Materials design by synthetic biology

Materials design by synthetic biology


Play all audios:


ABSTRACT Synthetic biology applies genetic tools to engineer living cells and organisms analogous to the programming of machines. In materials synthetic biology, engineering principles from


synthetic biology and materials science are integrated to redesign living systems as dynamic and responsive materials with emerging and programmable functionalities. In this Review, we


discuss synthetic-biology tools, including genetic circuits, model organisms and design parameters, which can be applied for the construction of smart living materials. We investigate


non-living and living self-organizing multifunctional materials, such as intracellular structures and engineered biofilms, and examine the design and applications of hybrid living materials,


including living sensors, therapeutics and electronics, as well as energy-conversion materials and living building materials. Finally, we consider prospects and challenges of programmable


living materials and identify potential future applications. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn


more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant


access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions *


Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE LIVING INTERFACE BETWEEN SYNTHETIC BIOLOGY AND BIOMATERIAL DESIGN Article 31 March 2022 SYNTHETIC LIVING


MATERIALS IN CANCER BIOLOGY Article 02 October 2023 TRANSCRIPTIONAL REGULATION OF LIVING MATERIALS VIA EXTRACELLULAR ELECTRON TRANSFER Article 23 May 2024 REFERENCES * Sanchez, C., Arribart,


H. & Giraud Guille, M. M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. _Nat. Mater._ 4, 277–288 (2005). CAS  Google Scholar  * Liu, K.


& Jiang, L. Bio-inspired design of multiscale structures for function integration. _Nano Today_ 6, 155–175 (2011). CAS  Google Scholar  * Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A.


P. & Ritchie, R. O. Bioinspired structural materials. _Nat. Mater._ 14, 23–36 (2015). CAS  Google Scholar  * Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials.


_Nat. Rev. Mater._ 2, 16075 (2016). Google Scholar  * Palagi, S. & Fischer, P. Bioinspired microrobots. _Nat. Rev. Mater._ 3, 113–124 (2018). CAS  Google Scholar  * Barthelat, F., Yin,


Z. & Buehler, M. J. Structure and mechanics of interfaces in biological materials. _Nat. Rev. Mater._ 1, 16007 (2016). CAS  Google Scholar  * Cameron, D. E., Bashor, C. J. & Collins,


J. J. A brief history of synthetic biology. _Nat. Rev. Microbiol._ 12, 381–390 (2014). CAS  Google Scholar  * Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic


toggle switch in _Escherichia coli_. _Nature_ 403, 339–342 (2000). CAS  Google Scholar  * Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators.


_Nature_ 403, 335–338 (2000). CAS  Google Scholar  * Vecchio, D. D., Dy, A. J. & Qian, Y. Control theory meets synthetic biology. _J. R. Soc. Interface_ 13, 20160380 (2016). Google


Scholar  * Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. _Science_ 314, 1585–1588 (2006). CAS  Google Scholar  * Weber, E., Engler, C.,


Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. _PLoS ONE_ 6, e16765 (2011). CAS  Google Scholar  * Brophy, J. A.


N. & Voigt, C. A. Principles of genetic circuit design. _Nat. Methods_ 11, 508–520 (2014). CAS  Google Scholar  * Sedlmayer, F., Aubel, D. & Fussenegger, M. Synthetic gene circuits


for the detection, elimination and prevention of disease. _Nat. Biomed. Eng._ 2, 399–415 (2018). CAS  Google Scholar  * Benenson, Y. Biomolecular computing systems: principles, progress and


potential. _Nat. Rev. Genet._ 13, 455–468 (2012). CAS  Google Scholar  * Farzadfard, F. & Lu, T. K. Emerging applications for DNA writers and molecular recorders. _Science_ 361, 870–875


(2018). CAS  Google Scholar  * Ryu, M.-H. et al. Control of nitrogen fixation in bacteria that associate with cereals. _Nat. Microbiol._ 5, 314–330 (2020). CAS  Google Scholar  *


Praveschotinunt, P. et al. Engineered _E. coli_ Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. _Nat. Commun._ 10, 5580 (2019). CAS  Google Scholar  * Sun, G.


L., Reynolds, E. E. & Belcher, A. M. Using yeast to sustainably remediate and extract heavy metals from waste waters. _Nat. Sustain._ 3, 303–311 (2020). Google Scholar  * Heveran, C. M.


et al. Biomineralization and successive regeneration of engineered living building materials. _Matter_ 2, 481–494 (2020). Google Scholar  * Smith, R. S. H. et al. Hybrid living materials:


digital design and fabrication of 3D multimaterial structures with programmable biohybrid surfaces. _Adv. Funct. Mater._ 30, 1907401 (2020). CAS  Google Scholar  * Chen, A. Y., Zhong, C.


& Lu, T. K. Engineering living functional materials. _ACS Synth. Biol._ 4, 8–11 (2015). Google Scholar  * Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. &


Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. _Adv. Mater._ 30, 1704847 (2018). Google Scholar 


* Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. _Nature_ 434, 1130–1134 (2005). CAS  Google Scholar


  * Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. _Nat. Mater._ 13, 515–523 (2014). CAS  Google Scholar  * Toda, S., Blauch, L. R., Tang,


S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell-cell signaling. _Science_ 361, 156–162 (2018). CAS  Google Scholar  * DiMarco,


R. L. & Heilshorn, S. C. Multifunctional materials through modular protein engineering. _Adv. Mater._ 24, 3923–3940 (2012). CAS  Google Scholar  * Moradali, M. F. & Rehm, B. H. A.


Bacterial biopolymers: from pathogenesis to advanced materials. _Nat. Rev. Microbiol._ 18, 195–210 (2020). CAS  Google Scholar  * Rehm, B. H. A. Bacterial polymers: biosynthesis,


modifications and applications. _Nat. Rev. Microbiol._ 8, 578–592 (2010). CAS  Google Scholar  * Purnick, P. E. M. & Weiss, R. The second wave of synthetic biology: from modules to


systems. _Nat. Rev. Mol. Cell Biol._ 10, 410–422 (2009). CAS  Google Scholar  * Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. _Nat. Catal._ 2, 18–33


(2019). CAS  Google Scholar  * Lang, K. & Chin, J. W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. _Chem. Rev._ 114, 4764–4806 (2014). CAS 


Google Scholar  * Elbaz, J., Yin, P. & Voigt, C. A. Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. _Nat. Commun._ 7, 11179 (2016). CAS  Google Scholar


  * Wei, S.-P. et al. Formation and functionalization of membraneless compartments in _Escherichia coli_. _Nat. Chem. Biol._ 16, 1143–1148 (2020). CAS  Google Scholar  * Meyer, A. J.,


Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. _Escherichia coli_ “Marionette” strains with 12 highly optimized small-molecule sensors. _Nat. Chem. Biol._ 15, 196–204


(2019). CAS  Google Scholar  * Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. _Nature_ 497, 619–623 (2013). CAS  Google Scholar  *


Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. _Science_ 346, 1256272 (2014). Google Scholar  * Levskaya, A. et


al. Engineering _Escherichia coli_ to see light. _Nature_ 438, 441–442 (2005). CAS  Google Scholar  * Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G.


Tunable thermal bioswitches for in vivo control of microbial therapeutics. _Nat. Chem. Biol._ 13, 75–80 (2017). CAS  Google Scholar  * Ellis, T., Wang, X. & Collins, J. J.


Diversity-based, model-guided construction of synthetic gene networks with predicted functions. _Nat. Biotechnol._ 27, 465–471 (2009). CAS  Google Scholar  * Kelly, J. R. et al. Measuring


the activity of BioBrick promoters using an in vivo reference standard. _J. Biol. Eng._ 3, 4 (2009). Google Scholar  * Chen, Y.-J. et al. Characterization of 582 natural and synthetic


terminators and quantification of their design constraints. _Nat. Methods_ 10, 659–664 (2013). CAS  Google Scholar  * Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular


computing using genetically encoded NOR gates and chemical ‘wires’. _Nature_ 469, 212–215 (2011). CAS  Google Scholar  * Wan, X. et al. Cascaded amplifying circuits enable ultrasensitive


cellular sensors for toxic metals. _Nat. Chem. Biol._ 15, 540–548 (2019). CAS  Google Scholar  * Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. _Nature_ 456,


516–519 (2008). CAS  Google Scholar  * Grindley, N. D. F., Whiteson, K. L. & Rice, P. A. Mechanisms of site-specific recombination. _Annu. Rev. Biochem._ 75, 567–605 (2006). CAS  Google


Scholar  * Bonnet, J., Subsoontorn, P. & Endy, D. Rewritable digital data storage in live cells via engineered control of recombination directionality. _Proc. Natl Acad. Sci. USA_ 109,


8884–8889 (2012). CAS  Google Scholar  * Siuti, P., Yazbek, J. & Lu, T. K. Synthetic circuits integrating logic and memory in living cells. _Nat. Biotechnol._ 31, 448–452 (2013). CAS 


Google Scholar  * Kalyoncu, E., Ahan, R. E., Ozcelik, C. E. & Seker, U. O. S. Genetic logic gates enable patterning of amyloid nanofibers. _Adv. Mater._ 31, 1902888 (2019). Google


Scholar  * Qi, Lei S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. _Cell_ 152, 1173–1183 (2013). CAS  Google Scholar  * McCarty, N.


S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. _Nat. Commun._ 11, 1281 (2020). CAS  Google Scholar  *


Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. _ACS Synth. Biol._ 8, 1–15 (2019). CAS  Google


Scholar  * Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. _Science_ 361, 1252–1258 (2018). CAS  Google Scholar  * Olson, E. J. &


Tabor, J. J. Post-translational tools expand the scope of synthetic biology. _Curr. Opin. Chem. Biol._ 16, 300–306 (2012). CAS  Google Scholar  * Green, et al. Toehold switches:


de-novo-designed regulators of gene expression. _Cell_ 159, 925–939 (2014). CAS  Google Scholar  * Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based


logic circuit for identification of specific cancer cells. _Science_ 333, 1307–1311 (2011). CAS  Google Scholar  * Simon, A. J., d’Oelsnitz, S. & Ellington, A. D. Synthetic evolution.


_Nat. Biotechnol._ 37, 730–743 (2019). CAS  Google Scholar  * Rodriguez, E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. _Trends Biochem. Sci._ 42,


111–129 (2017). CAS  Google Scholar  * Thorne, N., Inglese, J. & Auld, D. S. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology.


_Chem. Biol._ 17, 646–657 (2010). CAS  Google Scholar  * Liljeruhm, J. et al. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. _J. Biol. Eng._ 12, 8


(2018). Google Scholar  * Narsing Rao, M. P., Xiao, M. & Li, W.-J. Fungal and bacterial pigments: secondary metabolites with wide applications. _Front. Microbiol._ 8, 1113 (2017). Google


Scholar  * Guo, Z., Richardson, J. J., Kong, B. & Liang, K. Nanobiohybrids: materials approaches for bioaugmentation. _Sci. Adv._ 6, eaaz0330 (2020). CAS  Google Scholar  * Omenetto, F.


G. & Kaplan, D. L. New opportunities for an ancient material. _Science_ 329, 528–531 (2010). CAS  Google Scholar  * Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. & Voigt, C. A.


Genetic programs constructed from layered logic gates in single cells. _Nature_ 491, 249–253 (2012). CAS  Google Scholar  * Liu, Y. et al. Directing cellular information flow via CRISPR


signal conductors. _Nat. Methods_ 13, 938–944 (2016). CAS  Google Scholar  * Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. K. Synthetic recombinase-based state


machines in living cells. _Science_ 353, aad8559 (2016). Google Scholar  * Prindle, A. et al. A sensing array of radically coupled genetic ‘biopixels’. _Nature_ 481, 39–44 (2012). CAS 


Google Scholar  * Billerbeck, S. et al. A scalable peptide-GPCR language for engineering multicellular communication. _Nat. Commun._ 9, 5057 (2018). Google Scholar  * Zeng, J. et al. A


synthetic microbial operational amplifier. _ACS Synth. Biol._ 7, 2007–2013 (2018). CAS  Google Scholar  * Madsen, C. et al. Synthetic biology open language (SBOL) version 2.3. _J. Integr.


Bioinform._ 16, 20190025 (2019). Google Scholar  * Lee, K.-Y., Buldum, G., Mantalaris, A. & Bismarck, A. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and


applications in advanced fiber composites. _Macromol. Biosci._ 14, 10–32 (2014). CAS  Google Scholar  * Yadav, V. et al. Novel _in vivo_-degradable cellulose-chitin copolymer from


metabolically engineered _Gluconacetobacter xylinus_. _Appl. Environ. Microbiol._ 76, 6257–6265 (2010). CAS  Google Scholar  * Florea, M. et al. Engineering control of bacterial cellulose


production using a genetic toolkit and a new cellulose-producing strain. _Proc. Natl Acad. Sci. USA_ 113, E3431–E3440 (2016). CAS  Google Scholar  * Abhijith, R., Ashok, A. & Rejeesh, C.


R. Sustainable packaging applications from mycelium to substitute polystyrene: a review. _Mater. Today Proc._ 5, 2139–2145 (2018). CAS  Google Scholar  * Wang, P.-A., Xiao, H. & Zhong,


J.-J. CRISPR-Cas9 assisted functional gene editing in the mushroom _Ganoderma lucidum_. _Appl. Microbiol. Biotechnol._ 104, 1661–1671 (2020). CAS  Google Scholar  * Gilbert, C. et al. Living


materials with programmable functionalities grown from engineered microbial co-cultures. Preprint at _bioRxiv_ https://doi.org/10.1101/2019.12.20.882472 (2019) * Schaumberg, K. A. et al.


Quantitative characterization of genetic parts and circuits for plant synthetic biology. _Nat. Methods_ 13, 94–100 (2016). CAS  Google Scholar  * Lienert, F., Lohmueller, J. J., Garg, A.


& Silver, P. A. Synthetic biology in mammalian cells: next generation research tools and therapeutics. _Nat. Rev. Mol. Cell Biol._ 15, 95–107 (2014). CAS  Google Scholar  * Mitiouchkina,


T. et al. Plants with genetically encoded autoluminescence. _Nat. Biotechnol._ 38, 944–946 (2020). CAS  Google Scholar  * Bredenoord, A. L., Clevers, H. & Knoblich, J. A. Human tissues


in a dish: the research and ethical implications of organoid technology. _Science_ 355, eaaf9414 (2017). Google Scholar  * Kriegman, S., Blackiston, D., Levin, M. & Bongard, J. A


scalable pipeline for designing reconfigurable organisms. _Proc. Natl Acad. Sci. USA_ 117, 1853–1859 (2020). CAS  Google Scholar  * Kassaw, T. K., Donayre-Torres, A. J., Antunes, M. S.,


Morey, K. J. & Medford, J. I. Engineering synthetic regulatory circuits in plants. _Plant Sci._ 273, 13–22 (2018). CAS  Google Scholar  * Lew, T. T. S., Koman, V. B., Gordiichuk, P.,


Park, M. & Strano, M. S. The emergence of plant nanobionics and living plants as technology. _Adv. Mater. Technol._ 5, 1900657 (2020). CAS  Google Scholar  * Franke, R. & Schreiber,


L. Suberin — a biopolyester forming apoplastic plant interfaces. _Curr. Opin. Plant Biol._ 10, 252–259 (2007). CAS  Google Scholar  * Li, F.-S., Phyo, P., Jacobowitz, J., Hong, M. &


Weng, J.-K. The molecular structure of plant sporopollenin. _Nat. Plants_ 5, 41–46 (2019). CAS  Google Scholar  * Zhong, C. et al. Strong underwater adhesives made by self-assembling


multi-protein nanofibres. _Nat. Nanotechnol._ 9, 858–866 (2014). CAS  Google Scholar  * Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R. & Joshi, N. S. Programmable biofilm-based materials


from engineered curli nanofibres. _Nat. Commun._ 5, 4945 (2014). CAS  Google Scholar  * Huang, J. et al. Programmable and printable _Bacillus subtilis_ biofilms as engineered living


materials. _Nat. Chem. Biol._ 15, 34–41 (2019). CAS  Google Scholar  * Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. _Nature_


553, 86–90 (2018). CAS  Google Scholar  * Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. _ACS


Synth. Biol._ 6, 1841–1850 (2017). Google Scholar  * Zhang, C. et al. Engineered _Bacillus subtilis_ biofilms as living glues. _Mater. Today_ 28, 40–48 (2019). Google Scholar  * Liu, X. et


al. 3D printing of living responsive materials and devices. _Adv. Mater._ 30, 1704821 (2018). Google Scholar  * Tang, T.-C. et al. Tough hydrogel-based biocontainment of engineered organisms


for continuous, self-powered sensing and computation. Preprint at _bioRxiv_ https://www.biorxiv.org/content/10.1101/2020.02.11.941120v1 (2020). * Whitesides, G. M. & Grzybowski, B.


Self-assembly at all scales. _Science_ 295, 2418–2421 (2002). CAS  Google Scholar  * Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. _Nat. Rev. Mater._ 3, 17068 (2017). Google Scholar


  * Dong, Y. et al. DNA functional materials assembled from branched DNA: design, synthesis, and applications. _Chem. Rev._ 120, 9420–9481 (2020). CAS  Google Scholar  * Woolston, B. M.,


Edgar, S. & Stephanopoulos, G. Metabolic engineering: past and future. _Annu. Rev. Chem. Biomol. Eng._ 4, 259–288 (2013). CAS  Google Scholar  * Wagner, H. J. et al. Synthetic


biology-inspired design of signal-amplifying materials systems. _Mater. Today_ 22, 25–34 (2019). CAS  Google Scholar  * Pena-Francesch, A., Jung, H., Demirel, M. C. & Sitti, M.


Biosynthetic self-healing materials for soft machines. _Nat. Mater._ 19, 1230–1235 (2020). CAS  Google Scholar  * English, M. A. et al. Programmable CRISPR-responsive smart materials.


_Science_ 365, 780–785 (2019). CAS  Google Scholar  * Cui, M. et al. Exploiting mammalian low-complexity domains for liquid-liquid phase separation–driven underwater adhesive coatings. _Sci.


Adv._ 5, eaax3155 (2019). CAS  Google Scholar  * Wallace, A. K., Chanut, N. & Voigt, C. A. Silica nanostructures produced using diatom peptides with designed post-translational


modifications. _Adv. Funct. Mater._ 23, 2000849 (2020). Google Scholar  * Amiram, M. et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of


nonstandard amino acids. _Nat. Biotechnol._ 33, 1272–1279 (2015). CAS  Google Scholar  * Qian, Z.-G., Pan, F. & Xia, X.-X. Synthetic biology for protein-based materials. _Curr. Opin.


Biotechnol._ 65, 197–204 (2020). CAS  Google Scholar  * Keating, K. W. & Young, E. M. Synthetic biology for bio-derived structural materials. _Curr. Opin. Chem. Eng._ 24, 107–114 (2019).


Google Scholar  * Meng, D.-C. et al. Production and characterization of poly(3-hydroxypropionate-_co_-4-hydroxybutyrate) with fully controllable structures by recombinant _Escherichia coli_


containing an engineered pathway. _Metab. Eng._ 14, 317–324 (2012). CAS  Google Scholar  * Deepankumar, K. et al. Supramolecular β-sheet suckerin–based underwater adhesives. _Adv. Funct.


Mater._ 30, 1907534 (2020). CAS  Google Scholar  * Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. _Science_ 324,


1729–1732 (2009). CAS  Google Scholar  * Bracha, D., Walls, M. T. & Brangwynne, C. P. Probing and engineering liquid-phase organelles. _Nat. Biotechnol._ 37, 1435–1445 (2019). CAS 


Google Scholar  * Nakamura, H. et al. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions. _Nat. Mater._ 17, 79–89 (2018). CAS  Google


Scholar  * Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. _Nat. Nanotechnol._ 9, 193–197 (2014). CAS 


Google Scholar  * Chatterjee, A. et al. Cephalopod-inspired optical engineering of human cells. _Nat. Commun._ 11, 2708 (2020). CAS  Google Scholar  * Farhadi, A., Ho, G. H., Sawyer, D. P.,


Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. _Science_ 365, 1469–1475 (2019). CAS  Google Scholar  * Flemming, H.-C. & Wingender, J. The


biofilm matrix. _Nat. Rev. Microbiol._ 8, 623–633 (2010). CAS  Google Scholar  * Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. _Nat. Rev. Microbiol._ 18, 571–586 (2020). CAS  Google


Scholar  * Knowles, T. P. J. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. _Nat. Nanotechnol._ 6, 469–479 (2011). CAS  Google Scholar  * Blanco, L. P.,


Evans, M. L., Smith, D. R., Badtke, M. P. & Chapman, M. R. Diversity, biogenesis and function of microbial amyloids. _Trends Microbiol._ 20, 66–73 (2012). CAS  Google Scholar  *


Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. _Annu. Rev. Microbiol._ 60, 131–147 (2006). CAS  Google Scholar  * Wang, X. et al. Programming cells for dynamic assembly


of inorganic nano-objects with spatiotemporal control. _Adv. Mater._ 30, 1705968 (2018). Google Scholar  * Kalyoncu, E., Ahan, R. E., Olmez, T. T. & Safak Seker, U. O. Genetically


encoded conductive protein nanofibers secreted by engineered cells. _RSC Adv._ 7, 32543–32551 (2017). CAS  Google Scholar  * Dorval Courchesne, N.-M. et al. Biomimetic engineering of


conductive curli protein films. _Nanotechnology_ 29, 454002 (2018). Google Scholar  * Jiang, L. et al. Programming integrative extracellular and intracellular biocatalysis for rapid, robust,


and recyclable synthesis of trehalose. _ACS Catal._ 8, 1837–1842 (2018). CAS  Google Scholar  * Botyanszki, Z., Tay, P. K. R., Nguyen, P. Q., Nussbaumer, M. G. & Joshi, N. S. Engineered


catalytic biofilms: Site-specific enzyme immobilization onto _E. coli_ curli nanofibers. _Biotechnol. Bioeng._ 112, 2016–2024 (2015). CAS  Google Scholar  * Pu, J. et al. Virus disinfection


from environmental water sources using living engineered biofilm materials. _Adv. Sci._ 7, 1903558 (2020). CAS  Google Scholar  * Wang, X. et al. Immobilization of functional nano-objects


in living engineered bacterial biofilms for catalytic applications. _Natl Sci. Rev._ 6, 929–943 (2019). CAS  Google Scholar  * Seker, U. O. S., Chen, A. Y., Citorik, R. J. & Lu, T. K.


Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic–organic interfaces and electrical conductivity. _ACS Synth. Biol._ 6, 266–275 (2017). CAS  Google Scholar  *


An, B. et al. Programming living glue systems to perform autonomous mechanical repairs. _Matter_ https://doi.org/10.1016/j.matt.2020.09.006 (2020). Article  Google Scholar  * Charrier, M. et


al. Engineering the S-layer of _Caulobacter crescentus_ as a foundation for stable, high-density, 2D living materials. _ACS Synth. Biol._ 8, 181–190 (2019). CAS  Google Scholar  * Fang, J.,


Kawano, S., Tajima, K. & Kondo, T. In vivo curdlan/cellulose bionanocomposite synthesis by genetically modified _Gluconacetobacter xylinus_. _Biomacromolecules_ 16, 3154–3160 (2015).


CAS  Google Scholar  * Walker, K. T., Goosens, V. J., Das, A., Graham, A. E. & Ellis, T. Engineered cell-to-cell signalling within growing bacterial cellulose pellicles. _Microb.


Biotechnol._ 12, 611–619 (2019). CAS  Google Scholar  * Fan, G., Graham, A. J., Kolli, J., Lynd, N. A. & Keitz, B. K. Aerobic radical polymerization mediated by microbial metabolism.


_Nat. Chem._ 12, 638–646 (2020). CAS  Google Scholar  * Fan, G., Dundas, C. M., Graham, A. J., Lynd, N. A. & Keitz, B. K. _Shewanella oneidensis_ as a living electrode for controlled


radical polymerization. _Proc. Natl Acad. Sci. USA_ 115, 4559–4564 (2018). CAS  Google Scholar  * Gao, M. et al. A natural in situ fabrication method of functional bacterial cellulose using


a microorganism. _Nat. Commun._ 10, 437 (2019). CAS  Google Scholar  * Koch, A. J. & Meinhardt, H. Biological pattern formation: from basic mechanisms to complex structures. _Rev. Mod.


Phys._ 66, 1481–1507 (1994). Google Scholar  * Salazar-Ciudad, I., Jernvall, J. & Newman, S. A. Mechanisms of pattern formation in development and evolution. _Development_ 130, 2027–2037


(2003). CAS  Google Scholar  * Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. _Science_ 329, 1616–1620 (2010). CAS  Google


Scholar  * Luo, N., Wang, S. & You, L. Synthetic pattern formation. _Biochemistry_ 58, 1478–1483 (2019). CAS  Google Scholar  * Kim, H., Jin, X., Glass, D. S. & Riedel-Kruse, I. H.


Engineering and modeling of multicellular morphologies and patterns. _Curr. Opin. Genet. Dev._ 63, 95–102 (2020). CAS  Google Scholar  * Santos-Moreno, J. & Schaerli, Y. Using synthetic


biology to engineer spatial patterns. _Adv. Biosyst._ 3, 1800280 (2019). Google Scholar  * Fernandez-Rodriguez, J., Moser, F., Song, M. & Voigt, C. A. Engineering RGB color vision into


_Escherichia coli_. _Nat. Chem. Biol._ 13, 706–708 (2017). CAS  Google Scholar  * Moser, F., Tham, E., González, L. M., Lu, T. K. & Voigt, C. A. Light-controlled, high-resolution


patterning of living engineered bacteria onto textiles, ceramics, and plastic. _Adv. Funct. Mater._ 29, 1901788 (2019). Google Scholar  * Liu, C. et al. Sequential establishment of stripe


patterns in an expanding cell population. _Science_ 334, 238–241 (2011). CAS  Google Scholar  * Tabor, J. J. et al. A synthetic genetic edge detection program. _Cell_ 137, 1272–1281 (2009).


Google Scholar  * Turing, A. M. The chemical basis of morphogenesis. _Bull. Math. Biol._ 52, 153–197 (1990). CAS  Google Scholar  * Karig, D. et al. Stochastic Turing patterns in a synthetic


bacterial population. _Proc. Natl Acad. Sci. USA_ 115, 6572–6577 (2018). CAS  Google Scholar  * Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. & Paulsson, J. Synchronous long-term


oscillations in a synthetic gene circuit. _Nature_ 538, 514–517 (2016). Google Scholar  * Mushnikov, N. V., Fomicheva, A., Gomelsky, M. & Bowman, G. R. Inducible asymmetric cell division


and cell differentiation in a bacterium. _Nat. Chem. Biol._ 15, 925–931 (2019). CAS  Google Scholar  * Molinari, S. et al. A synthetic system for asymmetric cell division in _Escherichia


coli_. _Nat. Chem. Biol._ 15, 917–924 (2019). CAS  Google Scholar  * Glass, D. S. & Riedel-Kruse, I. H. A synthetic bacterial cell-cell adhesion toolbox for programming multicellular


morphologies and patterns. _Cell_ 174, 649–658.e16 (2018). CAS  Google Scholar  * Perry, C. C. & Keeling-Tucker, T. Biosilicification: the role of the organic matrix in structure


control. _J. Biol. Inorg. Chem._ 5, 537–550 (2000). CAS  Google Scholar  * van der Meer, J. R. & Belkin, S. Where microbiology meets microengineering: design and applications of reporter


bacteria. _Nat. Rev. Microbiol._ 8, 511–522 (2010). Google Scholar  * Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. _Cell_ 165,


1255–1266 (2016). CAS  Google Scholar  * Li, S., Li, Y. & Smolke, C. D. Strategies for microbial synthesis of high-value phytochemicals. _Nat. Chem._ 10, 395–404 (2018). CAS  Google


Scholar  * Bereza-Malcolm, L. T., Mann, G. & Franks, A. E. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. _ACS Synth. Biol._


4, 535–546 (2015). CAS  Google Scholar  * Ostrov, N. et al. A modular yeast biosensor for low-cost point-of-care pathogen detection. _Sci. Adv._ 3, e1603221 (2017). Google Scholar  *


Belkin, S. et al. Remote detection of buried landmines using a bacterial sensor. _Nat. Biotechnol._ 35, 308–310 (2017). CAS  Google Scholar  * Liu, X. et al. Stretchable living materials and


devices with hydrogel–elastomer hybrids hosting programmed cells. _Proc. Natl Acad. Sci. USA_ 114, 2200–2205 (2017). CAS  Google Scholar  * Landry, B. P., Palanki, R., Dyulgyarov, N.,


Hartsough, L. A. & Tabor, J. J. Phosphatase activity tunes two-component system sensor detection threshold. _Nat. Commun._ 9, 1433 (2018). Google Scholar  * Chen, Y. et al. Tuning the


dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. _Nat. Commun._ 9, 64 (2018). Google Scholar  * Salis, H. M., Mirsky, E. A. & Voigt, C. A.


Automated design of synthetic ribosome binding sites to control protein expression. _Nat. Biotechnol._ 27, 946–950 (2009). CAS  Google Scholar  * Shaw, W. M. et al. Engineering a model cell


for rational tuning of GPCR signaling. _Cell_ 177, 782–796.e27 (2019). CAS  Google Scholar  * Maxmen, A. Living therapeutics: Scientists genetically modify bacteria to deliver drugs. _Nat.


Med._ 23, 5–7 (2017). CAS  Google Scholar  * Bose, S. et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. _Nat. Biomed. Eng._ 4,


814–826 (2020). CAS  Google Scholar  * Sankaran, S. & del Campo, A. Optoregulated protein release from an engineered living material. _Adv. Biosyst._ 3, 1800312 (2019). Google Scholar  *


Sankaran, S., Becker, J., Wittmann, C. & del Campo, A. Optoregulated drug release from an engineered living material: self-replenishing drug depots for long-term, light-regulated


delivery. _Small_ 15, 1804717 (2019). Google Scholar  * Dai, Z. et al. Versatile biomanufacturing through stimulus-responsive cell–material feedback. _Nat. Chem. Biol._ 15, 1017–1024 (2019).


CAS  Google Scholar  * Gerber, L. C., Koehler, F. M., Grass, R. N. & Stark, W. J. Incorporation of penicillin-producing fungi into living materials to provide chemically active and


antibiotic-releasing surfaces. _Angew. Chem. Int. Ed._ 124, 11455–11458 (2012). Google Scholar  * González, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by


printing bacterial spores. _Nat. Chem. Biol._ 16, 126–133 (2020). Google Scholar  * Sankaran, S., Zhao, S., Muth, C., Paez, J. & del Campo, A. Toward light-regulated living biomaterials.


_Adv. Sci._ 5, 1800383 (2018). Google Scholar  * Saadeddin, A. et al. Functional living biointerphases. _Adv. Healthc. Mater._ 2, 1213–1218 (2013). CAS  Google Scholar  * Hay, J. J. et al.


Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. _Sci. Rep._ 6, 21809 (2016). CAS  Google Scholar  * Hay, J. J. et al. Bacteria-based materials for


stem cell engineering. _Adv. Mater._ 30, 1804310 (2018). Google Scholar  * Rodrigo-Navarro, A., Rico, P., Saadeddin, A., Garcia, A. J. & Salmeron-Sanchez, M. Living biointerfaces based


on non-pathogenic bacteria to direct cell differentiation. _Sci. Rep._ 4, 5849 (2014). CAS  Google Scholar  * Lufton, M. et al. Living bacteria in thermoresponsive gel for treating fungal


infections. _Adv. Funct. Mater._ 28, 1801581 (2018). Google Scholar  * Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. _Science_ 360, 915–918


(2018). CAS  Google Scholar  * Din, M. O., Martin, A., Razinkov, I., Csicsery, N. & Hasty, J. Interfacing gene circuits with microelectronics through engineered population dynamics.


_Sci. Adv._ 6, eaaz8344 (2020). CAS  Google Scholar  * Patel, S. R. & Lieber, C. M. Precision electronic medicine in the brain. _Nat. Biotechnol._ 37, 1007–1012 (2019). CAS  Google


Scholar  * Webster, D. P. et al. An arsenic-specific biosensor with genetically engineered _Shewanella oneidensis_ in a bioelectrochemical system. _Biosens. Bioelectron._ 62, 320–324 (2014).


CAS  Google Scholar  * Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. _Sci. Transl. Med._ 9, eaal2298


(2017). Google Scholar  * Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in _Escherichia coli_ through redox signalling. _Nat. Commun._ 8, 14030 (2017). CAS 


Google Scholar  * Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. _Science_ 368, 993–1001 (2020). CAS  Google Scholar  *


Slate, A. J., Whitehead, K. A., Brownson, D. A. & Banks, C. E. Microbial fuel cells: An overview of current technology. _Renew. Sustain. Energy Rev._ 101, 60–81 (2019). CAS  Google


Scholar  * Bird, L. J. et al. Engineered living conductive biofilms as functional materials. _MRS Commun._ 9, 505–517 (2019). CAS  Google Scholar  * Li, F., Wang, L., Liu, C., Wu, D. &


Song, H. Engineering exoelectrogens by synthetic biology strategies. _Curr. Opin. Electrochem._ 10, 37–45 (2018). CAS  Google Scholar  * Gadhamshetty, V. & Koratkar, N. Nano-engineered


biocatalyst-electrode structures for next generation microbial fuel cells. _Nano Energy_ 1, 3–5 (2012). CAS  Google Scholar  * Yong, Y.-C., Yu, Y.-Y., Zhang, X. & Song, H. Highly active


bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. _Angew. Chem. Int. Ed._ 53, 4480–4483 (2014). CAS  Google Scholar  * McCormick,


A. J. et al. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. _Energy Environ. Sci._ 4, 4699–4709 (2011). CAS  Google


Scholar  * Joshi, S., Cook, E. & Mannoor, M. S. Bacterial nanobionics via 3D printing. _Nano Lett._ 18, 7448–7456 (2018). CAS  Google Scholar  * Melis, A. Solar energy conversion


efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. _Plant Sci._ 177, 272–280 (2009). CAS  Google Scholar  * Kim, M. J. et al. A broadband multiplex


living solar cell. _Nano Lett._ 20, 4286–4291 (2020). CAS  Google Scholar  * Schuergers, N., Werlang, C., Ajo-Franklin, C. M. & Boghossian, A. A. A synthetic biology approach to


engineering living photovoltaics. _Energy Environ. Sci._ 10, 1102–1115 (2017). CAS  Google Scholar  * Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y.-X. & Yang, P. Photosynthetic


semiconductor biohybrids for solar-driven biocatalysis. _Nat. Catal._ 3, 245–255 (2020). CAS  Google Scholar  * Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of


nonphotosynthetic bacteria for solar-to-chemical production. _Science_ 351, 74–77 (2016). CAS  Google Scholar  * Wei, W. et al. A surface-display biohybrid approach to light-driven hydrogen


production in air. _Sci. Adv._ 4, eaap9253 (2018). Google Scholar  * Guo, J. et al. Light-driven fine chemical production in yeast biohybrids. _Science_ 362, 813–816 (2018). CAS  Google


Scholar  * Bernardi, D., DeJong, J. T., Montoya, B. M. & Martinez, B. C. Bio-bricks: Biologically cemented sandstone bricks. _Constr. Build. Mater._ 55, 462–469 (2014). Google Scholar  *


Lee, Y. S. & Park, W. Current challenges and future directions for bacterial self-healing concrete. _Appl. Microbiol. Biotechnol._ 102, 3059–3070 (2018). CAS  Google Scholar  *


Pungrasmi, W., Intarasoontron, J., Jongvivatsakul, P. & Likitlersuang, S. Evaluation of microencapsulation techniques for MICP bacterial spores applied in self-healing concrete. _Sci.


Rep._ 9, 12484 (2019). Google Scholar  * Boothby, T. C. et al. Tardigrades use intrinsically disordered proteins to survive desiccation. _Mol. Cell_ 65, 975–984.e975 (2017). CAS  Google


Scholar  * Ferreiro, A., Crook, N., Gasparrini, A. J. & Dantas, G. Multiscale evolutionary dynamics of host-associated microbiomes. _Cell_ 172, 1216–1227 (2018). CAS  Google Scholar  *


Jones, M., Huynh, T., Dekiwadia, C., Daver, F. & John, S. Mycelium composites: a review of engineering characteristics and growth kinetics. _J. Bionanosci._ 11, 241–257 (2017). CAS 


Google Scholar  * Chang, J. et al. Modified recipe to inhibit fruiting body formation for living fungal biomaterial manufacture. _PLoS ONE_ 14, e0209812 (2019). Google Scholar  * Islam, M.


R., Tudryn, G., Bucinell, R., Schadler, L. & Picu, R. C. Mechanical behavior of mycelium-based particulate composites. _J. Mater. Sci._ 53, 16371–16382 (2018). CAS  Google Scholar  *


Jiang, B. et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. _Adv. Funct. Mater._ 30, 1906307 (2020). CAS  Google Scholar


  * Teulé, F. et al. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. _Proc. Natl Acad. Sci. USA_ 109, 923–928


(2012). Google Scholar  * Tero, A. et al. Rules for biologically inspired adaptive network design. _Science_ 327, 439–442 (2010). CAS  Google Scholar  * Inda, M. E. & Lu, T. K. Microbes


as biosensors. _Annu. Rev. Microbiol._ 74, 337–359 (2020). CAS  Google Scholar  * Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. _Nat. Rev. Genet._ 16,


379–394 (2015). CAS  Google Scholar  * Morrison, M. S., Podracky, C. J. & Liu, D. R. The developing toolkit of continuous directed evolution. _Nat. Chem. Biol._ 16, 610–619 (2020). CAS 


Google Scholar  * Gleizer, S. et al. Conversion of _Escherichia coli_ to generate all biomass carbon from CO2. _Cell_ 179, 1255–1263.e12 (2019). CAS  Google Scholar  * Hossain, A. et al.


Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. _Nat. Biotechnol._ https://doi.org/10.1038/s41587-020-0584-2 (2020). Article  Google Scholar  *


Nielsen, A. A. K. et al. Genetic circuit design automation. _Science_ 352, aac7341 (2016). Google Scholar  * Casini, A., Storch, M., Baldwin, G. S. & Ellis, T. Bricks and blueprints:


methods and standards for DNA assembly. _Nat. Rev. Mol. Cell Biol._ 16, 568–576 (2015). CAS  Google Scholar  * Zhang, W., Mitchell, L. A., Bader, J. S. & Boeke, J. D. Synthetic genomes.


_Annu. Rev. Biochem._ 89, 77–101 (2020). CAS  Google Scholar  * Adamala, K. P., Martin-Alarcon, D. A., Guthrie-Honea, K. R. & Boyden, E. S. Engineering genetic circuit interactions


within and between synthetic minimal cells. _Nat. Chem._ 9, 431–439 (2017). CAS  Google Scholar  * Ceroni, F. et al. Burden-driven feedback control of gene expression. _Nat. Methods_ 15,


387–393 (2018). CAS  Google Scholar  * Segall-Shapiro, T. H., Meyer, A. J., Ellington, A. D., Sontag, E. D. & Voigt, C. A. A ‘resource allocator’ for transcription based on a highly


fragmented T7 RNA polymerase. _Mol. Syst. Biol._ 10, 742 (2014). Google Scholar  * Burger, B. et al. A mobile robotic chemist. _Nature_ 583, 237–241 (2020). CAS  Google Scholar  * Butler, K.


T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. _Nature_ 559, 547–555 (2018). CAS  Google Scholar  * Stokes, J. M. et al.


A deep learning approach to antibiotic discovery. _Cell_ 180, 688–702.e13 (2020). CAS  Google Scholar  * Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J.


Next-generation machine learning for biological networks. _Cell_ 173, 1581–1592 (2018). CAS  Google Scholar  * Qin, Z. et al. Artificial intelligence method to design and fold alpha-helical


structural proteins from the primary amino acid sequence. _Extreme Mech. Lett._ 36, 100652 (2020). Google Scholar  * Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A.


S. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. _Nat. Biotechnol._ 36, 614–623 (2018). CAS  Google Scholar  * Lee, J. W., Chan, C.


T., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. _Nat. Chem. Biol._ 14, 530–537 (2018). CAS  Google Scholar  * Rovner, A. J. et al.


Recoded organisms engineered to depend on synthetic amino acids. _Nature_ 518, 89–93 (2015). CAS  Google Scholar  * McLeod, C. & Nerlich, B. Synthetic biology, metaphors and


responsibility. _Life Sci. Soc. Policy_ 13, 13 (2017). Google Scholar  * Trump, B. D. et al. Co-evolution of physical and social sciences in synthetic biology. _Crit. Rev. Biotechnol._ 39,


351–365 (2019). Google Scholar  * Levin, M., Bongard, J. & Lunshof, J. E. Applications and ethics of computer-designed organisms. _Nat. Rev. Mol. Cell Biol._ 21, 655–656 (2020). CAS 


Google Scholar  * Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in _Escherichia coli_ via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements.


_Nucleic Acids Res._ 25, 1203–1210 (1997). CAS  Google Scholar  * Zuo, J., Niu, Q.-W. & Chua, N.-H. An estrogen receptor-based transactivator XVE mediates highly inducible gene


expression in transgenic plants. _Plant J._ 24, 265–273 (2000). CAS  Google Scholar  * Motta-Mena, L. B. et al. An optogenetic gene expression system with rapid activation and deactivation


kinetics. _Nat. Chem. Biol._ 10, 196–202 (2014). CAS  Google Scholar  * Inda, M. E., Vazquez, D. B., Fernández, A. & Cybulski, L. E. Reverse engineering of a thermosensing regulator


switch. _J. Mol. Biol._ 431, 1016–1024 (2019). CAS  Google Scholar  * Booth, I. R., Edwards, M. D., Black, S., Schumann, U. & Miller, S. Mechanosensitive channels in bacteria: signs of


closure? _Nat. Rev. Microbiol._ 5, 431–440 (2007). CAS  Google Scholar  * Callura, J. M., Dwyer, D. J., Isaacs, F. J., Cantor, C. R. & Collins, J. J. Tracking, tuning, and terminating


microbial physiology using synthetic riboregulators. _Proc. Natl Acad. Sci. USA_ 107, 15898–15903 (2010). CAS  Google Scholar  * Rhodius, V. A. et al. Design of orthogonal genetic switches


based on a crosstalk map of σs, anti-σs, and promoters. _Mol. Syst. Biol._ 9, 702 (2013). CAS  Google Scholar  * Gander, M. W., Vrana, J. D., Voje, W. E., Carothers, J. M. & Klavins, E.


Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. _Nat. Commun._ 8, 15459 (2017). CAS  Google Scholar  * Sheth, R. U., Yim, S. S., Wu, F. L. & Wang, H. H. Multiplex recording


of cellular events over time on CRISPR biological tape. _Science_ 358, 1457–1461 (2017). CAS  Google Scholar  * Friedland, A. E. et al. Synthetic gene networks that count. _Science_ 324,


1199–1202 (2009). CAS  Google Scholar  * Tastanova, A. et al. Synthetic biology-based cellular biomedical tattoo for detection of hypercalcemia associated with cancer. _Sci. Transl. Med._


10, eaap8562 (2018). Google Scholar  * Chen, G.-Q., Jiang, X.-R. & Guo, Y. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). _Synth. Syst. Biotechnol._ 1, 236–242


(2016). Google Scholar  * Jensen, H. M. et al. Engineering of a synthetic electron conduit in living cells. _Proc. Natl Acad. Sci. USA_ 107, 19213–19218 (2010). CAS  Google Scholar  *


Piñero-Lambea, C. et al. Programming controlled adhesion of _E. coli_ to target surfaces, cells, and tumors with synthetic adhesins. _ACS Synth. Biol._ 4, 463–473 (2015). Google Scholar  *


Teramoto, H. et al. Genetic code expansion of the silkworm _Bombyx mori_ to functionalize silk fiber. _ACS Synth. Biol._ 7, 801–806 (2018). CAS  Google Scholar  * Sun, F., Zhang, W.-B.,


Mahdavi, A., Arnold, F. H. & Tirrell, D. A. Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. _Proc. Natl Acad. Sci. USA_ 111, 11269–11274


(2014). CAS  Google Scholar  * Deng, M.-D. et al. Metabolic engineering of _Escherichia coli_ for industrial production of glucosamine and N-acetylglucosamine. _Metab. Eng._ 7, 201–214


(2005). CAS  Google Scholar  * Nishida, K. & Silver, P. A. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.


_PLoS Biol._ 10, e1001269 (2012). CAS  Google Scholar  * Liu, X. et al. Engineering genetically-encoded mineralization and magnetism via directed evolution. _Sci. Rep._ 6, 38019 (2016). CAS


  Google Scholar  * Liang, L. et al. Rational control of calcium carbonate precipitation by engineered _Escherichia coli_. _ACS Synth. Biol._ 7, 2497–2506 (2018). CAS  Google Scholar  * Cui,


R. et al. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. _Adv. Funct. Mater._ 19, 2359–2364 (2009). CAS  Google Scholar  * Rivera-Tarazona, L. K., Bhat,


V. D., Kim, H., Campbell, Z. T. & Ware, T. H. Shape-morphing living composites. _Sci. Adv._ 6, eaax8582 (2020). CAS  Google Scholar  * Schaffner, M., Rühs, P. A., Coulter, F., Kilcher,


S. & Studart, A. R. 3D printing of bacteria into functional complex materials. _Sci. Adv._ 3, eaao6804 (2017). Google Scholar  * Tang, J. et al. Cardiac cell–integrated microneedle patch


for treating myocardial infarction. _Sci. Adv._ 4, eaat9365 (2018). CAS  Google Scholar  * Ye, H. et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. _Nat.


Biomed. Eng._ 1, 0005 (2016). Google Scholar  * An, D. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. _Proc. Natl Acad.


Sci. USA_ 115, E263–E272 (2018). CAS  Google Scholar  * Guo, S. et al. Engineered living materials based on adhesin-mediated trapping of programmable cells. _ACS Synth. Biol._ 9, 475–485


(2020). CAS  Google Scholar  * Fu, T.-M., Hong, G., Viveros, R. D., Zhou, T. & Lieber, C. M. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.


_Proc. Natl Acad. Sci. USA_ 114, E10046–E10055 (2017). CAS  Google Scholar  * Cao, Y. et al. Programmable assembly of pressure sensors using pattern-forming bacteria. _Nat. Biotechnol._ 35,


1087–1093 (2017). CAS  Google Scholar  * McCuskey, S. R., Su, Y., Leifert, D., Moreland, A. S. & Bazan, G. C. Living bioelectrochemical composites. _Adv. Mater._ 32, 1908178 (2020). CAS


  Google Scholar  * Freyman, M. C., Kou, T., Wang, S. & Li, Y. 3D printing of living bacteria electrode. _Nano Res._ 13, 1318–1323 (2020). CAS  Google Scholar  * Liu, C. et al.


Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. _Nano Lett._ 15, 3634–3639 (2015). CAS  Google Scholar  * Zhang, H. et al. Bacteria


photosensitized by intracellular gold nanoclusters for solar fuel production. _Nat. Nanotechnol._ 13, 900–905 (2018). CAS  Google Scholar  * Honda, Y., Hagiwara, H., Ida, S. & Ishihara,


T. Application to photocatalytic H2 production of a whole-cell reaction by recombinant _Escherichia coli_ cells expressing [FeFe]-hydrogenase and maturases genes. _Angew. Chem. Int. Ed._ 55,


8045–8048 (2016). CAS  Google Scholar  * Sun, W., Tajvidi, M., Hunt, C. G., McIntyre, G. & Gardner, D. J. Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose


nanofibrils. _Sci. Rep._ 9, 3766 (2019). Google Scholar  * Wood, T. L. et al. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. _Proc. Natl


Acad. Sci. USA_ 113, E2802–E2811 (2016). CAS  Google Scholar  * Johnston, T. G. et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation.


_Nat. Commun._ 11, 563 (2020). CAS  Google Scholar  * Qian, F. et al. Direct writing of tunable living inks for bioprocess intensification. _Nano Lett._ 19, 5829–5835 (2019). CAS  Google


Scholar  * Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. _Nature_ 440, 297–302 (2006). CAS  Google Scholar  * Lee, S.-W., Mao, C., Flynn, C. E. & Belcher, A.


M. Ordering of quantum dots using genetically engineered viruses. _Science_ 296, 892–895 (2002). CAS  Google Scholar  * Gibson, D. G. et al. Creation of a bacterial cell controlled by a


chemically synthesized genome. _Science_ 329, 52–56 (2010). CAS  Google Scholar  * Annaluru, N. et al. Total synthesis of a functional designer eukaryotic chromosome. _Science_ 344, 55–58


(2014). CAS  Google Scholar  * Ye, H. & Fussenegger, M. Synthetic therapeutic gene circuits in mammalian cells. _FEBS Lett._ 588, 2537–2544 (2014). CAS  Google Scholar  * Chen, Z. et al.


De novo design of protein logic gates. _Science_ 368, 78–84 (2020). CAS  Google Scholar  Download references ACKNOWLEDGEMENTS The authors acknowledge Mr. Lei Chen for assistance in


preparing the figures and Dr. Karen Pepper for reviewing the manuscript. B.A. would like to thank the support provided by the China Scholarship Council (CSC) during his visiting period at


Massachusetts Institute of Technology. This work was sponsored by the National Key R&D Program of China (grant nos. 2020YFA0908100 and 2018YFA0902804, the two grants provide equal


support), the Joint Funds of the National Natural Science Foundation of China (key program no. U1932204), the National Institutes of Health of the USA (grant no. 1-R21-AI121669-01) and the


Defense Threat Reduction Agency of the USA (grant no. HDTRA1-15-1-0050). AUTHOR INFORMATION Author notes * These authors contributed equally: Tzu-Chieh Tang, Bolin An. AUTHORS AND


AFFILIATIONS * Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA Tzu-Chieh Tang, Bolin An, Sangita Vasikaran & 


Timothy K. Lu * Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Tzu-Chieh Tang, Sangita Vasikaran & Timothy K. Lu * The Mediated Matter


Group, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA Tzu-Chieh Tang & Sangita Vasikaran * Materials and Physical Biology Division, School of Physical Science


and Technology, ShanghaiTech University, Shanghai, China Bolin An, Yuanyuan Huang, Yanyi Wang, Xiaoyu Jiang & Chao Zhong * Department of Electrical Engineering and Computer Science,


Massachusetts Institute of Technology, Cambridge, MA, USA Timothy K. Lu * Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced


Technology, Chinese Academy of Sciences, Shenzhen, China Chao Zhong * CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of


Advanced Technology, Chinese Academy of Sciences, Shenzhen, China Chao Zhong Authors * Tzu-Chieh Tang View author publications You can also search for this author inPubMed Google Scholar *


Bolin An View author publications You can also search for this author inPubMed Google Scholar * Yuanyuan Huang View author publications You can also search for this author inPubMed Google


Scholar * Sangita Vasikaran View author publications You can also search for this author inPubMed Google Scholar * Yanyi Wang View author publications You can also search for this author


inPubMed Google Scholar * Xiaoyu Jiang View author publications You can also search for this author inPubMed Google Scholar * Timothy K. Lu View author publications You can also search for


this author inPubMed Google Scholar * Chao Zhong View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors contributed to the


discussions, writing and reviewing of the article content. T.-C.T., B.A. and C.Z. prepared the figures and tables. CORRESPONDING AUTHORS Correspondence to Timothy K. Lu or Chao Zhong. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in


published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Tang, TC., An, B., Huang, Y. _et al._ Materials design by


synthetic biology. _Nat Rev Mater_ 6, 332–350 (2021). https://doi.org/10.1038/s41578-020-00265-w Download citation * Accepted: 06 November 2020 * Published: 23 December 2020 * Issue Date:


April 2021 * DOI: https://doi.org/10.1038/s41578-020-00265-w SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative