Biased modulators of nmda receptors control channel opening and ion selectivity

Biased modulators of nmda receptors control channel opening and ion selectivity


Play all audios:


ABSTRACT Allosteric modulators of ion channels typically alter the transitions rates between conformational states without changing the properties of the open pore. Here we describe a new


class of positive allosteric modulators of _N_-methyl d-aspartate receptors (NMDARs) that mediate a calcium-permeable component of glutamatergic synaptic transmission and play essential


roles in learning, memory and cognition, as well as neurological disease. EU1622-14 increases agonist potency and channel-open probability, slows receptor deactivation and decreases both


single-channel conductance and calcium permeability. The unique functional selectivity of this chemical probe reveals a mechanism for enhancing NMDAR function while limiting excess calcium


influx, and shows that allosteric modulators can act as biased modulators of ion-channel permeation. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ALLOSTERIC COMPETITION AND INHIBITION IN AMPA RECEPTORS Article


Open access 04 June 2024 GLUN2A AND GLUN2B NMDA RECEPTORS USE DISTINCT ALLOSTERIC ROUTES Article Open access 05 August 2021 BI-DIRECTIONAL ALLOSTERIC PATHWAY IN NMDA RECEPTOR ACTIVATION AND


MODULATION Article Open access 13 October 2024 DATA AVAILABILITY The data that support the findings of this study are available from the corresponding author upon reasonable request. CODE


AVAILABILITY The code that support the analysis of the findings contained in this study are available from the corresponding author upon reasonable request. REFERENCES * Traynelis, S. F. et


al. Glutamate receptor ion channels: structure, regulation, and function. _Pharm. Rev._ 62, 405–496 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Coyle, J. T., Tsai, G.


& Goff, D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. _Ann. N. Y. Acad. Sci._ 1003, 318–327 (2003). Article  CAS  PubMed  Google Scholar 


* Heresco-Levy, U., Javitt, D. C., Ermilov, M., Silipo, G. & Shimoni, J. Double-blind, placebo-controlled, crossover trial of d-cycloserine adjuvant therapy for treatment-resistant


schizophrenia. _Int. J. Neuropsychopharmacol._ 1, 131–135 (1998). Article  PubMed  Google Scholar  * Hu, C., Chen, W., Myers, S. J., Yuan, H. & Traynelis, S. F. Human GRIN2B variants in


neurodevelopmental disorders. _J. Pharm. Sci._ 132, 115–121 (2016). Article  CAS  Google Scholar  * Ingram, D. K. et al. New pharmacological strategies for cognitive enhancement using a rat


model of age-related memory impairment. _Ann. N. Y. Acad. Sci._ 717, 16–32 (1994). Article  CAS  PubMed  Google Scholar  * Javitt, D. C. Management of negative symptoms of schizophrenia.


_Curr. Psychiatry Rep._ 3, 413–417 (2001). Article  CAS  PubMed  Google Scholar  * Yuan, H., Low, C. M., Moody, O. A., Jenkins, A. & Traynelis, S. F. Ionotropic GABA and glutamate


receptor mutations and human neurologic diseases. _Mol. Pharmacol._ 88, 203–217 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi, D. W. Excitotoxic cell death. _J.


Neurobiol._ 23, 1261–1276 (1992). Article  CAS  PubMed  Google Scholar  * Parsons, M. P. & Raymond, L. A. Extrasynaptic NMDA receptor involvement in central nervous system disorders.


_Neuron_ 82, 279–293 (2014). Article  CAS  PubMed  Google Scholar  * Gonzalez, J. et al. NMDARs in neurological diseases: a potential therapeutic target. _Int J. Neurosci._ 125, 315–327


(2015). Article  CAS  PubMed  Google Scholar  * Collingridge, G. L. et al. The NMDA receptor as a target for cognitive enhancement. _Neuropharmacology_ 64, 13–26 (2013). Article  CAS  PubMed


  Google Scholar  * Schade, S. & Paulus, W. d-Cycloserine in neuropsychiatric diseases: a systematic review. _Int. J. Neuropsychopharmacol._ 19, pyv102 (2016). Article  CAS  PubMed 


Google Scholar  * Chopra, D. A. et al. A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors. _Sci. Rep._ 7, 6933 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Hackos, D. H. et al. Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. _Neuron_ 89, 983–999


(2016). Article  CAS  PubMed  Google Scholar  * Khatri, A. et al. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. _Mol.


Pharmacol._ 86, 548–560 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Perszyk, R. E. et al. GluN2D-Containing _N_-methyl-d-aspartate receptors mediate synaptic transmission


in hippocampal interneurons and regulate interneuron activity. _Mol. Pharmacol._ 90, 689–702 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sapkota, K. et al. Mechanism and


properties of positive allosteric modulation of _N_-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives. _Neuropharmacology_ 125, 64–79 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Strong, K. L. et al. The structure–activity relationship of a tetrahydroisoquinoline class of _N_-methyl-d-aspartate receptor modulators that potentiates


GluN2B-containing _N_-methyl-d-aspartate receptors. _J. Med. Chem._ 60, 5556–5585 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, T. M. et al. A novel NMDA receptor


positive allosteric modulator that acts via the transmembrane domain. _Neuropharmacology_ 121, 204–218 (2017). Article  CAS  PubMed  Google Scholar  * Mullasseril, P. et al. A


subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. _Nat. Commun._ 1, 90 (2010). Article  CAS  PubMed  Google Scholar  * Hansen, K. B. et al. Implementation of a


fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective _N_-methyl-d-aspartate receptor antagonists. _J.


Pharmacol. Exp. Ther._ 333, 650–662 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ogden, K. K. et al. Molecular mechanism of disease-associated mutations in the pre-M1


helix of NMDA receptors and potential rescue pharmacology. _PLoS Genet._ 13, e1006536 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Karakas, E. & Furukawa, H. Crystal


structure of a heterotetrameric NMDA receptor ion channel. _Science_ 344, 992–997 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, C. H. et al. NMDA receptor structures


reveal subunit arrangement and pore architecture. _Nature_ 511, 191–197 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gibb, A. J. et al. A structurally derived model of


subunit-dependent NMDA receptor function. _J. Physiol._ 596, 4057–4089 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ogden, K. K. & Traynelis, S. F. Contribution of the


M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of _N_-methyl-d-aspartate receptors. _Mol. Pharmacol._ 83, 1045–1056 (2013). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Sobolevsky, A. I., Prodromou, M. L., Yelshansky, M. V. & Wollmuth, L. P. Subunit-specific contribution of pore-forming domains to NMDA receptor channel


structure and gating. _J. Gen. Physiol._ 129, 509–525 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kazi, R. et al. Asynchronous movements prior to pore opening in NMDA


receptors. _J. Neurosci._ 33, 12052–12066 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Talukder, I., Borker, P. & Wollmuth, L. P. Specific sites within the


ligand-binding domain and ion channel linkers modulate NMDA receptor gating. _J. Neurosci._ 30, 11792–11804 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Perszyk, R et al.


An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups. _Elife_ 7, e34711 (2018). Article  PubMed  PubMed Central  Google


Scholar  * Swanger, S. A. et al. A novel negative allosteric modulator selective for GluN2C/2D-containing NMDA receptors inhibits synaptic transmission in hippocampal interneurons. _ACS


Chem. Neurosci._ 9, 306–319 (2018). Article  CAS  PubMed  Google Scholar  * Zhu, S. et al. Mechanism of NMDA receptor inhibition and activation. _Cell_ 165, 704–714 (2016). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Twomey, E. C. & Sobolevsky, A. I. Structural mechanisms of gating in ionotropic glutamate receptors. _Biochemistry_ 57, 267–276 (2018). Article


  CAS  PubMed  Google Scholar  * Watanabe, J., Beck, C., Kuner, T., Premkumar, L. S. & Wollmuth, L. P. DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in


NMDA receptor channels. _J. Neurosci._ 22, 10209–10216 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schewe, M. et al. A pharmacological master key mechanism that unlocks


the selectivity filter gate in K+ channels. _J. Sci._ 363, 875–880 (2019). CAS  Google Scholar  * Traynelis, S. F. & Jaramillo, F. Getting the most out of noise in the central nervous


system. _Trends Neurosci._ 21, 137–145 (1998). Article  CAS  PubMed  Google Scholar  * Lester, R. A., Clements, J. D., Westbrook, G. L. & Jahr, C. E. Channel kinetics determine the time


course of NMDA receptor-mediated synaptic currents. _Nature_ 346, 565–567 (1990). Article  CAS  PubMed  Google Scholar  * Mizuta, I., Katayama, M., Watanabe, M., Mishina, M. & Ishii, K.


Developmental expression of NMDA receptor subunits and the emergence of glutamate neurotoxicity in primary cultures of murine cerebral cortical neurons. _Cell. Mol. Life Sci._ 54, 721–725


(1998). Article  CAS  PubMed  Google Scholar  * Erreger, K. et al. Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing _N_-methyl-d-aspartate glutamate receptors.


_Mol. Pharmacol._ 72, 907–920 (2007). Article  CAS  PubMed  Google Scholar  * Dravid, S. M., Prakash, A. & Traynelis, S. F. Activation of recombinant NR1/NR2C NMDA receptors. _J.


Physiol._ 586, 4425–4439 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wyllie, D. J., Behe, P., Nassar, M., Schoepfer, R. & Colquhoun, D. Single-channel currents from


recombinant NMDA NR1a/NR2D receptors expressed in _Xenopus_ oocytes. _Proc. Biol. Sci._ 263, 1079–1086 (1996). Article  CAS  PubMed  Google Scholar  * Premkumar, L. S. & Auerbach, A.


Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. _Neuron_ 16, 869–880 (1996). Article  CAS  PubMed  Google Scholar  * Lewis, C.


A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. _J. Physiol._ 286, 417–445 (1979). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Jatzke, C., Watanabe, J. & Wollmuth, L. P. Voltage and concentration dependence of Ca2+ permeability in recombinant glutamate receptor


subtypes. _J. Physiol._ 538, 25–39 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Siegler Retchless, B., Gao, W. & Johnson, J. W. A single GluN2 subunit residue controls


NMDA receptor channel properties via intersubunit interaction. _Nat. Neurosci._ 15, 406–413 (2012). Article  CAS  PubMed  Google Scholar  * Wollmuth, L. P. & Sakmann, B. Different


mechanisms of Ca2+ transport in NMDA and Ca2+-permeable AMPA glutamate receptor channels. _J. Gen. Physiol._ 112, 623–636 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Woodhull, A. M. Ionic blockage of sodium channels in nerve. _J. Gen. Physiol._ 61, 687–708 (1973). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosenmund, C., Stern-Bach, Y. &


Stevens, C. F. The tetrameric structure of a glutamate receptor channel. _Science_ 280, 1596–1599 (1998). Article  CAS  PubMed  Google Scholar  * Zheng, J. & Sigworth, F. J. Selectivity


changes during activation of mutant shaker potassium channels. _J. Gen. Physiol._ 110, 101–117 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ikonomidou, C. & Turski,


L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? _Lancet Neurol._ 1, 383–386 (2002). Article  CAS  PubMed  Google Scholar  * Colquhoun, D.


& Sigworth, F. J. In _Single-Channel Recording_ (Eds Sakmann, B. & Neher, E.) 483–587 (Springer, 1995). * Neher, E. Correction for liquid junction potentials in patch clamp


experiments. _Methods Enzymol._ 207, 123–131 (1992). Article  CAS  PubMed  Google Scholar  * Burnashev, N., Zhou, Z., Neher, E. & Sakmann, B. Fractional calcium currents through


recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. _J. Physiol._ 485, 403–418 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Paoletti, P., Neyton, J.


& Ascher, P. Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+. _Neuron_ 15, 1109–1120 (1995). Article  CAS  PubMed  Google Scholar  *


Traynelis, S. F. Software-based correction of single compartment series resistance errors. _J. Neurosci. Methods_ 86, 25–34 (1998). Article  CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS The authors thank K. Ogden for help with analytical software development and Y. Du and the Emory Chemical Biology Discovery Center for their invaluable assistance. This work


was supported by the NINDS (NS065371 and NS111619, to S.F.T.), NICHD (HD082373, to H.Y.), NIMH (MH109026, to G.B.), Citizens United for Research in Epilepsy (to S.A.S.) and the Emory


University Research Committee (to S.A.S.). AUTHOR INFORMATION Author notes * Gabriela Fernandez-Cuervo Present address: Department of Pathology, Stanford University School of Medicine,


Stanford, CA, USA AUTHORS AND AFFILIATIONS * Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA Riley E. Perszyk, Sharon A. Swanger, Chris


Shelley, Alpa Khatri, Jing Zhang, Phuong Le, Hongjie Yuan & Stephen F. Traynelis * Virginia Tech Carilion Research Institute, Roanoke, VA, USA Sharon A. Swanger * Department of Internal


Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA Sharon A. Swanger * Department of Biomedical Sciences and Pathobiology, Virginia-Maryland School of Veterinary


Medicine, Virginia Tech, Blacksburg, VA, USA Sharon A. Swanger * Department of Biology, University of the South, Sewanee, TN, USA Chris Shelley * Department of Chemistry, Emory University,


Atlanta, GA, USA Gabriela Fernandez-Cuervo, Matthew P. Epplin, Ethel Garnier-Amblard, Pavan Kumar Reddy Gangireddy, David S. Menaldino, Dennis C. Liotta & Lanny S. Liebeskind *


Department of Physiology, Emory University, Atlanta, GA, USA Pernille Bülow * Department of Cell Biology, Emory University, Atlanta, GA, USA Pernille Bülow & Gary J. Bassell Authors *


Riley E. Perszyk View author publications You can also search for this author inPubMed Google Scholar * Sharon A. Swanger View author publications You can also search for this author


inPubMed Google Scholar * Chris Shelley View author publications You can also search for this author inPubMed Google Scholar * Alpa Khatri View author publications You can also search for


this author inPubMed Google Scholar * Gabriela Fernandez-Cuervo View author publications You can also search for this author inPubMed Google Scholar * Matthew P. Epplin View author


publications You can also search for this author inPubMed Google Scholar * Jing Zhang View author publications You can also search for this author inPubMed Google Scholar * Phuong Le View


author publications You can also search for this author inPubMed Google Scholar * Pernille Bülow View author publications You can also search for this author inPubMed Google Scholar * Ethel


Garnier-Amblard View author publications You can also search for this author inPubMed Google Scholar * Pavan Kumar Reddy Gangireddy View author publications You can also search for this


author inPubMed Google Scholar * Gary J. Bassell View author publications You can also search for this author inPubMed Google Scholar * Hongjie Yuan View author publications You can also


search for this author inPubMed Google Scholar * David S. Menaldino View author publications You can also search for this author inPubMed Google Scholar * Dennis C. Liotta View author


publications You can also search for this author inPubMed Google Scholar * Lanny S. Liebeskind View author publications You can also search for this author inPubMed Google Scholar * Stephen


F. Traynelis View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS The authors contributed in the following manner: conceptualization (S.F.T.,


R.E.P. and S.A.S.); data curation and formal analysis (R.E.P., S.A.S., C.S., A.K., G.F.-C., H.Y. and S.F.T.); funding acquisition (S.A.S., S.F.T., H.Y., D.C.L. and G.J.B.); investigation


(R.E.P., S.A.S., C.S., A.K., J.Z., P.L., E.G.-A., G.F.-C., M.P.E., D.S.M. and P.B.); development or design of methodology (R.E.P., S.A.S., S.F.T., E.G.-A., G.F.-C., M.P.E., G.J.B., D.S.M.,


D.C.L. and L.S.L.); project administration (R.E.P., S.F.T. and S.A.S.); provision of reagents, materials and analysis tools (P.K.R.G., E.G.-A., G.F.-C., P.B., G.J.B., M.P.E., D.S.M., D.C.L.


and L.S.L.); software (R.E.P. and S.F.T.); supervision (S.F.T., L.S.L., D.C.L. and G.J.B.); verification (R.E.P., S.A.S., C.S., A.K., G.F.-C., M.P.E. and D.S.M.); and visualization and


writing (all authors). CORRESPONDING AUTHOR Correspondence to Stephen F. Traynelis. ETHICS DECLARATIONS COMPETING INTERESTS Several authors have competing interests. S.F.T. is a consultant


for Janssen Pharmaceuticals, principal investigator on research grants from Janssen and Allergan to Emory University School of Medicine, a member of the scientific advisory board for Sage


Therapeutics, the GRIN2B Foundation, and the CureGRIN Foundation, co-founder of NeurOp and receives royalties for software. D.C.L. is a member of the Board of Directors for NeurOp. D.C.L.,


D.S.M., E.G.A., G.F.C., P.K.R.G., L.S.L., M.P.E., S.F.T. are co-inventors on Emory-owned intellectual property that includes allosteric modulators of NMDA receptor function. H.Y. is


principal investigator on a research grant from Sage Therapeutics to Emory University School of Medicine. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard


to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–11, Supplementary Tables 1–12 and


Synthetic Procedures. REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Perszyk, R.E., Swanger, S.A., Shelley, C. _et al._ Biased


modulators of NMDA receptors control channel opening and ion selectivity. _Nat Chem Biol_ 16, 188–196 (2020). https://doi.org/10.1038/s41589-019-0449-5 Download citation * Received: 28


December 2018 * Revised: 08 November 2019 * Accepted: 04 December 2019 * Published: 20 January 2020 * Issue Date: February 2020 * DOI: https://doi.org/10.1038/s41589-019-0449-5 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative