Lead immobilization for environmentally sustainable perovskite solar cells

Lead immobilization for environmentally sustainable perovskite solar cells


Play all audios:


ABSTRACT Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential


harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation


in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform


water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal


methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to


immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead


leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental


risk of perovskite optoelectronics. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through


your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this


journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS SUSTAINABLE LEAD MANAGEMENT IN HALIDE PEROVSKITE SOLAR CELLS Article 03 August 2020 PREVENTING LEAD LEAKAGE IN PEROVSKITE SOLAR CELLS WITH A


SUSTAINABLE TITANIUM DIOXIDE SPONGE Article 11 May 2023 ON-DEVICE LEAD-ABSORBING TAPES FOR SUSTAINABLE PEROVSKITE SOLAR CELLS Article 28 October 2021 REFERENCES * Kim, H. S. et al. Lead


iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. _Sci. Rep._ 2, 591 (2012). Article  PubMed  PubMed Central  Google


Scholar  * National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart. _NREL_ https://www.nrel.gov/pv/cell-efficiency.html (2023). * Mei, A. et al. Stabilizing


perovskite solar cells to IEC61215:2016 standards with over 9,000-h operational tracking. _Joule_ 4, 2646–2660 (2020). Article  CAS  Google Scholar  * Kim, M. et al. Conformal quantum


dot–SnO2 layers as electron transporters for efficient perovskite solar cells. _Science_ 375, 302–306 (2022). Article  CAS  PubMed  ADS  Google Scholar  * Babayigit, A., Ethirajan, A.,


Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. _Nat. Mater._ 15, 247–251 (2016). Article  CAS  PubMed  ADS  Google Scholar  * Park, S. Y. et al.


Sustainable lead management in halide perovskite solar cells. _Nat. Sustain._ 3, 1044–1051 (2020). Article  Google Scholar  * Park, N. G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K.


Towards stable and commercially available perovskite solar cells. _Nat. Energy_ 1, 16152 (2016). Article  CAS  ADS  Google Scholar  * Bellinger, D. C. Very low lead exposures and children’s


neurodevelopment. _Curr. Opin. Pediatr._ 20, 172–177 (2008). Article  PubMed  Google Scholar  * Acharya, S. Lead between the lines. _Nat. Chem._ 5, 894–894 (2013). Article  CAS  PubMed 


Google Scholar  * Van de Wiele, T. R. et al. Comparison of five in vitro digestion models to in vivo experimental results: lead bioaccessibility in the human gastrointestinal tract. _J.


Environ. Sci. Health A_ 42, 1203–1211 (2007). Article  Google Scholar  * Pourrut, B., Shahid, M., Dumat, C., Winterton, P. & Pinelli, E. Lead uptake, toxicity, and detoxification in


plants. _Rev. Environ. Contam. Toxicol._ 213, 113–136 (2011). CAS  PubMed  Google Scholar  * Fabini, D. Quantifying the potential for lead pollution from halide perovskite photovoltaics. _J.


Phys. Chem. Lett._ 6, 3546–3548 (2015). Article  CAS  PubMed  Google Scholar  * Heo, Y. J. et al. Enhancing performance and stability of tin halide perovskite light emitting diodes via


coordination engineering of Lewis acid–base adducts. _Adv. Funct. Mater._ 31, 2106974 (2021). Article  CAS  Google Scholar  * Awais, M., Kirsch, R. L., Yeddu, V. & Saidaminov, M. I. Tin


halide perovskites going forward: Frost diagrams offer hints. _ACS Mater. Lett._ 3, 299–307 (2021). Article  CAS  Google Scholar  * Tao, S. et al. Absolute energy level positions in tin- and


lead-based halide perovskites. _Nat. Commun._ 10, 2560 (2019). Article  PubMed  PubMed Central  ADS  Google Scholar  * Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free


perovskite solar cells. _Nat. Commun._ 10, 965 (2019). Article  PubMed  PubMed Central  ADS  Google Scholar  * Xiao, Z., Meng, W., Wang, J., Mitzi, D. B. & Yan, Y. Searching for


promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. _Mater. Horiz._ 4, 206–216 (2017). Article  Google Scholar  * Lyu, M. Q. et al.


Organic–inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. _Nano Res._ 9, 692–702 (2016). Article  CAS 


Google Scholar  * Xiao, Z., Song, Z. & Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. _Adv. Mater._ 31, 1803792 (2019). Article 


CAS  Google Scholar  * Yin, W.-J., Shi, T. & Yan, Y. Superior photovoltaic properties of lead halide perovskites: insights from first-principles theory. _J. Phys. Chem. C_ 119, 5253–5264


(2015). Article  CAS  Google Scholar  * Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. _Science_ 375, eabj1186 (2022). Article 


CAS  PubMed  Google Scholar  * Miyata, K. et al. Large polarons in lead halide perovskites. _Sci. Adv._ 3, e1701217 (2017). Article  PubMed  PubMed Central  ADS  Google Scholar  * Huang, J.,


Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. _Nat. Rev. Mater._ 2, 17042 (2017). Article  CAS  ADS  Google


Scholar  * Vidal, R. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells. _Nat. Sustain._ 4, 277–285 (2021). Article  Google Scholar  * Ren,


M., Qian, X., Chen, Y., Wang, T. & Zhao, Y. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. _J. Hazard. Mater._ 426, 127848 (2022). Article  CAS 


PubMed  Google Scholar  * Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. _Nat. Sustain._ 4, 821–829 (2021). Article


  Google Scholar  * Alberola-Borras, J. A. et al. Perovskite photovoltaic modules: life cycle assessment of pre-industrial production process. _iScience_ 9, 542–551 (2018). Article  CAS 


PubMed  PubMed Central  ADS  Google Scholar  * Jin, X. et al. Mitigating potential lead leakage risk of perovskite solar cells by device architecture engineering from exterior to interior.


_ACS Energy Lett._ 7, 3618–3636 (2022). Article  CAS  Google Scholar  * Wu, P., Wang, S., Li, X. & Zhang, F. Beyond efficiency fever: preventing lead leakage for perovskite solar cells.


_Matter_ 5, 1137–1161 (2022). Article  Google Scholar  * Zhang, H. & Park, N.-G. Towards sustainability with self-healing and recyclable perovskite solar cells. _eScience_ 2, 567–572


(2022). Article  Google Scholar  * Li, J. et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. _Nat. Commun._ 11, 310 (2020).THIS WORK


INVESTIGATED THE BIOAVAILABILITY OF LEAKED LEAD FROM PSCS AND ITS IMPACT ON THE GROWTH OF PLANTS. Article  PubMed  PubMed Central  ADS  Google Scholar  * Billen, P. et al. Comparative


evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. _Energy_ 166, 1089–1096 (2019). Article  CAS  Google Scholar  * Hailegnaw, B.,


Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. _J. Phys. Chem. Lett._ 6,


1543–1547 (2015). Article  CAS  PubMed  Google Scholar  * Wang, J. et al. Polyacrylic acid grafted carbon nanotubes for immobilization of lead(II) in perovskite solar cell. _ACS Energy


Lett._ 7, 1577–1585 (2022).THIS STUDY REPORTED AN EFFICIENT LEAD-IMMOBILIZATION METHOD BY TAKING ADVANTAGE OF HIGH-SPECIFIC-SURFACE-AREA AND SELF-AGGREGATION PROPERTIES OF CNTS. Article  CAS


  Google Scholar  * Liang, Y. et al. Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. _Adv. Funct. Mater._ 32, 2110139 (2021). Article 


Google Scholar  * Cao, Q. et al. Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. _Adv. Funct. Mater._ 32, 2201036


(2022). Article  CAS  Google Scholar  * Hu, Y. et al. A holistic sunscreen interface strategy to effectively improve the performance of perovskite solar cells and prevent lead leakage.


_Chem. Eng. J._ 433, 134566 (2022). Article  CAS  Google Scholar  * Zhang, H. et al. Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. _Nat. Commun._ 12,


3383 (2021). Article  CAS  PubMed  PubMed Central  ADS  Google Scholar  * Meng, X. et al. A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage.


_Adv. Funct. Mater._ 31, 2106460 (2021). Article  CAS  Google Scholar  * Wei, X. et al. Avoiding structural collapse to reduce lead leakage in perovskite photovoltaics. _Angew. Chem. Int.


Ed._ 61, e202204314 (2022).IN THIS WORK, THE LEAD LEAKING FROM PSCS WAS EFFECTIVELY SUPPRESSED BY CONSTRUCTING A ROBUST 2D PEROVSKITE STRUCTURE ON TOP OF A 3D PEROVSKITE SURFACE. Article 


CAS  Google Scholar  * Niu, B. et al. Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks. _ACS Energy Lett._ 6, 3443–3449 (2021).THIS


STUDY CONSTRUCTED A PEROVSKITE/POLYMER MATRIX WITHIN THE PEROVSKITE FILMS BY MEANS OF IN SITU POLYMERIZATION OF ACRYLAMIDE, WHICH CAN FORM HYDROGELS WHEN EXPOSED TO WATER AND HENCE PREVENT


LEAD LEAKAGE. Article  CAS  Google Scholar  * Zhu, X. et al. Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. _Adv.


Funct. Mater._ 32, 2202408 (2022). Article  CAS  Google Scholar  * Zhang, H. et al. Design of superhydrophobic surfaces for stable perovskite solar cells with reducing lead leakage. _Adv.


Energy Mater._ 11, 2102281 (2021).THIS WORK REPORTED A STRATEGY TO SUPPRESS LEAD LEAKAGE FROM PSCS BY DEPOSITING SUPERHYDROPHOBIC MOLECULES ON TOP OF A PEROVSKITE LAYER. Article  CAS  Google


Scholar  * Bai, Y. et al. Oligomeric silica-wrapped perovskites enable synchronous defect passivation and grain stabilization for efficient and stable perovskite photovoltaics. _ACS Energy


Lett._ 4, 1231–1240 (2019). Article  CAS  Google Scholar  * Liu, T. et al. Stable formamidinium-based perovskite solar cells via in situ grain encapsulation. _Adv. Energy Mater._ 8, 1800232


(2018). Article  Google Scholar  * Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. _Science_ 365, 473–478 (2019). Article 


CAS  PubMed  ADS  Google Scholar  * Jana, A. & Kim, K. S. Water-stable, fluorescent organic inorganic hybrid and fully inorganic perovskites. _ACS Energy Lett._ 3, 2120–2126 (2018).


Article  CAS  Google Scholar  * Zhang, Y. et al. Water-repellent perovskites induced by a blend of organic halide salts for efficient and stable solar cells. _ACS Appl. Mater. Interfaces_


13, 33172–33181 (2021). Article  CAS  PubMed  Google Scholar  * Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite


solar cells. _Nat. Energy_ 4, 408–415 (2019). Article  CAS  ADS  Google Scholar  * Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar


cells. _Science_ 375, 434–437 (2022). Article  CAS  PubMed  ADS  Google Scholar  * Li, X. et al. In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead


iodide solar cells. _Nat. Commun._ 9, 3806 (2018). Article  PubMed  PubMed Central  ADS  Google Scholar  * Chen, S. et al. Trapping lead in perovskite solar modules with abundant and


low-cost cation-exchange resins. _Nat. Energy_ 5, 1003–1011 (2020).THIS STUDY REPORTED A METHOD TO TRAP LEAD IN PSCS BY INTEGRATING MESOPOROUS CATION-EXCHANGE RESINS WITH EXCELLENT


SELECTIVITY OF LEAD IONS INTO CARBON ELECTRODES. Article  ADS  Google Scholar  * Chen, S. et al. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells.


_Nat. Sustain._ 4, 636–643 (2021).THIS WORK IMPLEMENTED A LEAD-ADSORBING SCAFFOLD IN PSCS, WHICH IS MORE EFFECTIVE IN SUPPRESSING LEAD LEAKAGE THAN THE DEVICE WITH THE COATING AT THE


EXTERIOR OF A GLASS SURFACE. Article  Google Scholar  * Li, X. et al. On-device lead sequestration for perovskite solar cells. _Nature_ 578, 555–558 (2020).IN THIS STUDY, LEAD-ABSORBING


MATERIALS WITH SUITABLE TRANSPARENCY AND LEAD-CHELATING ACTIVITY AT VARIOUS TEMPERATURES WERE APPLIED AT BOTH THE FRONT AND BACK SIDES OF THE DEVICE STACK TO PREVENT LEAD LEAKAGE IN A WIDE


RANGE OF TEMPERATURE CONDITIONS. Article  CAS  PubMed  ADS  Google Scholar  * Xiao, X. et al. Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe


perovskite modules. _Sci. Adv._ 7, eabi8249 (2021). Article  CAS  PubMed  PubMed Central  ADS  Google Scholar  * Li, Z. et al. Sulfonated graphene aerogels enable safe-to-use flexible


perovskite solar modules. _Adv. Energy Mater._ 12, 2103236 (2021). Article  Google Scholar  * Huckaba, A. J. et al. Lead sequestration from perovskite solar cells using a metal–organic


framework polymer composite. _Energy Technol._ 8, 2000239 (2020). Article  CAS  Google Scholar  * Douay, F. et al. Assessment of potential health risk for inhabitants living near a former


lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. _Environ. Monit. Assess._ 185, 3665–3680 (2013). Article  CAS  PubMed  Google Scholar  *


Edwards, M. Fetal death and reduced birth rates associated with exposure to lead-contaminated drinking water. _Environ. Sci. Technol._ 48, 739–746 (2014). Article  CAS  PubMed  ADS  Google


Scholar  * Chandran, L. & Cataldo, R. Lead poisoning: basics and new developments. _Pediatr. Rev._ 31, 399–406 (2010). Article  PubMed  Google Scholar  * Canfield, R. L. et al.


Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. _New Engl. J. Med._ 348, 1517–1526 (2003). Article  CAS  PubMed  Google Scholar  * Barbosa,


F., Tanus-Santos, J. E., Gerlach, R. F. & Parsons, P. J. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. _Environ.


Health Perspect._ 113, 1669–1674 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * World Health Organization (WHO). Guidelines for drinking-water quality, 4th edition,


incorporating the 1st addendum. _WHO_ https://www.who.int/publications/i/item/9789241549950 (2017). * United States Environmental Protection Agency (EPA). National primary drinking water


regulations: proposed lead and copper rule revisions. _EPA_ https://www.epa.gov/dwreginfo/lead-and-copper-rule (2019). * Technology Standards Department of State Bureau of Environmental


Protection of China. Environmental quality standard for soils GB 15618-1995. _ChineseStandard.net_ https://www.chinesestandard.net/PDF.aspx/GB15618-1995 (1995). * World Health Organization


& Food and Agriculture Organization of the United Nations. Evaluation of certain food additives: fifty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. _WHO_


https://apps.who.int/iris/handle/10665/42601 (2002). * Centers for Disease Control and Prevention (CDC). Recommended actions based on blood lead level. _CDC_


https://www.cdc.gov/nceh/lead/advisory/acclpp/actions-blls.htm (2022). * Hudcova, H., Vymazal, J. & Rozkosny, M. Present restrictions of sewage sludge application in agriculture within


the European Union. _Soil Water Res._ 14, 104–120 (2019). Article  CAS  Google Scholar  * European Commission. Restriction of hazardous substances in electrical and electronic equipment


(RoHS). _European Commission_ https://environment.ec.europa.eu/topics/waste-and-recycling/rohs-directive_en (2017). * legislation.gov.uk. Directive 2011/65/EU of the European Parliament and


of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast) (Text with EEA relevance). _legislation.gov.uk_


https://www.legislation.gov.uk/eudr/2011/65 (2011). * Celik, I. et al. Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. _Sol. Energy Mater. Sol. Cells_ 156,


157–169 (2016). Article  CAS  Google Scholar  * Vidal, R., Alberola‐Borràs, J. A., Sánchez‐Pantoja, N. & Mora‐Seró, I. Comparison of perovskite solar cells with other photovoltaics


technologies from the point of view of life cycle assessment. _Adv. Energy Sustain. Res._ 2, 2000088 (2021). Article  CAS  Google Scholar  * Davidson, A. J., Binks, S. P. & Gediga, J.


Lead industry life cycle studies: environmental impact and life cycle assessment of lead battery and architectural sheet production. _Int. J. Life Cycle Assess._ 21, 1624–1636 (2016).


Article  CAS  Google Scholar  * Su, P. et al. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite


solar cells. _J. Phys. Chem. Lett._ 11, 2812–2817 (2020). Article  CAS  PubMed  Google Scholar  * Coon, S. et al. Whole-body lifetime occupational lead exposure and risk of Parkinson’s


disease. _Environ. Health Perspect._ 114, 1872–1876 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Satarug, S., Gobe, G. C., Vesey, D. A. & Phelps, K. R. Cadmium and


lead exposure, nephrotoxicity, and mortality. _Toxics_ 8, 86 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, G. et al. An across-species comparison of the sensitivity


of different organisms to Pb-based perovskites used in solar cells. _Sci. Total Environ._ 708, 135134 (2020). Article  CAS  PubMed  ADS  Google Scholar  * Benmessaoud, I. R. et al. Health


hazards of methylammonium lead iodide based perovskites: cytotoxicity studies. _Toxicol. Res._ 5, 407–419 (2016). Article  CAS  Google Scholar  * Bae, S. Y. et al. Hazard potential of


perovskite solar cell technology for potential implementation of “safe-by-design” approach. _Sci. Rep._ 9, 4242 (2019). Article  PubMed  PubMed Central  ADS  Google Scholar  * Zhai, Y.,


Hunting, E. R., Wouterse, M., Peijnenburg, W. J. G. M. & Vijver, M. G. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil


bacterial communities. _Ecotoxicol. Environ. Saf._ 145, 349–358 (2017). Article  CAS  PubMed  Google Scholar  * Zhai, Y., Wang, Z., Wang, G., Peijnenburg, W. J. G. M. & Vijver, M. G. The


fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: impacts of pH, humic acid, and divalent cations. _Chemosphere_ 249, 126564 (2020). Article  CAS  PubMed 


ADS  Google Scholar  * World Health Organization (WHO). Evaluation of certain food additives and contaminants: seventy-third [73rd] report of the Joint FAO/WHO Expert Committee on Food


Additives. _WHO_ https://apps.who.int/iris/handle/10665/44515 (2011). * Yan, D. et al. Lead leaching of perovskite solar cells in aqueous environments: a quantitative investigation. _Sol.


RRL_ 6, 2200332 (2022). Article  CAS  Google Scholar  * Ponti, C. et al. Environmental lead exposure from halide perovskites in solar cells. _Trends Ecol. Evol._ 37, 281–283 (2022). Article


  CAS  PubMed  Google Scholar  * Juarez-Perez, E. J. & Haro, M. Perovskite solar cells take a step forward. _Science_ 368, 1309 (2020). Article  CAS  PubMed  ADS  Google Scholar  * Shi,


L. et al. Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. _Science_ 368, eaba2412 (2020). Article  CAS  PubMed  Google Scholar  * Raja, S. N. et


al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. _ACS Appl. Mater. Interfaces_ 8, 35523–35533 (2016). Article  CAS  PubMed


  Google Scholar  * Wu, J. et al. A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells.


_Adv. Funct. Mater._ 29, 1905336 (2019). Article  CAS  Google Scholar  * Li, Z. et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. _Adv.


Funct. Mater._ 28, 1704288 (2018). Article  MathSciNet  Google Scholar  * Ryu, I. et al. In vivo plain X-ray imaging of cancer using perovskite quantum dot scintillators. _Adv. Funct.


Mater._ 31, 2102334 (2021). Article  CAS  Google Scholar  * Zhou, W. et al. Charge transfer boosting moisture resistance of seminude perovskite nanocrystals via hierarchical alumina


modulation. _J. Phys. Chem. Lett._ 11, 3159–3165 (2020). Article  CAS  PubMed  Google Scholar  * Zhang, Y. et al. Enhancing efficiency and stability of perovskite solar cells via in situ


incorporation of lead sulfide layer. _Sustain. Energy Fuels_ 5, 3700–3704 (2021). Article  CAS  Google Scholar  * Guo, Y., Sato, W., Shoyama, K. & Nakamura, E. Sulfamic acid-catalyzed


lead perovskite formation for solar cell fabrication on glass or plastic substrates. _J. Am. Chem. Soc._ 138, 5410–5416 (2016). Article  CAS  PubMed  Google Scholar  * Hosokawa, H. et al.


Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites. _Nat. Commun._ 10, 43 (2019). Article  PubMed  PubMed Central  ADS  Google


Scholar  * Xie, L., Zhang, T. & Zhao, Y. Stabilizing the MAPbI3 perovksite via the in-situ formed lead sulfide layer for efficient and robust solar cells. _J. Energy Chem._ 47, 62–65


(2020). Article  Google Scholar  * Lian, H. et al. Metal halide perovskite quantum dots for amphiprotic bio-imaging. _Coordin. Chem. Rev._ 452, 214313 (2022). Article  CAS  Google Scholar  *


Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. _Nature_ 561, 88–93 (2018). Article  CAS  PubMed  ADS  Google Scholar  * You, J. et al. Improved air stability of


perovskite solar cells via solution-processed metal oxide transport layers. _Nat. Nanotechnol._ 11, 75–81 (2016). Article  PubMed  ADS  Google Scholar  * Cao, Q. et al. Efficient and stable


inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. _Sci. Adv._ 7, eabg0633 (2021). Article  CAS  PubMed  PubMed Central  ADS  Google


Scholar  * Lv, Y. et al. Low-temperature atomic layer deposition of metal oxide layers for perovskite solar cells with high efficiency and stability under harsh environmental conditions.


_ACS Appl. Mater. Interfaces_ 10, 23928–23937 (2018). Article  CAS  PubMed  Google Scholar  * Kim, Y. R. et al. Inner encapsulating approach for moisture-stable perovskite solar cells. _Sol.


RRL_ 5, 2100351 (2021). Article  CAS  Google Scholar  * Jiang, Y. et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based


encapsulation. _Nat. Energy_ 4, 585–593 (2019).IN THIS STUDY, A SELF-HEALABLE POLYMER ENCAPSULANT WAS USED TO PREVENT LEAD LEAKAGE IN CASE OF MECHANICAL DAMAGE. Article  CAS  ADS  Google


Scholar  * Fu, Z. et al. Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability. _Adv. Funct. Mater._ 29, 1809129 (2019).


Article  Google Scholar  * Lv, Y., Zhang, H., Liu, R., Sun, Y. & Huang, W. Composite encapsulation enabled superior comprehensive stability of perovskite solar cells. _ACS Appl. Mater.


Interfaces_ 12, 27277–27285 (2020). Article  CAS  PubMed  Google Scholar  * Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature


cycling. _Energy Environ. Sci._ 11, 144–150 (2018). Article  CAS  Google Scholar  * Hirata, M. K., Freitas, J. N., Santos, T. E. A., Mammana, V. P. & Nogueira, A. F. Assembly


considerations for dye-sensitized solar modules with polymer gel electrolyte. _Ind. Eng. Chem. Res._ 55, 10278–10285 (2016). Article  CAS  Google Scholar  * Wu, S. et al. 2D metal–organic


framework for stable perovskite solar cells with minimized lead leakage. _Nat. Nanotechnol._ 15, 934–940 (2020).HEREIN, THE LEAD LEAKING FROM PSCS WAS PROPERLY SUPPRESSED BY USING A


LEAD-CHELATING METAL–ORGANIC FRAMEWORK AS THE CHARGE-TRANSPORT LAYER WITHIN THE DEVICE. Article  CAS  PubMed  ADS  Google Scholar  * Bi, H. et al. Top‐contacts‐interface engineering for


high‐performance perovskite solar cell with reducing lead leakage. _Sol. RRL_ 6, 2200352 (2022). Article  CAS  Google Scholar  * Xu, Y. et al. In situ polymer network in perovskite solar


cells enabled superior moisture and thermal resistance. _J. Phys. Chem. Lett._ 13, 3754–3762 (2022). Article  CAS  PubMed  Google Scholar  * Liu, Y. et al. Tough, stable and self-healing


luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. _Nat. Commun._ 13, 1338 (2022). Article  CAS  PubMed  PubMed Central  ADS  Google Scholar  * Zhao, J. et


al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. _Sci. Adv._ 3, eaao5616 (2017). Article  PubMed  PubMed Central  Google


Scholar  * Lu, Y.-B. et al. Light enhanced moisture degradation of perovskite solar cell material CH3NH3PbI3. _J. Mater. Chem. A_ 7, 27469–27474 (2019). Article  CAS  Google Scholar  *


Zhang, J. et al. Multifunctional molecule engineered SnO2 for perovskite solar cells with high efficiency and reduced lead leakage. _Sol. RRL_ 5, 2100464 (2021). Article  CAS  Google Scholar


  * Mendez L, R. D., Breen, B. N. & Cahen, D. Lead sequestration from halide perovskite solar cells with a low-cost thiol-containing encapsulant. _ACS Appl. Mater. Interfaces_ 14,


29766–29772 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, J., Kim, G. W., Kim, M., Park, S. A. & Park, T. Nonaromatic green-solvent-processable, dopant-free, and


lead-capturable hole transport polymers in perovskite solar cells with high efficiency. _Adv. Energy Mater._ 10, 1902662 (2020). Article  CAS  Google Scholar  * Edwards, M. & McNeill, L.


S. Effect of phosphate inhibitors on lead release from pipes. _J. Am. Water Works Assoc._ 94, 79–90 (2002). Article  CAS  Google Scholar  * Yang, Z. et al. Multifunctional


phosphorus-containing Lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. _Adv. Funct. Mater._ 30, 1910710 (2020). Article  CAS  Google Scholar  *


Mokhtar, M. Z. et al. Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells. _Chem. Commun._ 57, 994–997 (2021). Article  CAS  Google


Scholar  * Horvath, E. et al. Fighting health hazards in lead halide perovskite optoelectronic devices with transparent phosphate salts. _ACS Appl. Mater. Interfaces_ 13, 33995–34002 (2021).


Article  CAS  PubMed  Google Scholar  * He, Z. et al. Simultaneous chemical crosslinking of SnO2 and perovskite for high‐performance planar perovskite solar cells with minimized lead


leakage. _Sol. RRL_ 6, 2200567 (2022). Article  CAS  Google Scholar  * Li, Z. et al. An effective and economical encapsulation method for trapping lead leakage in rigid and flexible


perovskite photovoltaics. _Nano Energy_ 93, 106853 (2022). Article  CAS  Google Scholar  * Luo, H. et al. Sustainable Pb management in perovskite solar cells toward eco‐friendly development.


_Adv. Energy Mater._ 12, 2201242 (2022). Article  CAS  Google Scholar  * Dou, J., Bai, Y. & Chen, Q. Challenges of lead leakage in perovskite solar cells. _Mater. Chem. Front._ 6,


2779–2789 (2022). Article  CAS  Google Scholar  * Shahabuddi, S. et al. Kinetic and equilibrium adsorption of lead from water using magnetic metformin-substituted SBA-15. _Environ. Sci.


Water Res. Technol._ 4, 549–558 (2018). Article  Google Scholar  * Singh, R. & Bhateria, R. Experimental and modeling process optimization of lead adsorption on magnetite nanoparticles


via isothermal, kinetics, and thermodynamic studies. _ACS Omega_ 5, 10826–10837 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Reddy, D. H. K. & Lee, S. M. Application


of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. _Adv. Colloid Interface Sci._ 201, 68–93 (2013). Article  PubMed  Google Scholar  * Zhang, H.


& Park, N.-G. Strain control to stabilize perovskite solar cells. _Angew. Chem. Int. Ed._ 61, e202212268 (2022). CAS  Google Scholar  * Poll, C. G. et al. Electrochemical recycling of


lead from hybrid organic–inorganic perovskites using deep eutectic solvents. _Green Chem._ 18, 2946–2955 (2016). Article  CAS  Google Scholar  * Wang, K. et al. “One-key-reset” recycling of


whole perovskite solar cell. _Matter_ 4, 2522–2541 (2021). Article  CAS  Google Scholar  * Feng, X. et al. Close-loop recycling of perovskite solar cells through


dissolution-recrystallization of perovskite by butylamine. _Cell Rep. Phys. Sci._ 2, 100341 (2021). Article  CAS  Google Scholar  * Kim, B. J. et al. Selective dissolution of halide


perovskites as a step towards recycling solar cells. _Nat. Commun._ 7, 11735 (2016). Article  CAS  PubMed  PubMed Central  ADS  Google Scholar  * Chen, B. et al. Recycling lead and


transparent conductors from perovskite solar modules. _Nat. Commun._ 12, 5859 (2021). Article  CAS  PubMed  PubMed Central  ADS  Google Scholar  * Liu, F. et al. Recycling and recovery of


perovskite solar cells. _Mater. Today_ 43, 185–197 (2021). Article  CAS  Google Scholar  * Clementi, E., Raimondi, D. L. & Reinhardt, W. P. Atomic screening constants from SCF functions.


II. Atoms with 37 to 86 electrons. _J. Chem. Phys._ 47, 1300–1307 (1967). Article  CAS  ADS  Google Scholar  * Kim, J. Y., Lee, J. W., Jung, H. S., Shin, H. & Park, N. G.


High-efficiency perovskite solar cells. _Chem. Rev._ 120, 7867–7918 (2020). Article  CAS  PubMed  Google Scholar  * Lee, J. W. & Park, N. G. Chemical approaches for stabilizing


perovskite solar cells. _Adv. Energy Mater._ 10, 1903249 (2020). Article  CAS  ADS  Google Scholar  * Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. in _Molecular,


Clinical and Environmental Toxicology. Experientia Supplementum_ Vol. 101, 133–164 (Springer, 2012). * Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone


pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. _J. Am. Chem. Soc._ 137, 6804–6819 (2015). Article  CAS  PubMed  Google Scholar  *


Enghag, P. _Encyclopedia of the Elements: Technical Data - History - Processing - Applications_ (Wiley, 2008). * Krishnamoorthy, T. et al. Lead-free germanium iodide perovskite materials for


photovoltaic applications. _J. Mater. Chem. A_ 3, 23829–23832 (2015). Article  CAS  Google Scholar  * Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic


distances in halides and chalcogenides. _Acta Crystallogr. A_ 32, 751–767 (1976). Article  ADS  Google Scholar  Download references ACKNOWLEDGEMENTS This research was supported by the


National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (MSIT) of Korea under contract NRF-2021R1A3B1076723 (Research Leader Program), the National Key


& Program of China (grant no. 2020YFA07099003) and the Young Scientist Exchange Program between the Republic of Korea and the People’s Republic of China. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China Hui Zhang * School of Chemical Engineering


and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea Hui Zhang & Nam-Gyu Park * Department of Nano Engineering and Department of Nano Science


and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea Jin-Wook Lee * SKKU Institute of Energy Science and Technology (SIEST),


Sungkyunkwan University, Suwon, Republic of Korea Jin-Wook Lee, Michael Grätzel & Nam-Gyu Park * Department of Chemical, Materials and Production Engineering, University of Naples


Federico II, Naples, Italy Giuseppe Nasti & Antonio Abate * University of Plymouth, Plymouth, UK Richard Handy * Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de


Lausanne, Lausanne, Switzerland Michael Grätzel Authors * Hui Zhang View author publications You can also search for this author inPubMed Google Scholar * Jin-Wook Lee View author


publications You can also search for this author inPubMed Google Scholar * Giuseppe Nasti View author publications You can also search for this author inPubMed Google Scholar * Richard Handy


View author publications You can also search for this author inPubMed Google Scholar * Antonio Abate View author publications You can also search for this author inPubMed Google Scholar *


Michael Grätzel View author publications You can also search for this author inPubMed Google Scholar * Nam-Gyu Park View author publications You can also search for this author inPubMed 


Google Scholar CONTRIBUTIONS N.-G.P. and H.Z. conceived the idea for the study. H.Z. wrote the first draft. J.-W.L., R.H., A.A. and M.G. contributed to the writing. N.-G.P. edited the


manuscript. All authors commented on the manuscript. H.Z., J.-W.L., A.A. and N.-G.P. contributed to the preparation of the figures. CORRESPONDING AUTHORS Correspondence to Antonio Abate,


Michael Grätzel or Nam-Gyu Park. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature_ thanks Chang-Zhi Li, Rosario


Vidal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to


this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the


terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zhang, H., Lee, JW., Nasti, G. _et al._ Lead immobilization for


environmentally sustainable perovskite solar cells. _Nature_ 617, 687–695 (2023). https://doi.org/10.1038/s41586-023-05938-4 Download citation * Received: 11 April 2022 * Accepted: 10 March


2023 * Published: 24 May 2023 * Issue Date: 25 May 2023 * DOI: https://doi.org/10.1038/s41586-023-05938-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read


this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative