A comprehensive library of human transcription factors for cell fate engineering

A comprehensive library of human transcription factors for cell fate engineering


Play all audios:


ABSTRACT Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape


mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC


lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four


of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our


cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible


hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for


cell engineering based on developmental biology and computational systems biology. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days


cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EFFICIENT GENERATION OF FUNCTIONAL NEURONS FROM MOUSE EMBRYONIC STEM CELLS VIA NEUROGENIN-2


EXPRESSION Article 18 August 2023 IDENTIFICATION OF ASCL1 AS A DETERMINANT FOR HUMAN IPSC-DERIVED DOPAMINERGIC NEURONS Article Open access 15 November 2021 ESSENTIAL TRANSCRIPTION FACTORS


FOR INDUCED NEURON DIFFERENTIATION Article Open access 15 December 2023 DATA AVAILABILITY. Next-generation sequencing data that support the findings of the study are available in the Gene


Expression Omnibus using accession code GSE159786. CODE AVAILABILITY The code that supports the findings of this study is available from the corresponding authors upon reasonable request.


REFERENCES * Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. _Cell_ 51, 987–1000 (1987). Article  CAS  PubMed 


Google Scholar  * Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. _Cell_ 126, 663–676 (2006).


Article  CAS  PubMed  Google Scholar  * Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. _Neuron_ 78, 785–798 (2013). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Parekh, U. et al. Mapping cellular reprogramming via pooled overexpression screens with paired fitness and single-cell RNA-sequencing readout. _Cell


Syst._ 7, 548–555 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tsunemoto, R. et al. Diverse reprogramming codes for neuronal identity. _Nature_ 557, 375–380 (2018).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Pritsker, M., Ford, N. R., Jenq, H. T. & Lemischka, I. R. Genomewide gain-of-function genetic screen identifies functionally


active genes in mouse embryonic stem cells. _Proc. Natl Acad. Sci. USA_ 103, 6946–6951 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Theodorou, E. et al. A high throughput


embryonic stem cell screen identifies Oct-2 as a bifunctional regulator of neuronal differentiation. _Genes Dev._ 23, 575–588 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Yamamizu, K. et al. Identification of transcription factors for lineage-specific ESC differentiation. _Stem Cell Rep._ 1, 545–559 (2013). Article  CAS  Google Scholar  * Cahan, P. et al.


CellNet: network biology applied to stem cell engineering. _Cell_ 158, 903–915 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rackham, O. J. et al. A predictive


computational framework for direct reprogramming between human cell types. _Nat. Genet._ 48, 331–335 (2016). Article  CAS  PubMed  Google Scholar  * D’Alessio, A. C. et al. A systematic


approach to identify candidate transcription factors that control cell identity. _Stem Cell Rep._ 5, 763–775 (2015). Article  Google Scholar  * Lambert, S. A. et al. The human transcription


factors. _Cell_ 175, 598–599 (2018). Article  CAS  PubMed  Google Scholar  * Nakatake, Y. et al. Generation and profiling of 2,135 human ESC lines for the systematic analyses of cell states


perturbed by inducing single transcription factors. _Cell Rep._ 31, 107655 (2020). Article  CAS  PubMed  Google Scholar  * Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. &


Luscombe, N. M. A census of human transcription factors: function, expression and evolution. _Nat. Rev. Genet._ 10, 252–263 (2009). Article  CAS  PubMed  Google Scholar  * Jolma, A. et al.


DNA-binding specificities of human transcription factors. _Cell_ 152, 327–339 (2013). Article  CAS  PubMed  Google Scholar  * Seiler, C. Y. et al. DNASU plasmid and PSI:Biology-Materials


repositories: resources to accelerate biological research. _Nucleic Acids Res._ 42, D1253–D1260 (2014). Article  CAS  PubMed  Google Scholar  * Yang, X. et al. A public genome-scale


lentiviral expression library of human ORFs. _Nat. Methods_ 8, 659–661 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wiemann, S. et al. The ORFeome Collaboration: a


genome-scale human ORF-clone resource. _Nat. Methods_ 13, 191–192 (2016). Article  Google Scholar  * Adewumi, O. et al. Characterization of human embryonic stem cell lines by the


International Stem Cell Initiative. _Nat. Biotechnol._ 25, 803–816 (2007). Article  CAS  PubMed  Google Scholar  * Busskamp, V. et al. Rapid neurogenesis through transcriptional activation


in human stem cells. _Mol. Syst. Biol._ 10, 760 (2014). Article  PubMed  PubMed Central  Google Scholar  * Choi, J. et al. A comparison of genetically matched cell lines reveals the


equivalence of human iPSCs and ESCs. _Nat. Biotechnol._ 33, 1173–1181 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cahan, P. & Daley, G. Q. Origins and implications of


pluripotent stem cell variability and heterogeneity. _Nat. Rev. Mol. Cell Biol._ 14, 357–368 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chanda, S. et al. Generation of


induced neuronal cells by the single reprogramming factor ASCL1. _Stem Cell Rep._3, 282–296 (2014). Article  CAS  Google Scholar  * Bermingham, N. A. et al. Math1: an essential gene for the


generation of inner ear hair cells. _Science_ 284, 1837–1841 (1999). Article  CAS  PubMed  Google Scholar  * Sagal, J. et al. Proneural transcription factor Atoh1 drives highly efficient


differentiation of human pluripotent stem cells into dopaminergic neurons. _Stem Cells Transl. Med._ 3, 888–898 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xue, Y. et al.


Synthetic mRNAs drive highly efficient iPS cell differentiation to dopaminergic neurons. _Stem Cells Transl. Med._ 8, 112–123 (2019). Article  CAS  PubMed  Google Scholar  * Dutta, A. et


al. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. _Science_ 352, 1576–1580 (2016). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Mai, T. et al. NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction. _Nat. Cell Biol._ 20, 900–908


(2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Radley, A. H. et al. Assessment of engineered cells using CellNet and RNA-seq. _Nat. Protoc._ 12, 1089–1102 (2017). Article 


PubMed  PubMed Central  Google Scholar  * Liang, C. C., Park, A. Y. & Guan, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro.


_Nat. Protoc._ 2, 329–333 (2007). Article  CAS  PubMed  Google Scholar  * Bell, E., Ivarsson, B. & Merrill, C. Production of a tissue-like structure by contraction of collagen lattices


by human fibroblasts of different proliferative potential in vitro. _Proc. Natl Acad. Sci. USA_ 76, 1274–1278 (1979). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, D. et al.


ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. _Cell Stem Cell_ 2, 497–507 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. _Nat. Rev. Mol. Cell Biol._ 18, 437–451 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Potter, R. F. & Groom, A. C. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. _Microvasc. Res._ 25, 68–84


(1983). Article  CAS  PubMed  Google Scholar  * Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a _Tabula Muris_. _Nature_ 562, 367–372 (2018). Article  PubMed


Central  Google Scholar  * Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. _Nat. Methods_ 15, 700–706 (2018). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Marton, R. M. et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. _Nat. Neurosci._ 22, 484–491 (2019). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Garcia-Leon, J. A. et al. SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem


cells. _Stem Cell Rep._ 10, 655–672 (2018). Article  CAS  Google Scholar  * Ehrlich, M. et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells


using transcription factors. _Proc. Natl Acad. Sci. USA_ 114, E2243–E2252 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sarkar, A. & Hochedlinger, K. The sox family of


transcription factors: versatile regulators of stem and progenitor cell fate. _Cell Stem Cell_ 12, 15–30 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bi, W., Deng, J. M.,


Zhang, Z., Behringer, R. R. & de Crombrugghe, B. Sox9 is required for cartilage formation. _Nat. Genet._ 22, 85–89 (1999). Article  CAS  PubMed  Google Scholar  * Canals, I. et al. Rapid


and efficient induction of functional astrocytes from human pluripotent stem cells. _Nat. Methods_ 15, 693–696 (2018). Article  CAS  PubMed  Google Scholar  * Khoshakhlagh, P., Sivakumar,


A., Pace, L. A., Sazer, D. W. & Moore, M. J. Methods for fabrication and evaluation of a 3D microengineered model of myelinated peripheral nerve. _J. Neural Eng._ 15, 064001 (2018).


Article  PubMed  PubMed Central  Google Scholar  * Khoshakhlagh, P. & Moore, M. J. Photoreactive interpenetrating network of hyaluronic acid and Puramatrix as a selectively tunable


scaffold for neurite growth. _Acta Biomater._ 16, 23–34 (2015). Article  CAS  PubMed  Google Scholar  * Mohammadi, S. et al. Whole-brain in-vivo measurements of the axonal G-ratio in a group


of 37 healthy volunteers. _Front. Neurosci._ 9, 441 (2015). Article  PubMed  PubMed Central  Google Scholar  * Windrem, M. S. et al. Fetal and adult human oligodendrocyte progenitor cell


isolates myelinate the congenitally dysmyelinated brain. _Nat. Med._ 10, 93–97 (2004). Article  CAS  PubMed  Google Scholar  * Lancaster, M. A. et al. Cerebral organoids model human brain


development and microcephaly. _Nature_ 501, 373–379 (2013). Article  CAS  PubMed  Google Scholar  * Togo, S. et al. Differentiation of embryonic stem cells into fibroblast-like cells in


three-dimensional type I collagen gel cultures. _In Vitro Cell. Dev. Biol. Anim._ 47, 114–124 (2011). Article  CAS  PubMed  Google Scholar  * Elcheva, I. et al. Direct induction of


haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. _Nat. Commun._ 5, 4372 (2014). Article  CAS  PubMed  Google Scholar  * Morita, R. et al. ETS


transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. _Proc. Natl Acad. Sci. USA_ 112, 160–165 (2015). Article  CAS  PubMed  Google Scholar  *


Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. _Nat. Methods_ 16, 1169–1175 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. _Nature_ 458, 766–770 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Ronaldson-Bouchard, K. & Vunjak-Novakovic, G. Organs-on-a-Chip: a fast track for engineered human tissues in drug development. _Cell Stem Cell_ 22, 310–324 (2018). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Guye, P. et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. _Nat. Commun._ 7, 10243


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bagley, J. A., Reumann, D., Bian, S., Levi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions


between brain regions. _Nat. Methods_ 14, 743–751 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Birey, F. et al. Assembly of functionally integrated human forebrain


spheroids. _Nature_ 545, 54–59 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain


development and interneuron migration. _Cell Stem Cell_ 21, 383–398 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cederquist, G. Y. et al. Specification of positional


identity in forebrain organoids. _Nat. Biotechnol._ 37, 436–444 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mansour, A. A. et al. An in vivo model of functional and


vascularized human brain organoids. _Nat. Biotechnol._ 36, 432–441 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A.


& Teichmann, S. A. The Human Cell Atlas: from vision to reality. _Nature_ 550, 451–453 (2017). Article  CAS  PubMed  Google Scholar  * Han, X. et al. Construction of a human cell


landscape at single-cell level. _Nature_ 581, 303–309 (2020). * Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. _Cell_ 174, 1309–1324 (2018).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease.


_Nat. Commun._ 9, 5068 (2018). Article  PubMed  PubMed Central  Google Scholar  * Gray, K. A., Yates, B., Seal, R. L., Wright, M. W. & Bruford, E. A. Genenames.org: the HGNC resources in


2015. _Nucleic Acids Res._ 43, D1079–D1085 (2015). Article  CAS  PubMed  Google Scholar  * Mele, M. et al. Human genomics. The human transcriptome across tissues and individuals. _Science_


348, 660–665 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Church, G. M. The personal genome project. _Mol. Syst. Biol._ 1, 2005.0030 (2005). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Kutsche, L. K. et al. Combined experimental and system-level analyses reveal the complex regulatory network of miR-124 during human neurogenesis. _Cell Syst._ 7,


438–452 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Salmon, P. & Trono, D. Production and titration of lentiviral vectors. in _Current Protocols in Human Genetic_s


Ch. 12, Unit 12.10 (Wiley, 2007). * Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. _Bioinformatics_ 29, 15–21 (2013). Article  CAS  PubMed  Google Scholar  * Love, M. I., Huber,


W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. _Genome Biol._ 15, 550 (2014). Article  PubMed  PubMed Central  Google Scholar  * Zhang,


Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. _J. Neurosci._ 34, 11929–11947 (2014). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Zhang, J. et al. A genome-wide analysis of human pluripotent stem cell-derived endothelial cells in 2D or 3D culture. _Stem Cell Rep._ 8, 907–918 (2017).


Article  CAS  Google Scholar  * Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. _BMC Bioinf._ 12, 323 (2011). Article


  CAS  Google Scholar  * Bult, C. J., Blake, J. A., Smith, C. L., Kadin, J. A. & Richardson, J. E. Mouse genome database (MGD) 2019. _Nucleic Acids Res._ 47, D801–D806 (2019). Article 


CAS  PubMed  Google Scholar  * Anders, S. & Huber, W. Differential expression analysis for sequence count data. _Genome Biol._ 11, R106 (2010). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. _Nucleic Acids Res_. 42, e161 (2014). * Schindelin, J. et al. Fiji: an open-source


platform for biological-image analysis. _Nat. Methods_ 9, 676–682 (2012). Article  CAS  PubMed  Google Scholar  * Ngo, P., Ramalingam, P., Phillips, J. A. & Furuta, G. T. Collagen gel


contraction assay. _Methods Mol. Biol._ 341, 103–109 (2006). CAS  PubMed  Google Scholar  * Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells.


_Nat. Methods_ 10, 1096–1098 (2013). Article  CAS  PubMed  Google Scholar  * Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis.


_Genome Biol._ 19, 15 (2018). Article  PubMed  PubMed Central  Google Scholar  * Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning


sequence reads to genomic features. _Bioinformatics_ 30, 923–930 (2014). Article  CAS  PubMed  Google Scholar  * Koike, N. et al. Tissue engineering: creation of long-lasting blood vessels.


_Nature_ 428, 138–139 (2004). Article  CAS  PubMed  Google Scholar  * Melero-Martin, J. M. et al. Engineering robust and functional vascular networks in vivo with human adult and cord


blood-derived progenitor cells. _Circ. Res._ 103, 194–202 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Khoshakhlagh, P. et al. Development and characterization of a


bioglass/chitosan composite as an injectable bone substitute. _Carbohydrate Polym._ 157, 1261–1271 (2017). Article  CAS  Google Scholar  * Khoshakhlagh, P., Bowser, D. A., Brown, J. Q. &


Moore, M. J. Comparison of visible and UVA phototoxicity in neural culture systems micropatterned with digital projection photolithography. _J. Biomed. Mater. Res. A_ 107, 134–144 (2019).


Article  CAS  PubMed  Google Scholar  * Douvaras, P. & Fossati, V. Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. _Nat. Protoc._ 10,


1143–1154 (2015). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank J. Aach, M. O. Karl, R. Kalhor, N. Ostrov and H. Lee for critical feedback and the


Church and Busskamp laboratories for support. We acknowledge technical support from the Harvard Biopolymers Facility, the Harvard Division of Immunology Flow Cytometry Core Facility, the


Beth Israel Deaconess Medical Center Flow Cytometry Core, the Wyss Flow Cytometry and Microscopy Core, M. Ericsson and P. Coughlin at the Harvard Medical School Electron Microscopy Facility,


M. T. Gianatasio at the Dana-Farber/Harvard Cancer Center Specialized Histopathology Core and Rodent Histopathology Core (both supported, in part, by National Cancer Institute Cancer Center


Support grant NIH 5 P30 CA06516) and Harvard Medical School Orchestra Research Computing. We also thank the TU Dresden Center for Molecular and Cellular Bioengineering Advanced Imaging,


Deep Sequencing, Flow Cytometry and Stem Cell Engineering core facilities. We would also like to thank J. Gray’s laboratory for electrophysiology support, S. Jeanty and J. Lee (Church lab,


Harvard Medical School) for the PGP1 Sendai virus hiPSC line, G. Sheynkman and W. Glindmeyer for helpful discussions, A. Jolma, K. Nitta and K. Said for technical assistance and M. Lemieux


and J. McDade for their support in depositing the library to Addgene. A.H.M.N. was supported by an NSERC Postgraduate Fellowship and a Peter and Carolyn Lynch Foundation Fellowship. J.E.R.A.


was supported by the DIGS-BB program. S.L.S. is a Shurl and Kay Curci Foundation Fellow of the Life Sciences Research Foundation. The Ellison Foundation and Institute Sponsored Research


funds from the DFCI Strategic Initiative supported M.V. and D.E.H. The project was supported by the Volkswagen Foundation (Freigeist - A110720), the European Research Council (ERC-StG-678071


- ProNeurons) and the Deutsche Forschungsgemeinschaft (SPP2127, EXC-2068-390729961 - Cluster of Excellence - Physics of Life at TU Dresden and EXC-2151-390873048 – Cluster of Excellence –


ImmunoSensation2 at the University of Bonn) to V.B. G.M.C. acknowledges funding from National Human Genome Research Institute grants P50 HG005550 ‘Center for Casual Variation’, RM1 HG008525


‘Center for Genomically Engineered Organs’, the Simons Foundation for Autism Research Initiative (368485), the Blavatnik Biomedical Accelerator at Harvard University, the FunGCAT program


from the Office of the Director of National Intelligence Intelligence Advanced Research Projects Activity, via the Army Research Office, under federal award no. W911NF-17-2-0089 and research


funding from R. Merkin and the Merkin Family Foundation. AUTHOR INFORMATION Author notes * Jesus Eduardo Rojo Arias Present address: Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey


Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK * These authors contributed equally: Alex H. M. Ng, Parastoo Khoshakhlagh. AUTHORS AND


AFFILIATIONS * Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA Alex H. M. Ng, Parastoo Khoshakhlagh, Evan Appleton, Kiavash Kiaee, Richie E. Kohman, 


Matthew Dysart, Kathleen Leeper, Wren Saylor, Jeremy Y. Huang, David E. Hill, Marc Vidal & George M. Church * Wyss Institute for Biologically Inspired Engineering at Harvard University,


Boston, MA, USA Alex H. M. Ng, Parastoo Khoshakhlagh, Evan Appleton, Kiavash Kiaee, Richie E. Kohman, Andyna Vernet, Matthew Dysart, Kathleen Leeper, Wren Saylor, Jeremy Y. Huang, Amanda


Graveline & George M. Church * GC Therapeutics, Inc, Cambridge, MA, USA Alex H. M. Ng, Parastoo Khoshakhlagh, Evan Appleton, Kiavash Kiaee & George M. Church * Technische Universität


Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany Jesus Eduardo Rojo Arias, Giovanni Pasquini, Anka


Swiersy & Volker Busskamp * Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA Kai Wang & Juan M. Melero-Martin * Department of Surgery, Harvard Medical


School, Boston, MA, USA Kai Wang & Juan M. Melero-Martin * Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA Seth L. Shipman * Department of


Biochemistry, University of Cambridge, Cambridge, UK Jussi Taipale * Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden Jussi Taipale * Applied Tumor


Genomics Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland Jussi Taipale * Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA David


E. Hill & Marc Vidal * Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany Volker Busskamp Authors * Alex H. M. Ng View author publications You can also


search for this author inPubMed Google Scholar * Parastoo Khoshakhlagh View author publications You can also search for this author inPubMed Google Scholar * Jesus Eduardo Rojo Arias View


author publications You can also search for this author inPubMed Google Scholar * Giovanni Pasquini View author publications You can also search for this author inPubMed Google Scholar * Kai


Wang View author publications You can also search for this author inPubMed Google Scholar * Anka Swiersy View author publications You can also search for this author inPubMed Google Scholar


* Seth L. Shipman View author publications You can also search for this author inPubMed Google Scholar * Evan Appleton View author publications You can also search for this author inPubMed 


Google Scholar * Kiavash Kiaee View author publications You can also search for this author inPubMed Google Scholar * Richie E. Kohman View author publications You can also search for this


author inPubMed Google Scholar * Andyna Vernet View author publications You can also search for this author inPubMed Google Scholar * Matthew Dysart View author publications You can also


search for this author inPubMed Google Scholar * Kathleen Leeper View author publications You can also search for this author inPubMed Google Scholar * Wren Saylor View author publications


You can also search for this author inPubMed Google Scholar * Jeremy Y. Huang View author publications You can also search for this author inPubMed Google Scholar * Amanda Graveline View


author publications You can also search for this author inPubMed Google Scholar * Jussi Taipale View author publications You can also search for this author inPubMed Google Scholar * David


E. Hill View author publications You can also search for this author inPubMed Google Scholar * Marc Vidal View author publications You can also search for this author inPubMed Google Scholar


* Juan M. Melero-Martin View author publications You can also search for this author inPubMed Google Scholar * Volker Busskamp View author publications You can also search for this author


inPubMed Google Scholar * George M. Church View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.H.M.N., P.K., V.B. and G.M.C. conceived the


idea, led the study and designed all experiments. A.H.M.N. and P.K. performed most of the experiments and analyses, with significant technical contributions from J.E.R.A, G.P., K.W., A.S.,


S.L.S., E.A., K.K., R.E.K., A.V., M.D., K.L., W.S., J.Y.H., A.G., J.T., D.E.H., M.V. and J.M.M.-M. V.B. and G.M.C. oversaw the study. A.H.M.N., P.K. and V.B. wrote the manuscript with input


and feedback from all authors. CORRESPONDING AUTHORS Correspondence to Volker Busskamp or George M. Church. ETHICS DECLARATIONS COMPETING INTERESTS A.H.M.N., P.K., V.B. and G.M.C. are


inventors on patents filed by the Presidents and Fellows of Harvard College. Full disclosure for G.M.C. is available at http://arep.med.harvard.edu/gmc/tech.html. A.H.M.N., P.K. and G.M.C.


are co-founders of and have equity in GC Therapeutics, Inc. No reagents or funding from GC Therapeutics were used in this study. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature


remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–7 REPORTING


SUMMARY SUPPLEMENTARY TABLE 1 TFs in the Human TFome SUPPLEMENTARY TABLE 2 TFome screen sequencing statistics SUPPLEMENTARY TABLE 3 TFome screen differentiation scores SUPPLEMENTARY TABLE 4


Novelty and tissue expression of 290 TF hits SUPPLEMENTARY TABLE 5 RNA-seq statistics and expression profiles SUPPLEMENTARY TABLE 6 TFs involved in oligodendrocyte development SUPPLEMENTARY


TABLE 7 Exact _P_ values for statistical tests RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ng, A.H.M., Khoshakhlagh, P., Rojo Arias, J.E. _et al._ A


comprehensive library of human transcription factors for cell fate engineering. _Nat Biotechnol_ 39, 510–519 (2021). https://doi.org/10.1038/s41587-020-0742-6 Download citation * Received:


03 November 2019 * Accepted: 19 October 2020 * Published: 30 November 2020 * Issue Date: April 2021 * DOI: https://doi.org/10.1038/s41587-020-0742-6 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative