
Antigen-specific therapeutic approaches for autoimmunity
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:

ABSTRACT The main function of the immune system in health is to protect the host from infection by microbes and parasites. Because immune responses to nonself bear the risk of unleashing
accidental immunity against self, evolution has endowed the immune system with central and peripheral mechanisms of tolerance, including regulatory T and B cells. Although the past two
decades have witnessed the successful clinical translation of a whole host of novel therapies for the treatment of chronic inflammation, the development of antigen-based approaches capable
of selectively blunting autoimmune inflammation without impairing normal immunity has remained elusive. Earlier autoantigen-specific approaches employing peptides or whole antigens have
evolved into strategies that seek to preferentially deliver these molecules to autoreactive T cells either indirectly, via antigen-presenting cells, or directly, via major histocompatibility
complex molecules, in ways intended to promote clonal deletion and/or immunoregulation. The disease specificity, mechanistic underpinnings, developability and translational potential of
many of these strategies remain unclear. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through
your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this
journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now
Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer
support SIMILAR CONTENT BEING VIEWED BY OTHERS ANTIGEN-SPECIFIC IMMUNOTHERAPIES FOR AUTOIMMUNE DISEASE Article 16 December 2024 SEQUENTIAL IMMUNOTHERAPY: TOWARDS CURES FOR AUTOIMMUNITY
Article 05 June 2024 THERAPEUTIC INDUCTION OF ANTIGEN-SPECIFIC IMMUNE TOLERANCE Article 12 December 2023 REFERENCES * Tsai, S., Serra, P., Clemente-Casares, X., Slattery, R. M. &
Santamaria, P. Dendritic cell-dependent in vivo generation of autoregulatory T cells by antidiabetogenic MHC class II. _J. Immunol._ 191, 70–82 (2013). Article CAS PubMed Google Scholar
* Yamanouchi, J. et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. _Nat. Genet._ 39, 329–337 (2007). Article CAS PubMed PubMed Central
Google Scholar * Maine, C. J. et al. PTPN22 alters the development of regulatory T cells in the thymus. _J. Immunol._ 188, 5267–5275 (2012). Article CAS PubMed Google Scholar *
Solvason, N. et al. Improved efficacy of a tolerizing DNA vaccine for reversal of hyperglycemia through enhancement of gene expression and localization to intracellular sites. _J. Immunol._
181, 8298–8307 (2008). Article CAS PubMed Google Scholar * Wolfe, T. et al. Endogenous expression levels of autoantigens influence success or failure of DNA immunizations to prevent type
1 diabetes: addition of IL-4 increases safety. _Eur. J. Immunol._ 32, 113–121 (2002). Article CAS PubMed Google Scholar * Garren, H. et al. Combination of gene delivery and DNA
vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. _Immunity_ 15, 15–22 (2001). Article CAS PubMed Google Scholar * Roep, B. O. et al.
Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells in type 1 diabetes. _Sci. Transl. Med._ 5, 191ra82 (2013). Article CAS PubMed
PubMed Central Google Scholar * Bar-Or, A. et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized,
placebo-controlled phase 1/2 trial. _Arch. Neurol._ 64, 1407–1415 (2007). Article PubMed Google Scholar * Garren, H. et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein
for multiple sclerosis. _Ann. Neurol._ 63, 611–620 (2008). Article CAS PubMed Google Scholar * Thomson, A. W. & Knolle, P. A. Antigen-presenting cell function in the tolerogenic
liver environment. _Nat. Rev. Immunol._ 10, 753–766 (2010). Article CAS PubMed Google Scholar * Akbarpour, M. et al. Insulin B chain 9-23 gene transfer to hepatocytes protects from type
1 diabetes by inducing Ag-specific FoxP3+ Tregs. _Sci. Transl. Med._ 7, 289ra81 (2015). Article CAS PubMed Google Scholar * Lüth, S. et al. Ectopic expression of neural autoantigen in
mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. _J. Clin. Invest._ 118, 3403–3410 (2008). PubMed PubMed Central Google Scholar *
Pozsgay, J., Szekanecz, Z. & Sármay, G. Antigen-specific immunotherapies in rheumatic diseases. _Nat. Rev. Rheumatol._ 13, 525–537 (2017). Article CAS PubMed Google Scholar * Zhang,
N. & Nandakumar, K. S. Recent advances in the development of vaccines for chronic inflammatory autoimmune diseases. _Vaccine_ 36, 3208–3220 (2018). Article CAS PubMed Google Scholar
* Pozzilli, P. et al. IMDIAB Group. No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). _Diabetologia_ 43, 1000–1004 (2000). Article
CAS PubMed Google Scholar * Näntö-Salonen, K. et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a
double-blind, randomised controlled trial. _Lancet_ 372, 1746–1755 (2008). Article CAS PubMed Google Scholar * Harrison, L. C. et al. Pancreatic beta-cell function and immune responses
to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. _Diabetes Care_ 27, 2348–2355 (2004). Article CAS PubMed Google Scholar * Chaillous, L. et
al. Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabète Insuline Orale group. _Lancet_ 356,
545–549 (2000). Article CAS PubMed Google Scholar * Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the Diabetes Prevention Trial—Type 1.
_Diabetes Care_ 28, 1068–1076 (2005). Article CAS PubMed Google Scholar * Diabetes Prevention Trial–Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1
diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002). * Bonifacio, E. et al. Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the
Pre-POINT randomized clinical trial. _J. Am. Med. Assoc._ 313, 1541–1549 (2015). Article CAS Google Scholar * Ludvigsson, J. et al. GAD treatment and insulin secretion in recent-onset
type 1 diabetes. _N. Engl. J. Med._ 359, 1909–1920 (2008). Article CAS PubMed Google Scholar * Ludvigsson, J. et al. GAD-treatment of children and adolescents with recent-onset type 1
diabetes preserves residual insulin secretion after 30 months. _Diabetes Metab. Res. Rev._ 30, 405–414 (2014). Article CAS PubMed Google Scholar * Wherrett, D. K. et al. Antigen-based
therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. _Lancet_ 378, 319–327 (2011). Article CAS PubMed
PubMed Central Google Scholar * Weiner, H. L. et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. _Science_ 259, 1321–1324 (1993). Article CAS
PubMed Google Scholar * Evavold, B. D. & Allen, P. M. Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. _Science_ 252, 1308–1310 (1991).
Article CAS PubMed Google Scholar * Wraith, D. C., Smilek, D. E., Mitchell, D. J., Steinman, L. & McDevitt, H. O. Antigen recognition in autoimmune encephalomyelitis and the
potential for peptide-mediated immunotherapy. _Cell_ 59, 247–255 (1989). Article CAS PubMed Google Scholar * Han, B. et al. Prevention of diabetes by manipulation of anti-IGRP
autoimmunity: high efficiency of a low-affinity peptide. _Nat. Med._ 11, 645–652 (2005). Article CAS PubMed Google Scholar * Han, B. et al. Developmental control of CD8 T cell-avidity
maturation in autoimmune diabetes. _J. Clin. Invest._ 115, 1879–1887 (2005). Article CAS PubMed PubMed Central Google Scholar * Anderton, S. M. & Wraith, D. C. Hierarchy in the
ability of T cell epitopes to induce peripheral tolerance to antigens from myelin. _Eur. J. Immunol._ 28, 1251–1261 (1998). Article CAS PubMed Google Scholar * Amrani, A. et al.
Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. _Nature_ 406, 739–742 (2000). Article CAS PubMed Google Scholar * Tsai, S. et al. Reversal of
autoimmunity by boosting memory-like autoregulatory T cells. _Immunity_ 32, 568–580 (2010). Article CAS PubMed Google Scholar * Chen, T. C., Waldmann, H. & Fairchild, P. J. Induction
of dominant transplantation tolerance by an altered peptide ligand of the male antigen Dby. _J. Clin. Invest._ 113, 1754–1762 (2004). Article CAS PubMed PubMed Central Google Scholar *
Burkhart, C., Liu, G. Y., Anderton, S. M., Metzler, B. & Wraith, D. C. Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10. _Int. Immunol._
11, 1625–1634 (1999). Article CAS PubMed Google Scholar * Gabrysová, L. et al. Negative feedback control of the autoimmune response through antigen-induced differentiation of
IL-10-secreting Th1 cells. _J. Exp. Med._ 206, 1755–1767 (2009). Article CAS PubMed PubMed Central Google Scholar * Burton, B. R. et al. Sequential transcriptional changes dictate safe
and effective antigen-specific immunotherapy. _Nat. Commun._ 5, 4741 (2014). Article CAS PubMed Google Scholar * Carlier, V. A., VanderElst, L., Janssens, W., Jacquemin, M. G. &
Saint-Remy, J. M. Increased synapse formation obtained by T cell epitopes containing a CxxC motif in flanking residues convert CD4+ T cells into cytolytic effectors. _PLoS One_ 7, e45366
(2012). Article CAS PubMed PubMed Central Google Scholar * Malek Abrahimians, E., Vander Elst, L., Carlier, V. A. & Saint-Remy, J. M. Thioreductase-containing epitopes inhibit the
development of type 1 diabetes in the NOD mouse model. _Front. Immunol._ 7, 67 (2016). Article CAS PubMed PubMed Central Google Scholar * Anderton, S. M. et al. Fine specificity of the
myelin-reactive T cell repertoire: implications for TCR antagonism in autoimmunity. _J. Immunol._ 161, 3357–3364 (1998). CAS PubMed Google Scholar * Mohan, J. F., Petzold, S. J. &
Unanue, E. R. Register shifting of an insulin peptide-MHC complex allows diabetogenic T cells to escape thymic deletion. _J. Exp. Med._ 208, 2375–2383 (2011). Article CAS PubMed PubMed
Central Google Scholar * Paas-Rozner, M., Sela, M. & Mozes, E. A dual altered peptide ligand down-regulates myasthenogenic T cell responses by up-regulating CD25- and CTLA-4-expressing
CD4+ T cells. _Proc. Natl Acad. Sci. USA_ 100, 6676–6681 (2003). Article CAS PubMed PubMed Central Google Scholar * Daniel, C. & von Boehmer, H. Extrathymic generation of
regulatory T cells—chances and challenges for prevention of autoimmune disease. _Adv. Immunol._ 112, 177–213 (2011). Article CAS PubMed Google Scholar * Bergman, M. L. et al. Tolerogenic
insulin peptide therapy precipitates type 1 diabetes. _J. Exp. Med._ 214, 2153–2156 (2017). Article CAS PubMed PubMed Central Google Scholar * Kretschmer, K. et al. Inducing and
expanding regulatory T cell populations by foreign antigen. _Nat. Immunol._ 6, 1219–1227 (2005). Article CAS PubMed Google Scholar * Walter, M., Philotheou, A., Bonnici, F., Ziegler, A.
G. & Jimenez, R. No effect of the altered peptide ligand NBI-6024 on beta-cell residual function and insulin needs in new-onset type 1 diabetes. _Diabetes Care_ 32, 2036–2040 (2009).
Article CAS PubMed PubMed Central Google Scholar * Alhadj Ali, M. et al. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. _Sci.
Transl. Med._ 9, eaaf7779 (2017). Article CAS PubMed Google Scholar * Warren, K. G., Catz, I., Ferenczi, L. Z. & Krantz, M. J. Intravenous synthetic peptide MBP8298 delayed disease
progression in an HLA class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up
treatment. _Eur. J. Neurol._ 13, 887–895 (2006). Article CAS PubMed Google Scholar * Freedman, M. S. et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary
progressive MS. _Neurology_ 77, 1551–1560 (2011). Article CAS PubMed Google Scholar * Chataway, J. et al. Effects of ATX-MS-1467 immunotherapy over 16 weeks in relapsing multiple
sclerosis. _Neurology_ 90, e955–e962 (2018). Article CAS PubMed Google Scholar * Walczak, A., Siger, M., Ciach, A., Szczepanik, M. & Selmaj, K. Transdermal application of myelin
peptides in multiple sclerosis treatment. _JAMA Neurol._ 70, 1105–1109 (2013). Article PubMed Google Scholar * Juryńczyk, M. et al. Immune regulation of multiple sclerosis by
transdermally applied myelin peptides. _Ann. Neurol._ 68, 593–601 (2010). Article CAS PubMed Google Scholar * Koffeman, E. C. et al. Epitope-specific immunotherapy of rheumatoid
arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled,
pilot phase II trial. _Arthritis Rheum._ 60, 3207–3216 (2009). Article CAS PubMed Google Scholar * Tye-Din, J. A. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten
in celiac disease. _Sci. Transl. Med._ 2, 41ra51 (2010). Article CAS PubMed Google Scholar * Goel, G. et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac
disease: two randomised, double-blind, placebo-controlled phase 1 studies. Lancet. _Gastroenterol. Hepatol._ 2, 479–493 (2017). Google Scholar * Daveson, A. J. M. et al. Epitope-specific
immunotherapy targeting CD4-positive T cells in celiac disease: safety, pharmacokinetics, and effects on intestinal histology and plasma cytokines with escalating dose regimens of Nexvax2 in
a randomized, double-blind, placebo-controlled phase 1 study. _EBioMedicine_ 26, 78–90 (2017). Article PubMed PubMed Central Google Scholar * Bodd, M. et al. Direct cloning and tetramer
staining to measure the frequency of intestinal gluten-reactive T cells in celiac disease. _Eur. J. Immunol._ 43, 2605–2612 (2013). Article CAS PubMed Google Scholar * Bielekova, B. et
al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. _Nat. Med._
6, 1167–1175 (2000). Article CAS PubMed Google Scholar * Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after
administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. _Nat. Med._ 6, 1176–1182 (2000). Article CAS PubMed Google Scholar * Liu, E. et al.
Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice in response to insulin self-peptides B:9-23 and B:13-23. _J. Clin. Invest._ 110, 1021–1027 (2002). Article CAS PubMed PubMed
Central Google Scholar * Spack, E. G. et al. Induction of tolerance in experimental autoimmune myasthenia gravis with solubilized MHC class II:acetylcholine receptor peptide complexes. _J.
Autoimmun._ 8, 787–807 (1995). Article CAS PubMed Google Scholar * Sharma, S. D. et al. Antigen-specific therapy of experimental allergic encephalomyelitis by soluble class II major
histocompatibility complex-peptide complexes. _Proc. Natl Acad. Sci. USA_ 88, 11465–11469 (1991). Article CAS PubMed PubMed Central Google Scholar * Vandenbark, A. A. et al. Recombinant
TCR ligand induces tolerance to myelin oligodendrocyte glycoprotein 35-55 peptide and reverses clinical and histological signs of chronic experimental autoimmune encephalomyelitis in
HLA-DR2 transgenic mice. _J. Immunol._ 171, 127–133 (2003). Article CAS PubMed Google Scholar * Goodkin, D. E. et al. A phase I trial of solubilized DR2:MBP84-102 (AG284) in multiple
sclerosis. _Neurology_ 54, 1414–1420 (2000). Article CAS PubMed Google Scholar * Yadav, V. et al. Recombinant T-cell receptor ligand (RTL) for treatment of multiple sclerosis: a
double-blind, placebo-controlled, phase 1, dose-escalation study. _Autoimmune Dis._ 2012, 954739 (2012). PubMed PubMed Central Google Scholar * Casares, S. et al. Down-regulation of
diabetogenic CD4+ T cells by a soluble dimeric peptide-MHC class II chimera. _Nat. Immunol._ 3, 383–391 (2002). Article CAS PubMed Google Scholar * Preda-Pais, A., Stan, A. C., Casares,
S., Bona, C. & Brumeanu, T. D. Efficacy of clonal deletion vs. anergy of self-reactive CD4 T-cells for the prevention and reversal of autoimmune diabetes. _J. Autoimmun._ 25, 21–32
(2005). Article CAS PubMed Google Scholar * Lin, M. et al. Reversal of type 1 diabetes by a new MHC II-peptide chimera: “single-epitope-mediated suppression” to stabilize a polyclonal
autoimmune T-cell process. _Eur. J. Immunol._ 40, 2277–2288 (2010). Article CAS PubMed Google Scholar * Li, L., Yi, Z., Wang, B. & Tisch, R. Suppression of ongoing T cell-mediated
autoimmunity by peptide-MHC class II dimer vaccination. _J. Immunol._ 183, 4809–4816 (2009). Article CAS PubMed Google Scholar * Getts, D. R., McCarthy, D. P. & Miller, S. D.
Exploiting apoptosis for therapeutic tolerance induction. _J. Immunol._ 191, 5341–5346 (2013). Article CAS PubMed Google Scholar * Miller, S. D., Wetzig, R. P. & Claman, H. N. The
induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. _J. Exp. Med._ 149, 758–773 (1979). Article CAS PubMed Google Scholar *
Lorentz, K. M., Kontos, S., Diaceri, G., Henry, H. & Hubbell, J. A. Engineered binding to erythrocytes induces immunological tolerance to _E. coli_ asparaginase. _Sci. Adv._ 1, e1500112
(2015). Article CAS PubMed PubMed Central Google Scholar * Prasad, S., Kohm, A. P., McMahon, J. S., Luo, X. & Miller, S. D. Pathogenesis of NOD diabetes is initiated by reactivity
to the insulin B chain 9-23 epitope and involves functional epitope spreading. _J. Autoimmun._ 39, 347–353 (2012). Article CAS PubMed PubMed Central Google Scholar * Getts, D. R. et al.
Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. _J. Immunol._ 187, 2405–2417
(2011). Article CAS PubMed Google Scholar * Lutterotti, A. et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. _Sci.
Transl. Med._ 5, 188ra75 (2013). Article CAS PubMed PubMed Central Google Scholar * Hunter, Z. et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune
tolerance for treatment of autoimmune disease. _ACS Nano_ 8, 2148–2160 (2014). Article CAS PubMed PubMed Central Google Scholar * Getts, D. R. et al. Microparticles bearing
encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. _Nat. Biotechnol._ 30, 1217–1224 (2012). Article CAS PubMed PubMed Central
Google Scholar * Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. _Nature_ 530, 434–440 (2016). Article CAS PubMed Google Scholar *
Macauley, M. S. et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. _J. Clin. Invest._ 123, 3074–3083 (2013). Article CAS PubMed PubMed Central
Google Scholar * Pujol-Autonell, I. et al. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes. _PLoS One_ 10, e0127057 (2015). Article CAS
PubMed PubMed Central Google Scholar * Capini, C. et al. Antigen-specific suppression of inflammatory arthritis using liposomes. _J. Immunol._ 182, 3556–3565 (2009). Article CAS PubMed
Google Scholar * Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. _Proc. Natl Acad. Sci. USA_ 112, E156–E165
(2015). Article CAS PubMed Google Scholar * LaMothe, R. A. et al. Tolerogenic nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable
tolerance against experimental autoimmune encephalomyelitis. _Front. Immunol._ 9, 281 (2018). Article CAS PubMed PubMed Central Google Scholar * Yeste, A. et al. Tolerogenic
nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. _Sci. Signal._ 9, ra61 (2016). Article CAS PubMed Google Scholar * Carambia, A. et al. Nanoparticle-based autoantigen
delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. _J. Hepatol._ 62, 1349–1356 (2015). Article CAS PubMed Google Scholar * Grimm, A.
J., Kontos, S., Diaceri, G., Quaglia-Thermes, X. & Hubbell, J. A. Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. _Sci. Rep._ 5, 15907 (2015).
Article CAS PubMed PubMed Central Google Scholar * Kontos, S., Kourtis, I. C., Dane, K. Y. & Hubbell, J. A. Engineering antigens for in situ erythrocyte binding induces T-cell
deletion. _Proc. Natl Acad. Sci. USA_ 110, E60–E68 (2013). Article PubMed Google Scholar * Pishesha, N. et al. Engineered erythrocytes covalently linked to antigenic peptides can protect
against autoimmune disease. _Proc. Natl Acad. Sci. USA_ 114, 3157–3162 (2017). Article CAS PubMed PubMed Central Google Scholar * Cook, D. P., Gysemans, C. & Mathieu, C.
_Lactococcus lactis_ as a versatile vehicle for tolerogenic immunotherapy. _Front. Immunol._ 8, 1961 (2018). Article CAS PubMed PubMed Central Google Scholar * Robert, S. et al. Oral
delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. _Diabetes_ 63, 2876–2887 (2014). Article CAS PubMed Google
Scholar * Takiishi, T. et al. Reversal of diabetes in NOD mice by clinical-grade proinsulin and IL-10-secreting _Lactococcus lactis_ in combination with low-dose anti-CD3 depends on the
induction of Foxp3-positive T cells. _Diabetes_ 66, 448–459 (2017). Article CAS PubMed Google Scholar * Takiishi, T. et al. Reversal of autoimmune diabetes by restoration of
antigen-specific tolerance using genetically modified _Lactococcus lactis_ in mice. _J. Clin. Invest._ 122, 1717–1725 (2012). Article CAS PubMed PubMed Central Google Scholar *
Anderson, B., Park, B. J., Verdaguer, J., Amrani, A. & Santamaria, P. Prevalent CD8+ T cell response against one peptide/MHC complex in autoimmune diabetes. _Proc. Natl Acad. Sci. USA_
96, 9311–9316 (1999). Article CAS PubMed PubMed Central Google Scholar * Lieberman, S. M. et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic
CD8+ T cells in autoimmune diabetes. _Proc. Natl Acad. Sci. USA_ 100, 8384–8388 (2003). Article CAS PubMed PubMed Central Google Scholar * Groux, H. et al. A CD4+ T-cell subset
inhibits antigen-specific T-cell responses and prevents colitis. _Nature_ 389, 737–742 (1997). Article CAS PubMed Google Scholar * Desreumaux, P. et al. Safety and efficacy of
antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. _Gastroenterology_ 143, 1207–1217.e2 (2012). Article CAS PubMed Google Scholar *
Marek-Trzonkowska, N. et al. Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. _J. Transl. Med._ 14, 332 (2016). Article CAS PubMed PubMed
Central Google Scholar * Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. _Sci. Transl. Med._ 7, 315ra189 (2015). Article CAS PubMed PubMed
Central Google Scholar * Mekala, D. J. & Geiger, T. L. Immunotherapy of autoimmune encephalomyelitis with redirected CD4+CD25+ T lymphocytes. _Blood_ 105, 2090–2092 (2005). Article
CAS PubMed Google Scholar * Moisini, I., Nguyen, P., Fugger, L. & Geiger, T. L. Redirecting therapeutic T cells against myelin-specific T lymphocytes using a humanized myelin basic
protein-HLA-DR2-zeta chimeric receptor. _J. Immunol._ 180, 3601–3611 (2008). Article CAS PubMed Google Scholar * Qian, Z. et al. Engineered regulatory T cells coexpressing MHC class
II:peptide complexes are efficient inhibitors of autoimmune T cell function and prevent the development of autoimmune arthritis. _J. Immunol._ 190, 5382–5391 (2013). Article CAS PubMed
Google Scholar * Fransson, M. et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. _J. Neuroinflammation_ 9, 112 (2012). Article CAS
PubMed PubMed Central Google Scholar * Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. _Science_ 353, 179–184 (2016).
Article CAS PubMed PubMed Central Google Scholar * June, C. H., Riddell, S. R. & Schumacher, T. N. Adoptive cellular therapy: a race to the finish line. _Sci. Transl. Med._ 7,
280ps7 (2015). Article CAS PubMed Google Scholar * Raϊch-Regué, D. et al. Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis
patients. _Eur. J. Immunol._ 42, 771–782 (2012). Article CAS PubMed Google Scholar * Harry, R. A., Anderson, A. E., Isaacs, J. D. & Hilkens, C. M. Generation and characterisation of
therapeutic tolerogenic dendritic cells for rheumatoid arthritis. _Ann. Rheum. Dis._ 69, 2042–2050 (2010). Article CAS PubMed Google Scholar * Giannoukakis, N., Phillips, B., Finegold,
D., Harnaha, J. & Trucco, M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. _Diabetes Care_ 34, 2026–2032 (2011). Article PubMed PubMed
Central Google Scholar * Lan, P., Tonomura, N., Shimizu, A., Wang, S. & Yang, Y. G. Reconstitution of a functional human immune system in immunodeficient mice through combined human
fetal thymus/liver and CD34+ cell transplantation. _Blood_ 108, 487–492 (2006). Article CAS PubMed Google Scholar * Billerbeck, E. et al. Development of human CD4+FoxP3+ regulatory T
cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγ(null) humanized mice. _Blood_ 117, 3076–3086 (2011). Article
CAS PubMed PubMed Central Google Scholar * Tan, S. et al. Type 1 diabetes induction in humanized mice. _Proc. Natl Acad. Sci. USA_ 114, 10954–10959 (2017). Article CAS PubMed PubMed
Central Google Scholar * Akdis, C. A. & Akdis, M. Mechanisms of immune tolerance to allergens: role of IL-10 and Tregs. _J. Clin. Invest._ 124, 4678–4680 (2014). Article CAS PubMed
PubMed Central Google Scholar * Gabryšová, L. et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells. _Nat. Immunol._ 19,
497–507 (2018). Article CAS PubMed PubMed Central Google Scholar * Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene
expression in CD4 T cells. _Cell_ 89, 587–596 (1997). Article CAS PubMed Google Scholar * Motomura, Y. et al. The transcription factor E4BP4 regulates the production of IL-10 and IL-13
in CD4+ T cells. _Nat. Immunol._ 12, 450–459 (2011). Article CAS PubMed PubMed Central Google Scholar * Wang, Z. Y. et al. Regulation of IL-10 gene expression in Th2 cells by Jun
proteins. _J. Immunol._ 174, 2098–2105 (2005). Article CAS PubMed Google Scholar * Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the
costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. _J. Immunol._ 183, 797–801 (2009). Article CAS PubMed Google Scholar *
Kwok, W. W. et al. Direct ex vivo analysis of allergen-specific CD4+ T cells. _J. Allergy Clin. Immunol._ 125, 1407–1409.e1401 (2010). Article CAS PubMed PubMed Central Google Scholar
* Pugliese, A. Autoreactive T cells in type 1 diabetes. _J. Clin. Invest._ 127, 2881–2891 (2017). Article PubMed PubMed Central Google Scholar * Elong Ngono, A. et al. Frequency of
circulating autoreactive T cells committed to myelin determinants in relapsing-remitting multiple sclerosis patients. _Clin. Immunol._ 144, 117–126 (2012). Article CAS PubMed Google
Scholar * Singha, S. et al. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. _Nat. Nanotechnol._ 12, 701–710 (2017). Article CAS
PubMed Google Scholar * Gabrysová, L. & Wraith, D. C. Antigenic strength controls the generation of antigen-specific IL-10-secreting T regulatory cells. _Eur. J. Immunol._ 40,
1386–1395 (2010). Article CAS PubMed PubMed Central Google Scholar * Couper, K. N., Blount, D. G. & Riley, E. M. IL-10: the master regulator of immunity to infection. _J. Immunol._
180, 5771–5777 (2008). Article CAS PubMed Google Scholar * White, A. M. & Wraith, D. C. Tr1-like T cells — an enigmatic regulatory T cell lineage. _Front. Immunol._ 7, 355 (2016).
Article CAS PubMed PubMed Central Google Scholar * Jauregui-Amezaga, A. et al. Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s disease: a
phase I study. _J. Crohns Colitis_ 9, 1071–1078 (2015). Article PubMed Google Scholar * Benham, H. et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive
rheumatoid arthritis patients. _Sci. Transl. Med._ 7, 290ra87 (2015). Article CAS PubMed Google Scholar * Bell, G. M. et al. Autologous tolerogenic dendritic cells for rheumatoid and
inflammatory arthritis. _Ann. Rheum. Dis._ 76, 227–234 (2017). Article CAS PubMed Google Scholar Download references ACKNOWLEDGEMENTS We thank the members of our laboratories for their
contributions and insights. The authors’ work summarized here was funded by the Canadian Institutes of Health Research (CIHR), Diabetes Canada, the Crohn’s and Colitis Foundation of Canada,
the Multiple Sclerosis Society of Canada (MSSC), ISCIII and FEDER (PIE14/00027, PI15/0797), NEURON-ERANET (European Research Projects on Neuroinflammation; NEURON7-FP-715-018), the
Ministerio de Economia y Competitividad of Spain (MINECO) and Generalitat de Catalunya (SGR and CERCA Programmes). P. Serra was an investigator of the Ramon y Cajal Re-integration Program
and is supported by a JDRF Career Development Award. P. Santamaria was a Scientist of the Alberta-Innovates – Health Solutions (AI–HS) and a scholar of the Instituto de Investigaciones
Sanitarias Carlos III. The JMDRC was supported by the Diabetes Association (Foothills) and currently by Diabetes Canada. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Institut
D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain Pau Serra & Pere Santamaria * Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology,
Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Pere Santamaria Authors * Pau Serra
View author publications You can also search for this author inPubMed Google Scholar * Pere Santamaria View author publications You can also search for this author inPubMed Google Scholar
CORRESPONDING AUTHORS Correspondence to Pau Serra or Pere Santamaria. ETHICS DECLARATIONS COMPETING INTERESTS P. Santamaria is scientific founder of Parvus Therapeutics Inc. and has a
financial interest in the company. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Serra, P., Santamaria, P. Antigen-specific therapeutic approaches for autoimmunity. _Nat
Biotechnol_ 37, 238–251 (2019). https://doi.org/10.1038/s41587-019-0015-4 Download citation * Received: 01 May 2018 * Accepted: 04 January 2019 * Published: 25 February 2019 * Issue Date:
March 2019 * DOI: https://doi.org/10.1038/s41587-019-0015-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a
shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative