Platelet biology and functions: new concepts and clinical perspectives

Platelet biology and functions: new concepts and clinical perspectives


Play all audios:


ABSTRACT Platelets — blood cells continuously produced from megakaryocytes mainly in the bone marrow — are implicated not only in haemostasis and arterial thrombosis, but also in other


physiological and pathophysiological processes. This Review describes current evidence for the heterogeneity in platelet structure, age, and activation properties, with consequences for a


diversity of platelet functions. Signalling processes of platelet populations involved in thrombus formation with ongoing coagulation are well understood. Genetic approaches have provided


information on multiple genes related to normal haemostasis, such as those encoding receptors and signalling or secretory proteins, that determine platelet count and/or responsiveness. As


highly responsive and secretory cells, platelets can alter the environment through the release of growth factors, chemokines, coagulant factors, RNA species, and extracellular vesicles.


Conversely, platelets will also adapt to their environment. In disease states, platelets can be positively primed to reach a pre-activated condition. At the inflamed vessel wall, platelets


interact with leukocytes and the coagulation system, interactions mediating thromboinflammation. With current antiplatelet therapies invariably causing bleeding as an undesired adverse


effect, novel therapies can be more beneficial if directed against specific platelet responses, populations, interactions, or priming conditions. On the basis of these novel concepts and


processes, we discuss several initiatives to target platelets therapeutically. KEY POINTS * Multiomic approaches combined with functional testing of platelets have greatly advanced the


understanding of genetic factors of platelet-related haemorrhagic disorders, but to a lesser extent the understanding of the causes of platelet hyper-reactivity. * Negative and positive


platelet priming alter the threshold for platelet activation in the circulation, with consequences for diagnostic assays. * The diverse pathways of information transfer by platelets through


release of bioactive molecules and extracellular vesicles are still incompletely understood. * Platelets contribute to thromboinflammatory processes by their capacity to interact


functionally with the activated endothelium, leukocytes, and coagulation proteins; the mechanisms are multivariate. * Platelet populations and specific platelet responses are promising


targets for new antithrombotic treatment of patients with cardiovascular disease. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PLATELETS AND DISEASES: SIGNAL TRANSDUCTION AND ADVANCES IN TARGETED THERAPY Article Open


access 16 May 2025 A GUIDE TO MOLECULAR AND FUNCTIONAL INVESTIGATIONS OF PLATELETS TO BRIDGE BASIC AND CLINICAL SCIENCES Article 03 March 2022 PLATELET-PRIMED INTERACTIONS OF COAGULATION AND


ANTICOAGULATION PATHWAYS IN FLOW-DEPENDENT THROMBUS FORMATION Article Open access 17 July 2020 REFERENCES * Quach, M. E., Chen, W. & Li, R. Mechanisms of platelet clearance and


translation to improve platelet storage. _Blood_ 131, 1512–1521 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Lefrancais, E. et al. The lung is a site of platelet biogenesis and a


reservoir for haematopoietic progenitors. _Nature_ 544, 105–109 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Stegner, D. et al. Thrombopoiesis is spatially regulated by the bone


marrow vasculature. _Nat. Commun._ 8, 127 (2017). PubMed  PubMed Central  Google Scholar  * Grozovsky, R., Giannini, S., Falet, H. & Hoffmeister, K. M. Regulating billions of blood


platelets: glycans and beyond. _Blood_ 126, 1877–1884 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Kaser, A. et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin:


role in inflammatory thrombocytosis. _Blood_ 98, 2720–2725 (2001). CAS  PubMed  Google Scholar  * den Dekker, E. et al. Cell-to-cell variability in the differentiation program of human


megakaryocytes. _Biochim. Biophys. Acta_ 1643, 85–94 (2003). Google Scholar  * Moreau, T. et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically


defined forward programming. _Nat. Commun._ 7, 11208 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Machlus, K. R. & Italiano, J. E. Jr. The incredible journey: From


megakaryocyte development to platelet formation. _J. Cell Biol._ 201, 785–796 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Bender, M. et al. Microtubule sliding drives proplatelet


elongation and is dependent on cytoplasmic dynein. _Blood_ 125, 860–868 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Josefsson, E. C. et al. Platelet production proceeds


independently of the intrinsic and extrinsic apoptosis pathways. _Nat. Commun._ 5, 3455 (2014). PubMed  Google Scholar  * Semeniak, D. et al. Proplatelet formation is selectively inhibited


by collagen type I through Syk-independent GPVI signaling. _J. Cell Sci._ 129, 3473–3484 (2016). CAS  PubMed  Google Scholar  * Abbonante, V. et al. A new path to platelet production through


matrix sensing. _Haematologica_ 102, 1150–1160 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Shi, D. S. et al. Proteasome function is required for platelet production. _J. Clin.


Invest._ 124, 3757–3766 (2014). CAS  PubMed  PubMed Central  Google Scholar  * McArthur, K., Chappaz, S. & Kile, B. T. Apoptosis in megakaryocytes and platelets: the life and death of a


lineage. _Blood_ 131, 605–610 (2018). CAS  PubMed  Google Scholar  * Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. _Cell_ 128, 1173–1186 (2007). CAS  PubMed


  Google Scholar  * Alhasan, A. A. et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. _Blood_ 127, e1–e11 (2016). CAS  PubMed  PubMed Central  Google


Scholar  * Male, R., Moon, D. G., Garvey, J. S., Vannier, W. E. & Baldeschwieler, J. D. Organ distributions of liposome-loaded rat platelets. _Biochem. Biophys. Res. Commun._ 195,


276–281 (1993). CAS  PubMed  Google Scholar  * Karpatkin, S. Heterogeneity of human platelets. I. Metabolic and kinetic evidence suggestive of young and old platelets. _J. Clin. Invest._ 48,


1073–1082 (1969). CAS  PubMed  PubMed Central  Google Scholar  * Vicic, W. J. & Weiss, H. J. Evidence that platelet α-granules are a major determinant of platelet density: studies in


storage pool deficiency. _Thromb. Haemost._ 50, 878–880 (1983). CAS  PubMed  Google Scholar  * Savage, B., McFadden, P. R., Hanson, S. R. & Harker, L. A. The relation of platelet density


to platelet age: survival of low- and high-density 111indium-labeled platelets in baboons. _Blood_ 68, 386–393 (1986). CAS  PubMed  Google Scholar  * Freson, K. et al. Platelet


characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. _Blood_ 98, 85–92 (2001). CAS  PubMed  Google Scholar  * Baaten, C. C. F. M. J., Ten Cate,


H., van der Meijden, P. E. J. & Heemskerk, J. W. M. Platelet populations and priming in hematological diseases. _Blood Rev._ 31, 389–399 (2017). PubMed  Google Scholar  * Heemskerk, J.


W. M., Mattheij, N. & Cosemans, J. M. E. M. Platelet-based coagulation: different populations, different functions. _J. Thromb. Haemost._ 11, 2–11 (2013). CAS  PubMed  Google Scholar  *


Jackson, S. P. & Schoenwaelder, S. M. Procoagulant platelets — are they necrotic? _Blood_ 116, 2011–2018 (2010). CAS  PubMed  Google Scholar  * Mattheij, N. J. et al. Coated platelets


function in platelet-dependent fibrin formation via integrin αIIbβ3 and transglutaminase factor XIII. _Haematologica_ 101, 427–436 (2016). CAS  PubMed  PubMed Central  Google Scholar  *


Agbani, E. O. et al. Coordinated membrane ballooning and procoagulant spreading in human platelets. _Circulation_ 132, 1414–1424 (2015). CAS  PubMed  Google Scholar  * Vogler, M. et al.


BCL2/BCL-XL inhibition induces apoptosis, disrupts cellular calcium homeostasis and prevents platelet activation. _Blood_ 117, 7145–7154 (2011). CAS  PubMed  Google Scholar  * Schubert, S.,


Weyrich, A. S. & Rowley, J. W. A tour through the transcriptional landscape of platelets. _Blood_ 124, 493–502 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Pleines, I. et al.


Extended platelet in vivo survival results in exhausted platelets. _Blood_ 126, 416 (2015). Google Scholar  * Pleines, I. et al. Intrinsic apoptosis circumvents the functional decline of


circulating platelets but does not cause the storage lesion. _Blood_ 132, 197–209 (2018). CAS  PubMed  Google Scholar  * McManus, D. D. & Freedman, J. E. MicroRNAs in platelet function


and cardiovascular disease. _Nat. Rev. Cardiol._ 12, 711–717 (2015). CAS  PubMed  Google Scholar  * Rowley, J. W. et al. Dicer1-mediated miRNA processing shapes the mRNA profile and function


of murine platelets. _Blood_ 127, 1743–1751 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Clancy, L., Beaulieu, L. M., Tanriverdi, K. & Freedman, J. E. The role of RNA uptake


in platelet heterogeneity. _Thromb. Haemost._ 117, 948–961 (2017). PubMed  Google Scholar  * Burkhart, J. M. et al. The first comprehensive and quantitative analysis of human platelet


protein composition allows the comparative analysis of structural and functional pathways. _Blood_ 120, e73–82 (2012). CAS  PubMed  Google Scholar  * Zeiler, M., Moser, M. & Mann, M.


Copy number analysis of the murine platelet proteome spanning the complete abundance range. _Mol. Cell. Proteom._ 13, 3435–3445 (2014). CAS  Google Scholar  * Solari, F. A. et al. Combined


quantification of the global proteome, phosphoproteome and protein cleavage to characterize altered platelet functions in the human Scott syndrome. _Mol. Cell. Proteom._ 15, 3154–3169


(2016). CAS  Google Scholar  * Schoenwaelder, S. M. et al. 14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function.


_Nat. Commun._ 7, 12862 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Versteeg, H. H., Heemskerk, J. W. M., Levi, M. & Reitsma, P. S. New fundamentals in hemostasis. _Physiol.


Rev._ 93, 327–358 (2013). CAS  PubMed  Google Scholar  * Jackson, S. P. Arterial thrombosis: insidious, unpredictable and deadly. _Nat. Med._ 17, 1423–1436 (2011). CAS  PubMed  Google


Scholar  * Mastenbroek, T. G., van Geffen, J. P., Heemskerk, J. W. M. & Cosemans, J. M. E. M. Acute and persistent platelet and coagulant activities in atherothrombosis. _J. Thromb.


Haemost._ 13 (Suppl. 1), S272–S280 (2015). CAS  PubMed  Google Scholar  * Shekhonin, B. V., Domogatsky, S. P., Muzykantov, V. R., Idelson, G. L. & Rukosuev, V. S. Distribution of type I,


III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics. _Coll. Relat. Res._ 5, 355–368 (1985). CAS  PubMed  Google Scholar  * De Witt,


S. M. et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. _Nat. Commun._ 5, 4257 (2014). PubMed  Google Scholar  * Swieringa, F., Spronk,


H. M. H., Heemskerk, J. W. M. & van der Meijden, P. E. J. Integrating platelet and coagulation activation in fibrin clot formation. _Res. Pract. Thromb. Haemost._ 2, 450–460 (2018). CAS


  PubMed  PubMed Central  Google Scholar  * Dubois, C., Panicot-Dubois, L., Merrill-Skoloff, G., Furie, B. & Furie, B. C. Glycoprotein VI-dependent and -independent pathways of thrombus


formation in vivo. _Blood_ 107, 3902–3906 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Zhu, S., Lu, Y., Sinno, T. & Diamond, S. L. Dynamics of thrombin generation and flux from


clots during whole human blood flow over collagen/tissue factor surfaces. _J. Biol. Chem._ 291, 23027–23035 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Zilberman-Rudensko, J. et


al. Coagulation factor XI promotes distal platelet activation and single platelet consumption in the bloom stream under shear flow. _Arterioscler. Thromb. Vasc. Biol._ 36, 510–517 (2016).


Google Scholar  * Morowski, M. et al. Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice. _Blood_ 121, 4938–4947 (2013). CAS  PubMed  Google Scholar  *


Boulaftali, Y., Hess, P. R., Kahn, M. L. & Bergmeier, W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. _Circ. Res._ 114, 1174–1184


(2014). CAS  PubMed  PubMed Central  Google Scholar  * Van Gestel, M. et al. Real-time detection of activation patterns in individual platelets during thromboembolism in vivo: differences


between thrombus growth and embolus formation. _J. Vasc. Res._ 39, 534–543 (2002). PubMed  Google Scholar  * Stalker, T. J. et al. A systems approach to hemostasis: 3. Thrombus consolidation


regulates intrathrombus transport and local thrombin activity. _Blood_ 124, 1824–1831 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Brass, L. F. & Stalker, T. J. Minding the


gaps—and the junctions, too. _Circulation_ 125, 2414–2416 (2012). PubMed  PubMed Central  Google Scholar  * Vaiyapuri, S. et al. Gap junctions and connexin hemichannels underpin hemostasis


and thrombosis. _Circulation_ 125, 2479–2491 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Swieringa, F., Kuijpers, M. J., Lamers, M. M., van der Meijden, P. E. J. & Heemskerk,


J. W. M. Rate-limiting roles of the tenase complex of factors VIII and IX in platelet procoagulant activity and formation of platelet-fibrin thrombi under flow. _Haematologica_ 100, 748–756


(2015). CAS  PubMed  PubMed Central  Google Scholar  * Mammadova-Bach, E. et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. _Blood_ 126, 683–691


(2015). CAS  PubMed  Google Scholar  * Van der Meijden, P. E. J. et al. Dual role of collagen in factor XII-dependent thrombus and clot formation. _Blood_ 114, 881–890 (2009). PubMed  Google


Scholar  * Verhoef, J. J. et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. _Blood_ 129, 1707–1717 (2017). CAS  PubMed  PubMed Central  Google


Scholar  * Payne, H., Ponomaryov, T., Watson, S. P. & Brill, A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. _Blood_ 129, 2013–2020 (2017). CAS  PubMed 


PubMed Central  Google Scholar  * Stefanini, L. et al. RASA3 s a critical inhibitor of RAP1-dependent platelet activation. _J. Clin. Invest._ 125, 1419–1432 (2015). PubMed  PubMed Central 


Google Scholar  * Golebiewska, E. M. et al. Syntaxin 8 regulates platelet dense granule secretion, aggregation, and thrombus stability. _J. Biol. Chem._ 290, 1536–1545 (2015). PubMed  Google


Scholar  * Mattheij, N. J. A. et al. Survival protein anoctamin-6 controls multiple platelet responses including phospholipid scrambling, swelling and protein cleavage. _FASEB. J._ 30,


727–737 (2016). CAS  PubMed  Google Scholar  * Schaff, M. et al. Integrin α6β1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial


thrombosis. _Circulation_ 128, 541–552 (2013). CAS  PubMed  Google Scholar  * Bunimov, N., Fuller, N. & Hayward, C. P. Genetic loci associated with platelet traits and platelet


disorders. _Semin. Thromb. Hemost._ 39, 291–305 (2013). CAS  PubMed  Google Scholar  * Nurden, A. T. & Nurden, P. Inherited disorders of platelet function: selected updates. _J. Thromb.


Haemost._ 13, S2–S9 (2015). CAS  PubMed  Google Scholar  * Bianchi, E., Norfo, R., Pennucci, V., Zini, R. & Manfredini, R. Genomic landscape of megakaryopoiesis and platelet function


defects. _Blood_ 127, 1249–1259 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Tijssen, M. R. et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in


megakaryocytes identifies hematopoietic regulators. _Dev. Cell_ 20, 597–609 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Freson, K. & Turro, E. High-throughput sequencing


approaches for diagnosing hereditary bleeding and platelet disorders. _J. Thromb. Haemost._ 15, 1262–1272 (2017). CAS  PubMed  Google Scholar  * Simeoni, L. et al. A comprehensive


high-throughput sequencing test for the diagnosis of inherited bleeding, thrombotic and platelet disorders. _Blood_ 127, 2791–2803 (2016). CAS  PubMed  PubMed Central  Google Scholar  *


Bastida, J. M. et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. _Haematologica_ 103, 148–162 (2018). CAS  PubMed 


PubMed Central  Google Scholar  * Lentaigne, C. et al. Inherited platelet disorders: toward DNA-based diagnosis. _Blood_ 127, 2814–2823 (2016). CAS  PubMed  PubMed Central  Google Scholar  *


Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. _Cell_ 167, 1415–1429 (2016). CAS  PubMed  PubMed Central  Google Scholar


  * Gieger, C. et al. New gene functions in megakaryopoiesis and platelet formation. _Nature_ 480, 201–207 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Petersen, R. et al. Platelet


function is modified by common sequence variation in megakaryocyte super enhancer. _Nat. Commun._ 8, 16058 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Nagy, M. et al. Variable


impairment of platelet functions in patients with severe, genetically linked immune deficiencies. _Haematologica_ 103, 540–549 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Snoep,


J. D. et al. The minor alleleof GP6 T13254C is associated with decreased platelet activation and a reduced risk of recurrent cardiovascular events and mortality: results from the


SMILE-Platelets project. _J. Thromb. Haemost._ 8, 2377–2384 (2010). CAS  PubMed  Google Scholar  * Williams, M. S. et al. Genetic regulation of platelet receptor expression and function:


application in clinical practice and drug development._ Arterioscler. Thromb. Vasc. Biol._ 30, 2372–2384 (2010). CAS  Google Scholar  * Joshi, S. & Whiteheart, S. W. The nuts and bolts


of the platelet release reaction. _Platelets_ 28, 129–137 (2017). CAS  PubMed  Google Scholar  * Golebiewska, E. M. & Poole, A. W. Platelet secretion: from haemostasis to wound healing


and beyond. _Blood Rev._ 29, 153–162 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Adam, F. et al. Kinesin-1 is a new actor involved in platelet secretion and thrombus stability.


_Arterioscler. Thromb. Vasc. Biol._ 38, 1037–1051 (2018). CAS  PubMed  Google Scholar  * Meng, R. et al. Defective release of α granule and lysosome contents from platelets in mouse


Hermansky-Pudlak syndrome models. _Blood_ 125, 1623–1632 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Sharda, A. et al. Defective PDI release from platelets and endothelial cells


impairs thrombus formation in Hermansky-Pudlak syndrome. _Blood_ 125, 1633–1642 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Battinelli, E. M., Markens, B. A. & Italiano, J. E.


Jr. Release of angiogenesis regulatory proteins from platelet α granules: modulation of physiologic and pathologic angiogenesis. _Blood_ 118, 1359–1369 (2011). CAS  PubMed  PubMed Central 


Google Scholar  * Sobota, J. A., Ferraro, F., Back, N., Eipper, B. A. & Mains, R. E. Not all secretory granules are created equal: partitioning of soluble content proteins. _Mol. Biol.


Cell_ 17, 5038–5052 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Eckly, A. et al. Respective contributions of single and compound granule fusion to secretion by activated


platelets. _Blood_ 128, 2538–2549 (2016). CAS  PubMed  PubMed Central  Google Scholar  * King, S. M. et al. Platelet dense-granule secretion plays a critical role in thrombosis and


subsequent vascular remodeling in atherosclerotic mice. _Circulation_ 120, 785–791 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Deppermann, C. et al. Gray platelet syndrome and


defective thrombo-inflammation in Nbeal2-deficient mice. _J. Clin. Invest._ 123, 3331–3342 (2013). CAS  PubMed Central  Google Scholar  * O’Donnell, V. B., Murphy, R. C. & Watson, S. P.


Platelet lipidomics: modern day perspective on lipid discovery and characterization in platelets. _Circ. Res._ 114, 1185–1203 (2014). PubMed  PubMed Central  Google Scholar  * Edelstein, L.


C. The role of platelet microvesicles in intercellular communication. _Platelets_ 28, 222–227 (2017). CAS  PubMed  Google Scholar  * Melki, I., Tessandier, N., Zufferey, A. & Boilard, E.


Platelet microvesicles in health and disease. _Platelets_ 28, 214–221 (2017). CAS  PubMed  Google Scholar  * Dinkla, S. et al. Platelet microparticles inhibit IL-17 production by regulatory


T cells through P-selectin. _Blood_ 127, 1976–1986 (2016). CAS  PubMed  Google Scholar  * Duchez, A. C. et al. Platelet microparticles are internalized in neutrophils via the concerted


activity of 12-lipoxygenase and secreted phospholipase A2-IIA. _Proc. Natl Acad. Sci. USA_ 112, E3564–E3573 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Vasina, E. M. et al. Aging-


and activation-induced platelet microparticles suppress apoptosis in monocytic cells and differentially signal to proinflammatory mediator release. _Am. J. Blood Res._ 3, 107–123 (2013).


CAS  PubMed  PubMed Central  Google Scholar  * Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. _Science_ 327, 580–583 (2010).


CAS  PubMed  PubMed Central  Google Scholar  * Best, M. G. et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics.


_Cancer Cell_ 28, 666–676 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Gidlof, O. et al. Platelets activated during myocardial infarction release functional miRNA, which can be


taken up by endothelial cells and regulate ICAM1 expression. _Blood_ 121, 3908–3917 (2013). PubMed  Google Scholar  * Michael, J. V. et al. Platelet microparticles infiltrating solid tumors


transfer mi-RNAs that suppress tumor growth. _Blood_ 130, 567–580 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Keularts, I. M., van Gorp, R. M., Feijge, M. A., Vuist, W. M. &


Heemskerk, J. W. α2A-adrenergic receptor stimulation potentiates calcium release in platelets by modulating cAMP levels. _J. Biol. Chem._ 275, 1763–1772 (2000). CAS  PubMed  Google Scholar 


* Blair, T. A. et al. Phosphoinositide 3-kinases p110α and p110β have differential roles in insulin-like growth factor-1-mediated Akt phosphorylation and platelet priming. _Arterioscler.


Thromb. Vasc. Biol._ 34, 1681–1688 (2014). CAS  PubMed  Google Scholar  * Cosemans, J. M. E. M. et al. Potentiating roles for Gas6 and Tyro, Axl and Mer (TAM) receptors in human and murine


platelet activation and thrombus stabilization. _J. Thromb. Haemost._ 8, 1797–1808 (2010). CAS  PubMed  Google Scholar  * Kuijpers, M. J. et al. Platelet CD40L modulates thrombus growth via


phosphatidylinositol 3-kinase β, and not via CD40 and IκB kinase α. _Arterioscler. Thromb. Vasc. Biol._ 35, 1374–1381 (2015). CAS  PubMed  Google Scholar  * Westein, E. et al.


Atherosclerotic geometries spatially confine and exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. _Proc. Natl Acad. Sci. USA_ 110,


1357–1362 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Blair, T. A., Moore, S. F. & Hers, I. Circulating primers enhance platelet function and induce resistance to antiplatelet


therapy. _J. Thromb. Haemost._ 13, 1479–1493 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Swieringa, F., Kuijpers, M. J. E., Heemskerk, J. W. M. & van der Meijden, P. E. J.


Targeting platelet receptor function in thrombus formation: the risk of bleeding. _Blood Rev._ 28, 9–21 (2014). CAS  PubMed  Google Scholar  * Naseem, K. M. & Roberts, W. Nitric oxide at


a glance. _Platelets_ 22, 148–152 (2011). CAS  PubMed  Google Scholar  * Tourdot, B. E. et al. 12-HETrE inhibits platelet reactivity and thrombosis in part through the prostacyclin


receptor. _Blood Adv._ 1, 1124–1131 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Kraakman, M. J. et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated


thrombocytosis and atherogenesis in diabetes. _J. Clin. Invest._ 127, 2133–2147 (2017). PubMed  PubMed Central  Google Scholar  * Von Hundelshausen, P. et al. Chemokine interactome mapping


enables tailored intervention in acute and chronic inflammation. _Sci. Transl Med._ 9, 384 (2017). Google Scholar  * Ferroni, P. et al. Biomarkers of platelet activation in acute coronary


syndromes. _Thromb. Haemost._ 108, 1109–1123 (2012). PubMed  Google Scholar  * Ho-Tin-Noe, B., Demers, M. & Wagner, D. D. How platelets safeguard vascular integrity. _J. Thromb.


Haemost._ 9 (Suppl. 1), 56–65 (2011). PubMed  PubMed Central  Google Scholar  * Chatterjee, M. & Gawaz, M. Platelet-derived CXCL12 (SDF-1α): basic mechanisms and clinical implications.


_J. Thromb. Haemost._ 11, 1954–1967 (2013). CAS  PubMed  Google Scholar  * Ho-Tin-Noe, B., Boulaftali, Y. & Camerer, E. Platelets and vascular integrity: how platelets prevent bleeding


in inflammation. _Blood_ 131, 277–288 (2018). CAS  PubMed  Google Scholar  * Croce, K. & Libby, P. Intertwining of thrombosis and inflammation in atherosclerosis. _Curr. Opin. Hematol._


14, 55–61 (2007). CAS  PubMed  Google Scholar  * Nieswandt, B., Kleinschnitz, C. & Stoll, G. Ischaemic stroke: a thrombo-inflammatory disease? _J. Physiol._ 589, 4115–4123 (2011). CAS 


PubMed  PubMed Central  Google Scholar  * Maiocchi, S., Alwis, I., Wu, M. C. L., Yuan, Y. & Jackson, S. P. Thromboinflammatory functions of platelets in ischemia-reperfusion injury and


its dysregulation in diabetes. _Semin. Thromb. Hemost._ 44, 102–113 (2018). CAS  PubMed  Google Scholar  * Kleinschnitz, C. et al. Targeting platelets in acute experimental stroke: impact of


glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. _Circulation_ 115, 2323–2330 (2007). CAS  PubMed  Google Scholar  * Bierings, R.


& Voorberg, J. Up or out: polarity of VWF release. _Blood_ 128, 154–155 (2016). CAS  PubMed  Google Scholar  * Sreeramkumar, V. et al. Neutrophils scan for activated platelets to


initiate inflammation. _Science_ 346, 1234–1238 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Gerdes, N. et al. Platelet CD40 exacerbates atherosclerosis by transcellular activation


of endothelial cells and leukocytes. _Arterioscler. Thromb. Vasc. Biol._ 36, 482–490 (2016). CAS  PubMed  Google Scholar  * Wang, Y. et al. Leukocyte integrin Mac-1 regulates thrombosis via


interaction with platelet GPIbα. _Nat. Commun._ 8, 15559 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Koenen, R. R. et al. Disrupting functional interactions between platelet


chemokines inhibits atherosclerosis in hyperlipidemic mice. _Nat. Med._ 15, 97–103 (2009). CAS  PubMed  Google Scholar  * Vajen, T., Mause, S. F. & Koenen, R. R. Microvesicles from


platelets: novel drivers of vascular inflammation. _Thromb. Haemost._ 114, 228–236 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Ekdahl, K. N. et al. Thromboinflammation in


therapeutic medicine. _Adv. Exp. Med. Biol._ 865, 3–17 (2015). CAS  PubMed  Google Scholar  * Martinod, K. et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical


for deep vein thrombosis in mice. _Proc. Natl Acad. Sci. USA_ 110, 8674–8679 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Muller, K. A., Chatterjee, M., Rath, D. & Geisler, T.


Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. _Thromb. Haemost._ 114, 498–518 (2015). PubMed  Google Scholar  * Chatterjee, M. & Geisler, T.


Inflammatory contribution of platelets revisited: new players in the arena of inflammation. _Semin. Thromb. Hemost._ 42, 205–214 (2016). CAS  PubMed  Google Scholar  * Koupenova, M.,


Clancy, L., Corkrey, H. A. & Freedman, J. E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. _Circ. Res._ 122, 337–351 (2018). CAS  PubMed  PubMed Central 


Google Scholar  * Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. _J. Am. Coll. Cardiol._ 47, C13–C18 (2006). CAS  PubMed  Google Scholar  *


Hechler, B. & Gachet, C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. _Thromb. Haemost._ 105 (Suppl. 1), S3–12 (2011). CAS  PubMed  Google


Scholar  * Kuijpers, M. J. E. et al. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital


model. _J. Thromb. Haemost._ 7, 152–161 (2009). CAS  PubMed  Google Scholar  * Farb, A. et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary


thrombosis in sudden coronary death. _Circulation_ 93, 1354–1363 (1996). CAS  PubMed  Google Scholar  * Sato, Y. et al. Proportion of fibrin and platelets differs in thrombi on ruptured and


eroded coronary atherosclerotic plaques in humans. _Heart_ 91, 526–530 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Xing, L. et al. EROSION study (Effective Anti-Thrombotic Therapy


Without Stenting: Intravascular Optical Coherence Tomography-Based Management in Plaque Erosion): a 1-year follow-up report. _Circ. Cardiovasc. Interv_. 10 (2017). * Mackman, N. Triggers,


targets and treatments for thrombosis. _Nature_ 451, 914–918 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Olie, R. H., van der Meijden, P. E. J. & Ten Cate, H. The coagulation


system in atherothrombosis: implications for new therapeutic strategies. _Res. Pract. Thromb. Haemost._ 2, 188–198 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Patrono, C. et al.


Antiplatelet agents for the treatment and prevention of coronary atherothrombosis. _J. Am. Coll. Cardiol._ 70, 1760–1776 (2017). PubMed  Google Scholar  * Halvorsen, S. et al. Aspirin


therapy in primary cardiovascular disease prevention: a position paper of the European Society of Cardiology working group on thrombosis. _J. Am. Coll. Cardiol._ 64, 319–327 (2014). CAS 


PubMed  Google Scholar  * McFadyen, J. D., Schaff, M. & Peter, K. Current and future antiplatelet therapies: emphasis on preserving haemostasis. _Nat. Rev. Cardiol._ 15, 181–191 (2018).


CAS  PubMed  Google Scholar  * Cattaneo, M. P2Y12 receptors: structure and function. _J. Thromb. Haemost._ 13 (Suppl. 1), S10–S16 (2015). CAS  PubMed  Google Scholar  * Claessen, B. E. et


al. Stent thrombosis: a clinical perspective. _JACC Cardiovasc. Interv._ 7, 1081–1092 (2014). PubMed  Google Scholar  * Torrado, J. et al. Restenosis, stent thrombosis, and bleeding


complications: navigating between Scylla and Charybdis. _J. Am. Coll. Cardiol._ 71, 1676–1695 (2018). PubMed  Google Scholar  * Levine, G. N. et al. 2016 ACC/AHA Guideline Focused Update on


duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice


Guidelines. _J. Am. Coll. Cardiol._ 68, 1082–1115 (2016). PubMed  Google Scholar  * Jones, B. M. et al. Matching patients with the ever-expanding range of TAVI devices. _Nat. Rev. Cardiol._


14, 615–626 (2017). PubMed  Google Scholar  * Nishimura, R. A. et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a


report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. _J. Am. Coll. Cardiol._ 70, 252–289 (2017). PubMed  Google Scholar  *


Raheja, H. et al. Comparison of single versus dual antiplatelet therapy after TAVR: a systematic review and meta-analysis. _Catheter Cardiovasc. Interv._ 00, 1–9 (2018). Google Scholar  *


Baumann Kreuziger, L. M., Kim, B. & Wieselthaler, G. M. Antithrombotic therapy for left ventricular assist devices in adults: a systematic review. _J. Thromb. Haemost._ 13, 946–955


(2015). CAS  PubMed  Google Scholar  * Bergmeijer, T. O. et al. Genome-wide and candidate gene approaches of clopidogrel efficacy using pharmacodynamic and clinical end points-Rationale and


design of the International Clopidogrel Pharmacogenomics Consortium (ICPC). _Am. Heart. J._ 198, 152–159 (2018). CAS  PubMed  Google Scholar  * Gilio, K. et al. Non-redundant roles of


phosphoinositide 3-kinase isoforms α and β in glycoprotein VI-induced platelet signaling and thrombus formation. _J. Biol. Chem._ 284, 33750–33762 (2009). CAS  PubMed  PubMed Central  Google


Scholar  * Nylander, S., Wagberg, F., Andersson, M., Skarby, T. & Gustafsson, D. Exploration of efficacy and bleeding with combined phosphoinositide 3-kinase β inhibition and aspirin in


man. _J. Thromb. Haemost._ 13, 1494–1502 (2015). CAS  PubMed  Google Scholar  * Tullemans, B. M. E., Heemskerk, J. W. M. & Kuijpers, M. J. E. Acquired platelet antagonism: off-target


antiplatelet effects of malignancy treatment with tyrosine kinase inhibitors. _J. Thromb. Haemost._ 16, 1–14 (2018). Google Scholar  * Busygina, K. et al. Oral Bruton tyrosine kinase


inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. _Blood_ 131, 2605–2616 (2018). CAS  PubMed  Google Scholar  * Moeckel, D. et al. Optimizing human


apyrase to treat arterial thrombosis and limit reperfusion injury without increasing bleeding risk. _Sci. Transl. Med._ 6, 248ra105 (2014). PubMed  PubMed Central  Google Scholar  * Tardif,


J. C. et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the


SELECT-ACS trial. _J. Am. Coll. Cardiol._ 61, 2048–2055 (2013). CAS  PubMed  Google Scholar  * Pasalic, L. et al. Novel assay demonstrates that coronary artery disease patients have


heightened procoagulant platelet response. _J. Thromb. Haemost._ 16, 1198–1210 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Eikelboom, J. W. et al. Rivaroxaban with or without


aspirin in stable cardiovascular disease. _N. Engl. J. Med._ 377, 1319–1330 (2017). CAS  PubMed  Google Scholar  * Bye, A. P., Unsworth, A. J. & Gibbins, J. M. Platelet signaling: a


complex interplay between inhibitory and activatory networks. _J. Thromb. Haemost._ 14, 918–930 (2016). CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS The


authors thank the Cardiovascular Centre (HVC) of Maastricht University Medical Centre, The Netherlands, for support. We thank C. Baaten and J. van Geffen (Maastricht University, The


Netherlands) for their help in preparing the figures before submission. REVIEWER INFORMATION _Nature Reviews Cardiology_ thanks E. Gardiner, M. Gawaz, and the other, anonymous reviewer for


their contribution to the peer review of this work. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht


University, Maastricht, The Netherlands Paola E. J. van der Meijden & Johan W. M. Heemskerk Authors * Paola E. J. van der Meijden View author publications You can also search for this


author inPubMed Google Scholar * Johan W. M. Heemskerk View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Both authors researched data for the


article, discussed its content, wrote the manuscript, and reviewed and edited it before submission. CORRESPONDING AUTHORS Correspondence to Paola E. J. van der Meijden or Johan W. M.


Heemskerk. ETHICS DECLARATIONS COMPETING INTERESTS P.E.J.v.d.M. is a consultant at Bayer AG. J.W.M.H. is a founder and shareholder of FlowChamber BV. ADDITIONAL INFORMATION PUBLISHER’S NOTE


Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. GLOSSARY * Fibrin coat Fibrin-coated platelets are a subpopulation of


phosphatidylserine-exposing platelets that bind fibrin via transglutaminase activity and activated integrin αIIbβ3. Fibrin is ‘coated’ on the platelet surface. * Membrane ballooning Adherent


platelets on a collagen surface form phosphatidylserine-exposing, balloon-like membrane structures as a result of salt and water entry into the platelets. * Procoagulant platelet Platelet


swollen to a balloon shape, with surface exposure of phosphatidylserine and displaying greatly increased capacity for coagulation factor activation. * Pseudopod formation Cytoplasm-filled


projection of the platelet membrane following platelet activation. * α-Granules Platelet secretion granules containing multiple stored proteins including growth factors. * δ-Granules


Platelet secretion granules with dense appearance in electron microscopy, containing Ca2+-bound nucleotides (ADP, ATP, and polyphosphates). * Plateletcrit Product of mean platelet volume and


platelet count in blood. * Negative or positive platelet priming Suppression or promotion of platelet activation by bioactive molecules in the blood. * Exhausted platelets Also known as


refractive platelets; platelets with reduced secretion capacity owing to previous activation. * Weibel–Palade bodies Storage granules of endothelial cells that store ultralarge von


Willebrand factor multimers. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE van der Meijden, P.E.J., Heemskerk, J.W.M. Platelet biology and functions:


new concepts and clinical perspectives. _Nat Rev Cardiol_ 16, 166–179 (2019). https://doi.org/10.1038/s41569-018-0110-0 Download citation * Published: 14 November 2018 * Issue Date: March


2019 * DOI: https://doi.org/10.1038/s41569-018-0110-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative