Chains of evidence from correlations to causal molecules in microbiome-linked diseases

Chains of evidence from correlations to causal molecules in microbiome-linked diseases


Play all audios:


ABSTRACT Human-associated microorganisms play a vital role in human health, and microbial imbalance has been linked to a wide range of disease states. In this Review, we explore recent


efforts to progress from correlative studies that identify microorganisms associated with human disease to experiments that establish causal relationships between microbial products and host


phenotypes. We propose that successful efforts to uncover phenotypes often follow a chain of evidence that proceeds from (1) association studies; to (2) observations in germ-free animals


and antibiotic-treated animals and humans; to (3) fecal microbiota transplants (FMTs); to (4) identification of strains; and then (5) molecules that elicit a phenotype. Using this


experimental ‘funnel’ as our guide, we explore how the microbiota contributes to metabolic disorders and hypertension, infections, and neurological conditions. We discuss the potential to


use FMTs and microbiota-inspired therapies to treat human disease as well as the limitations of these approaches. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS GUT MICROBIOTA IN HUMAN METABOLIC HEALTH AND DISEASE


Article 04 September 2020 A CONSENSUS STATEMENT ON ESTABLISHING CAUSALITY, THERAPEUTIC APPLICATIONS AND THE USE OF PRECLINICAL MODELS IN MICROBIOME RESEARCH Article 03 March 2025 CAUSAL


EFFECTS IN MICROBIOMES USING INTERVENTIONAL CALCULUS Article Open access 11 March 2021 REFERENCES * Nicolas, G. R. & Chang, P. V. Deciphering the chemical lexicon of host–gut microbiota


interactions. _Trends Pharmacol. Sci._ 40, 430–445 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Luczynski, P. et al. Growing up in a bubble: using germ-free animals to


assess the influence of the gut microbiota on brain and behavior. _Int. J. Neuropsychopharmacol._ 19, pyw020 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Kennedy, E. A.,


King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. _Front. Physiol._ 9, 1534 (2018). Article


  PubMed  PubMed Central  Google Scholar  * Bramante, C. T., Lee, C. J. & Gudzune, K. A. Treatment of obesity in patients with diabetes. _Diabetes Spectr._ 30, 237–243 (2017). Article 


PubMed  PubMed Central  Google Scholar  * Schnurr, T. M. et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: a case-cohort study. _Diabetologia_ 63, 1324–1332 (2020).


Article  CAS  PubMed  Google Scholar  * Jiang, S. Z., Lu, W., Zong, X. F., Ruan, H. Y. & Liu, Y. Obesity and hypertension. _Exp. Ther. Med._ 12, 2395–2399 (2016). Article  PubMed 


PubMed Central  Google Scholar  * Grigorescu, I. & Dumitrascu, D. L. Implication of gut microbiota in diabetes mellitus and obesity. _Acta Endocrinol._ 12, 206–214 (2016). CAS  Google


Scholar  * Castaner, O. et al. The gut microbiome profile in obesity: a systematic review. _Int. J. Endocrinol._ 2018, 4095789 (2018). PubMed  PubMed Central  Google Scholar  * Dao, M. C. et


al. _Akkermansia muciniphila_ abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. _Am. J. Physiol.


Endocrinol. Metab._ 317, E446–E459 (2019). Article  CAS  PubMed  Google Scholar  * Dao, M. C. et al. _Akkermansia muciniphila_ and improved metabolic health during a dietary intervention in


obesity: relationship with gut microbiome richness and ecology. _Gut_ 65, 426–436 (2016). Article  CAS  PubMed  Google Scholar  * Yan, Q. et al. Alterations of the gut microbiome in


hypertension. _Front. Cell Infect. Microbiol._ 7, 381 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Li, J. et al. Gut microbiota dysbiosis contributes to the development of


hypertension. _Microbiome_ 5, 14 (2017). Article  PubMed  PubMed Central  Google Scholar  * Liu, J. et al. Correlation analysis of intestinal flora with hypertension. _Exp. Ther. Med._ 16,


2325–2330 (2018). PubMed  PubMed Central  Google Scholar  * Scott, F. I. et al. Administration of antibiotics to children before age 2 years increases risk for childhood obesity.


_Gastroenterology_ 151, 120–129 (2016). Article  CAS  PubMed  Google Scholar  * Hwang, I. et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via


glucagon-like peptide 1 in diet-induced obesity. _FASEB J._ 29, 2397–2411 (2015). Article  CAS  PubMed  Google Scholar  * Miao, Z. et al. Antibiotics can cause weight loss by impairing gut


microbiota in mice and the potent benefits of lactobacilli. _Biosci. Biotechnol. Biochem._ 84, 411–420 (2020). Article  CAS  PubMed  Google Scholar  * Hooper, L. V. Bacterial contributions


to mammalian gut development. _Trends Microbiol._ 12, 129–134 (2004). Article  CAS  PubMed  Google Scholar  * Davis, C. D. The gut microbiome and its role in obesity. _Nutr. Today_ 51,


167–174 (2016). Article  PubMed  PubMed Central  Google Scholar  * Honour, J. W., Borriello, S. P., Ganten, U. & Honour, P. Antibiotics attenuate experimental hypertension in rats. _J.


Endocrinol._ 105, 347–350 (1985). Article  CAS  PubMed  Google Scholar  * Sanada, T. J. et al. Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an


SU5416/hypoxia rat model. _Pulm. Circ._ 10, 2045894020929147 (2020). Article  PubMed  PubMed Central  CAS  Google Scholar  * Galla, S. et al. Disparate effects of antibiotics on


hypertension. _Physiol. Genomics_ 50, 837–845 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate


metabolism in mice. _Science_ 341, 1241214 (2013). Article  PubMed  CAS  Google Scholar  * Wang, S. et al. Gut microbiota mediates the anti-obesity effect of calorie restriction in mice.


_Sci. Rep._ 8, 13037 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * Lai, Z. L. et al. Fecal microbiota transplantation confers beneficial metabolic effects of diet and


exercise on diet-induced obese mice. _Sci. Rep._ 8, 15625 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * de Groot, P. et al. Donor metabolic characteristics drive effects of


faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. _Gut_ 69, 502–512 (2020). Article  PubMed  CAS  Google Scholar  * Wu, H.


et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. _Nat. Med._ 23, 850–858 (2017). Article 


CAS  PubMed  Google Scholar  * Wang, H. et al. Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. _Front. Cell Infect.


Microbiol._ 9, 455 (2019). Article  CAS  PubMed  Google Scholar  * Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline


intestinal microbiota composition. _Cell Metab._ 26, 611–619 (2017). Article  CAS  PubMed  Google Scholar  * Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases


insulin sensitivity in individuals with metabolic syndrome. _Gastroenterology_ 143, 913–6 (2012). Article  CAS  PubMed  Google Scholar  * Zhang, Z. et al. Impact of fecal microbiota


transplantation on obesity and metabolic syndrome—a systematic review. _Nutrients_ 11, 2291 (2019). Article  CAS  PubMed Central  Google Scholar  * Durgan, D. J. et al. Role of the gut


microbiome in obstructive sleep apnea-induced hypertension. _Hypertension_ 67, 469–474 (2016). Article  CAS  PubMed  Google Scholar  * Adnan, S. et al. Alterations in the gut microbiota can


elicit hypertension in rats. _Physiol. Genomics_ 49, 96–104 (2017). Article  CAS  PubMed  Google Scholar  * Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by


human intestinal bacteria. _J. Lipid Res._ 47, 241–259 (2006). Article  CAS  PubMed  Google Scholar  * Broeders, E. P. et al. The bile acid chenodeoxycholic acid increases human brown


adipose tissue activity. _Cell Metab._ 22, 418–426 (2015). Article  CAS  PubMed  Google Scholar  * Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose


tissue insulin sensitivity in obese men and women. _Diabetes_ 59, 1899–1905 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, H. M. et al. Beneficial effect of farnesoid


X receptor activation on metabolism in a diabetic rat model. _Mol. Med. Rep._ 13, 2135–2142 (2016). Article  CAS  PubMed  Google Scholar  * Sun, L. et al. Gut microbiota and intestinal FXR


mediate the clinical benefits of metformin. _Nat. Med._ 24, 1919–1929 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schittenhelm, B. et al. Role of FXR in beta-cells of


lean and obese mice. _Endocrinology_ 156, 1263–1271 (2015). Article  CAS  PubMed  Google Scholar  * Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to


host physiology: short-chain fatty acids as key bacterial metabolites. _Cell_ 165, 1332–1345 (2016). Article  CAS  PubMed  Google Scholar  * Liu, Y. et al. Gut microbiome fermentation


determines the efficacy of exercise for diabetes prevention. _Cell Metab._ 31, 77–91 (2020). Article  CAS  PubMed  Google Scholar  * La Rosa, S. L. et al. The human gut Firmicute _Roseburia


intestinalis_ is a primary degrader of dietary β-mannans. _Nat. Commun._ 10, 905 (2019). Article  PubMed  PubMed Central  CAS  Google Scholar  * Chambers, E. S. et al. Effects of targeted


delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. _Gut_ 64, 1744–1754 (2015). Article  CAS  PubMed  Google Scholar


  * van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. _Trends Microbiol_. https://doi.org/10.1016/j.tim.2021.02.001 (2021). * Kim, K. N.,


Yao, Y. & Ju, S. Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and meta-analysis. _Nutrients_ 11, 2512 (2019). Article  CAS 


PubMed Central  Google Scholar  * Muller, M. et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. _Sci.


Rep._ 9, 12515 (2019). Article  PubMed  PubMed Central  CAS  Google Scholar  * Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin


sensitivity. _Nat. Rev. Endocrinol._ 11, 577–591 (2015). Article  CAS  PubMed  Google Scholar  * den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut


microbiota, and host energy metabolism. _J. Lipid Res._ 54, 2325–2340 (2013). Article  CAS  Google Scholar  * Pluznick, J. L. Microbial short-chain fatty acids and blood pressure


regulation. _Curr. Hypertension Rep._ 19, 25 (2017). Article  CAS  Google Scholar  * Oyama, J.-I. & Node, K. Gut microbiota and hypertension. _Hypertension Res._ 42, 741–743 (2019).


Article  Google Scholar  * Latif, S. A., Pardo, H. A., Hardy, M. P. & Morris, D. J. Endogenous selective inhibitors of 11β-hydroxysteroid dehydrogenase isoforms 1 and 2 of adrenal


origin. _Mol. Cell. Endocrinol._ 243, 43–50 (2005). Article  CAS  PubMed  Google Scholar  * Feighner, S. D. & Hylemon, P. B. Characterization of a corticosteroid 21-dehydroxylase from


the intestinal anaerobic bacterium, _Eubacterium lentum_. _J. Lipid Res._ 21, 585–593 (1980). Article  CAS  PubMed  Google Scholar  * Kumar, A., Ellermann, M. & Sperandio, V. Taming the


beast: interplay between gut small molecules and enteric pathogens. _Infect. Immun._ 87, 277 (2019). Article  Google Scholar  * Cameron, E. A. & Sperandio, V. Frenemies: signaling and


nutritional integration in pathogen–microbiota–host interactions. _Cell Host Microbe_ 18, 275–284 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Manfredo Vieira, S. et al.


Translocation of a gut pathobiont drives autoimmunity in mice and humans. _Science_ 359, 1156–1161 (2018). Article  CAS  PubMed  Google Scholar  * Aykut, B. et al. The fungal mycobiome


promotes pancreatic oncogenesis via activation of MBL. _Nature_ 574, 264–267 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wortelboer, K., Nieuwdorp, M. & Herrema, H.


Fecal microbiota transplantation beyond _Clostridioides difficile_ infections. _EBioMedicine_ 44, 716–729 (2019). Article  PubMed  PubMed Central  Google Scholar  * Willing, B. P.,


Vacharaksa, A., Croxen, M., Thanachayanont, T. & Finlay, B. B. Altering host resistance to infections through microbial transplantation. _PLoS ONE_ 6, e26988 (2011). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to _Clostridium_ _difficile_. _Nature_ 517, 205–208


(2015). Article  CAS  PubMed  Google Scholar  * Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. _Annu. Rev. Neurosci._ 40, 21–49 (2017). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Scheperjans, F. et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. _Mov. Disord._ 30, 350–358 (2015). Article 


PubMed  Google Scholar  * Keshavarzian, A. et al. Colonic bacterial composition in Parkinson’s disease. _Mov. Disord._ 30, 1351–1360 (2015). Article  CAS  PubMed  Google Scholar  * Peng, A.


et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. _Epilepsy Res._ 147, 102–107 (2018). Article  CAS  PubMed  Google Scholar  * Xie, G. et al.


Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. _World J. Gastroenterol._ 23, 6164–6171 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Naseribafrouei, A. et al. Correlation between the human fecal microbiota and depression. _Neurogastroenterol. Motil._ 26, 1155–1162 (2014). Article  CAS  PubMed 


Google Scholar  * Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. _Brain Behav. Immun._ 48, 186–194 (2015). Article  PubMed  Google Scholar


  * Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. _Proc. Natl Acad. Sci. USA_ 114, 10713–10718


(2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice.


_Proc. Natl Acad. Sci. USA_ 114, 10719–10724 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * De Angelis, M. et al. Fecal microbiota and metabolome of children with autism and


pervasive developmental disorder not otherwise specified. _PLoS ONE_ 8, e76993 (2013). Article  PubMed  PubMed Central  CAS  Google Scholar  * Kang, D.-W. et al. Reduced incidence of


_Prevotella_ and other fermenters in intestinal microflora of autistic children. _PLoS ONE_ 8, e68322 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sharon, G. et al. Human


gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. _Cell_ 177, 1600–1618 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sampson, T. R. et al.


Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. _Cell_ 167, 1469–1480 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Berer,


K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. _Nature_ 479, 538–541 (2011). Article  CAS  PubMed  Google Scholar  * Kim, S. et al.


Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. _Nature_ 549, 528–532 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Blacher, E. et al.


Potential roles of gut microbiome and metabolites in modulating ALS in mice. _Nature_ 572, 474–480 (2019). Article  CAS  PubMed  Google Scholar  * Olson, C. A. et al. The gut microbiota


mediates the anti-seizure effects of the ketogenic diet. _Cell_ 173, 1728–1741 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chu, C. et al. The microbiota regulate neuronal


function and fear extinction learning. _Nature_ 574, 543–548 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Makkawi, S., Camara-Lemarroy, C. & Metz, L. Fecal microbiota


transplantation associated with 10 years of stability in a patient with SPMS. _Neurol. Neuroimmunol. Neuroinflamm._ 5, e459 (2018). Article  PubMed  PubMed Central  Google Scholar  * Kang,


D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. _Microbiome_ 5, 10 (2017). Article  PubMed  PubMed


Central  Google Scholar  * He, Z. et al. Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. _World J. Gastroenterol._ 23, 3565–3568 (2017).


Article  PubMed  PubMed Central  Google Scholar  * Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. _Nature_ 576, 143–148 (2019). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. _Nat. Microbiol._ 4, 396–403 (2019). Article  CAS  PubMed  Google Scholar  *


Luscher, B., Shen, Q. & Sahir, N. The GABAergic deficit hypothesis of major depressive disorder. _Mol. Psychiatry_ 16, 383–406 (2011). Article  CAS  PubMed  Google Scholar  * Devlin, A.


S. et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. _Cell Host Microbe_ 20, 709–715 (2016). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Yu, E. W. et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. _PLoS Med._ 17,


e1003051 (2020). Article  PubMed  PubMed Central  CAS  Google Scholar  * Young, M. T., Phelan, M. J. & Nguyen, N. T. A decade analysis of trends and outcomes of male vs female patients


who underwent bariatric surgery. _J. Am. Coll. Surg._ 222, 226–231 (2016). Article  PubMed  Google Scholar  * DeFilipp, Z. et al. Drug-resistant _E. coli_ bacteremia transmitted by fecal


microbiota transplant. _N. Engl. J. Med._ 381, 2043–2050 (2019). Article  PubMed  Google Scholar  * Depommier, C. et al. Supplementation with _Akkermansia muciniphila_ in overweight and


obese human volunteers: a proof-of-concept exploratory study. _Nat. Med._ 25, 1096–1103 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chiang, J. Y. L. & Ferrell, J. M.


Bile acids as metabolic regulators and nutrient sensors. _Annu. Rev. Nutr._ 39, 175–200 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bedford, A. & Gong, J.


Implications of butyrate and its derivatives for gut health and animal production. _Anim. Nutr._ 4, 151–159 (2018). Article  PubMed  Google Scholar  * Sato, F. T. et al. Tributyrin


attenuates metabolic and inflammatory changes associated with obesity through a GPR109A-dependent mechanism. _Cells_ 9, 2007 (2020). Article  CAS  PubMed Central  Google Scholar  * Nguyen,


T. D., Prykhodko, O., Hållenius, F. F. & Nyman, M. Monobutyrin reduces liver cholesterol and improves intestinal barrier function in rats fed high-fat diets. _Nutrients_ 11, 308 (2019).


Article  CAS  PubMed Central  Google Scholar  * Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. _eLife_ 7, e37182 (2018). Article  PubMed  PubMed Central


  Google Scholar  * Bai, L. et al. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice. _Microbe Cell Fact._ 19, 94–13 (2020). Article  CAS  Google Scholar


  * Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. _PLoS ONE_ 5, e9085 (2010). Article  PubMed  PubMed Central  CAS  Google Scholar 


* Kan, H., Zhao, F., Zhang, X. X., Ren, H. & Gao, S. Correlations of gut microbial community shift with hepatic damage and growth inhibition of _Carassius auratus_ induced by


pentachlorophenol exposure. _Environ. Sci. Technol._ 49, 11894–11902 (2015). Article  CAS  PubMed  Google Scholar  * Haro, C. et al. Intestinal microbiota is influenced by gender and body


mass index. _PLoS ONE_ 11, e0154090 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Patil, D. P. et al. Molecular analysis of gut microbiota in obesity among Indian


individuals. _J. Biosci._ 37, 647–657 (2012). Article  CAS  PubMed  Google Scholar  * Mullish, B. H. & Williams, H. R. _Clostridium difficile_ infection and antibiotic-associated


diarrhoea. _Clin. Med._ 18, 237–241 (2018). Article  Google Scholar  * Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s


metabolism. _Mol. Psychiatry_ 21, 786 (2016). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by National Institutes of Health grants R35


GM128618 and R01 DK126855 (A.S.D.). S.N.C. acknowledges an American Heart Association Postdoctoral Fellowship. M.D.M. acknowledges an NSF Graduate Research Fellowship (DGE1745303). Figures


created with BioRender.com. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston,


MA, USA Snehal N. Chaudhari, Megan D. McCurry & A. Sloan Devlin Authors * Snehal N. Chaudhari View author publications You can also search for this author inPubMed Google Scholar * Megan


D. McCurry View author publications You can also search for this author inPubMed Google Scholar * A. Sloan Devlin View author publications You can also search for this author inPubMed 


Google Scholar CORRESPONDING AUTHORS Correspondence to Snehal N. Chaudhari or A. Sloan Devlin. ETHICS DECLARATIONS COMPETING INTERESTS A.S.D. is an ad hoc consultant for Takeda


Pharmaceuticals and Axial Therapeutics. The other authors have declared no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Chemical Biology_ thanks Andrew Gewirtz


and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in


published maps and institutional affiliations. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chaudhari, S.N., McCurry, M.D. & Devlin, A.S. Chains


of evidence from correlations to causal molecules in microbiome-linked diseases. _Nat Chem Biol_ 17, 1046–1056 (2021). https://doi.org/10.1038/s41589-021-00861-z Download citation *


Received: 01 September 2020 * Accepted: 16 July 2021 * Published: 22 September 2021 * Issue Date: October 2021 * DOI: https://doi.org/10.1038/s41589-021-00861-z SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative