasing free, where the


electron beam energy gain increases by more than one order of magnitude. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NUMERICAL INVESTIGATION OF SEQUENTIAL PHASE-LOCKED OPTICAL GATING OF FREE ELECTRONS Article


Open access 02 November 2023 SPATIO-TEMPORAL COUPLING CONTROLLED LASER FOR ELECTRON ACCELERATION Article Open access 05 July 2022 SEEDED FREE-ELECTRON LASER DRIVEN BY A COMPACT LASER PLASMA


ACCELERATOR Article Open access 05 December 2022 DATA AVAILABILITY The data that support the plots and findings of this paper are available from the corresponding author upon reasonable


request. REFERENCES * Wang, L. J., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light propagation. _Nature_ 406, 277–279 (2000). Article  ADS  Google Scholar  * Bigelow, M. S.,


Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. _Science_ 301, 200–203 (2003). Article  ADS  Google Scholar  * Stenner, M. D.,


Gauthier, D. J. & Neifeld, M. A. The speed of information in a ‘fast-light’ optical medium. _Nature_ 425, 695–698 (2003). Article  ADS  Google Scholar  * Thévenaz, L. Slow and fast light


in optical fibres. _Nat. Photon._ 2, 474–481 (2008). Article  ADS  Google Scholar  * Boyd, R. Slow and fast light: fundamentals and applications. _J. Mod. Opt._ 56, 1908–1915 (2009).


Article  ADS  Google Scholar  * Alexeev, I., Kim, K. Y. & Milchberg, H. M. Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse. _Phys. Rev. Lett._ 88,


073901 (2002). Article  ADS  Google Scholar  * Mugnai, D., Ranfagni, A. & Ruggeri, R. Observation of superluminal behaviors in wave propagation. _Phys. Rev. Lett._ 84, 4830–4833 (2000).


Article  ADS  Google Scholar  * Sainte-Marie, A., Gobert, O. & Quéré, F. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. _Optica_ 4,


1298–1304 (2017). Article  ADS  Google Scholar  * Froula, D. H. et al. Spatiotemporal control of laser intensity. _Nat. Photon._ 12, 262–265 (2018). Article  ADS  Google Scholar  * Lu, W. et


al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. _Phys. Rev. ST Accel. Beams_ 10, 061301 (2007). Article  ADS  Google


Scholar  * Tajima, T. & Dawson, J. M. Laser electron accelerator. _Phys. Rev. Lett._ 43, 267–270 (1979). Article  ADS  Google Scholar  * Malka, V. et al. Principles and applications of


compact laser plasma accelerators. _Nat. Phys._ 4, 447–453 (2008). Article  Google Scholar  * Schroeder, C. B., Esarey, E., Geddes, C. G. R., Benedetti, C. & Leemans, W. P. Physics


considerations for laser-plasma linear colliders. _Phys. Rev. ST Accel. Beams_ 13, 101301 (2010). Article  ADS  Google Scholar  * Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of


laser-driven plasma-based electron accelerators. _Rev. Mod. Phys._ 81, 1229–1285 (2009). Article  ADS  Google Scholar  * Steinke, S. et al. Multistage coupling of independent laser-plasma


accelerators. _Nature_ 530, 190–193 (2016). Article  ADS  Google Scholar  * Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. _Nat. Phys._ 2, 696–699 (2006).


Article  Google Scholar  * Guillaume, E. et al. Electron rephasing in a laser-wakefield accelerator. _Phys. Rev. Lett._ 115, 155002 (2015). Article  ADS  Google Scholar  * Gonsalves, A. J.


et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. _Phys. Rev. Lett._ 122, 084801 (2019). Article  ADS  Google Scholar  *


Smartsev, S. et al. Axiparabola: a long-focal-depth, high-resolution mirror for broadband high-intensity lasers. _Opt. Lett._ 44, 3414–3417 (2019). Article  ADS  Google Scholar  * Davidson,


N., Friesem, A. A. & Hasman, E. Holographic axilens: high resolution and long focal depth. _Opt. Lett._ 16, 523–525 (1991). Article  ADS  Google Scholar  * Hafizi, B., Esarey, E. &


Sprangle, P. Laser-driven acceleration with Bessel beams. _Phys. Rev. E_ 55, 3539–3545 (1997). Article  ADS  Google Scholar  * Kumar, S., Parola, A., Di Trapani, P. & Jedrkiewicz, O.


Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses. _Appl. Phys. B_ 123, 185 (2017). Article  ADS  Google Scholar  * Sun, B., Salter, P. S. &


Booth, M. J. Pulse front adaptive optics: a new method for control of ultrashort laser pulses. _Opt. Express_ 23, 19348–19357 (2015). Article  ADS  Google Scholar  * Cui, Z. et al. Dynamic


chromatic aberration pre-compensation scheme for ultrashort petawatt laser systems. _Opt. Express_ 27, 16812–16822 (2019). Article  ADS  Google Scholar  * Guizar-Sicairos, M. &


Gutiérrez-Vega, J. C. Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. _J. Opt. Soc. Am. A_ 21, 53–58 (2004). Article  ADS  MathSciNet 


Google Scholar  * Schmid, K. et al. Density-transition based electron injector for laser driven wakefield accelerators. _Phys. Rev. ST Accel. Beams_ 13, 091301 (2010). Article  ADS  Google


Scholar  * Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. _Nature_ 444, 737–739 (2006). Article  ADS  Google Scholar  *


Budriūnas, R. et al. 53-W average power CEP-stabilized OPCPA system delivering 5.5-TW few cycle pulses at 1-kHz repetition rate. _Opt. Express_ 25, 5797–5806 (2017). Article  ADS  Google


Scholar  * Rivas, D. E. et al. Next generation driver for attosecond and laser-plasma physics. _Sci. Rep._ 7, 5224 (2017). Article  ADS  Google Scholar  * Cartlidge, E. The light fantastic.


_Science_ 359, 382–385 (2018). Article  ADS  Google Scholar  * Vieira, J. & Mendonça, J. T. Nonlinear laser driven donut wakefields for positron and electron acceleration. _Phys. Rev.


Lett._ 112, 215001 (2014). Article  ADS  Google Scholar  * Depresseux, A. et al. Table-top femtosecond soft X-ray laser by collisional ionization gating. _Nat. Photon._ 9, 817–821 (2015).


Article  ADS  Google Scholar  * Phuoc, K. T. et al. All-optical Compton gamma-ray source. _Nat. Photon._ 6, 308–311 (2012). Article  ADS  Google Scholar  * Corde, S. et al. Femtosecond


X-rays from laser-plasma accelerators. _Rev. Mod. Phys._ 85, 1–48 (2013). Article  ADS  Google Scholar  * Nie, Z. et al. Relativistic single-cycle tunable infrared pulses generated from a


tailored plasma density structure. _Nat. Photon._ 12, 489–494 (2018). Article  ADS  Google Scholar  * Averchi, A. et al. Phase matching with pulsed Bessel beams for high-order harmonic


generation. _Phys. Rev. A_ 77, 021802 (2008). Article  ADS  Google Scholar  * Lifschitz, A. et al. Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. _J.


Comput. Phys._ 228, 1803–1814 (2009). Article  ADS  Google Scholar  Download references ACKNOWLEDGEMENTS We acknowledge support from the European Research Council through the project XFive


(grant no. 339128), the French Agence Nationale de la Recherche (ANR) under reference ANR-19-TERC-0001-01 (project TGV), Gerry Schwartz and Heather Reisman, Israel Science Foundation, VATAT


support and the French embassy in Israel through a Chateaubriand fellowship. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Laboratoire d’Optique Appliquée, Ecole polytechnique – ENSTA – CNRS


– Institut Polytechnique de Paris, Palaiseau, France C. Caizergues, S. Smartsev, V. Malka & C. Thaury * Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot,


Israel S. Smartsev & V. Malka Authors * C. Caizergues View author publications You can also search for this author inPubMed Google Scholar * S. Smartsev View author publications You can


also search for this author inPubMed Google Scholar * V. Malka View author publications You can also search for this author inPubMed Google Scholar * C. Thaury View author publications You


can also search for this author inPubMed Google Scholar CONTRIBUTIONS C.C. and C.T. jointly proposed the concept of phase-locked acceleration, using axiparabola and spatio-temporal


couplings. The idea was then developed by C.C. with advice from V.M. and C.T. C.C. and C.T. established the theoretical background, while C.C. and S.S. developed codes for optimizing and


simulating axiparabola focus. Simulations were carried out by C.C. Finally, C.C. and C.T. wrote the manuscript with help from V.M. and S.S. CORRESPONDING AUTHOR Correspondence to C.


Caizergues. ETHICS DECLARATIONS COMPETING INTERESTS C.T. and S.S. have filed a patent application (no. EP18305810.6) on axiparabola. The authors declare no other competing interests.


ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION


SUPPLEMENTARY INFORMATION Supplementary discussion and Figs. 1 and 2. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Caizergues, C., Smartsev, S.,


Malka, V. _et al._ Phase-locked laser-wakefield electron acceleration. _Nat. Photonics_ 14, 475–479 (2020). https://doi.org/10.1038/s41566-020-0657-2 Download citation * Received: 18


February 2019 * Accepted: 03 June 2020 * Published: 06 July 2020 * Issue Date: August 2020 * DOI: https://doi.org/10.1038/s41566-020-0657-2 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative