The emerging landscape of single-molecule protein sequencing technologies

The emerging landscape of single-molecule protein sequencing technologies


Play all audios:


ABSTRACT Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level,


single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry


that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease


diagnostics. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access


Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print


issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS SINGLE-CELL PROTEOMICS ENABLED BY NEXT-GENERATION SEQUENCING OR MASS SPECTROMETRY Article 02 March 2023 UNCOVERING BIOLOGY BY SINGLE-CELL PROTEOMICS Article Open


access 08 April 2023 SINGLE-CELL MULTIOMICS: TECHNOLOGIES AND DATA ANALYSIS METHODS Article Open access 15 September 2020 REFERENCES * Breuza, L. et al. The UniProtKB guide to the human


proteome. _Database_ 2016, bav120 (2016). Article  PubMed  PubMed Central  Google Scholar  * Smith, L. M. et al. Proteoform: a single term describing protein complexity. _Nat. Methods_ 10,


186–187 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Seattle Times Business Staff. Seattle biotech startup Nautilus to get $350 million, stock listing in blank-check deal.


_The Seattle Times_ https://www.seattletimes.com/business/seattle-biotech-startup-nautilus-to-get-350-million-stock-listing-in-blank-check-deal/ (8 February 2021). * Reuters Staff. Protein


sequencing firm Quantum-Si to go public via $1.46 billion SPAC merger. _Reuters_ https://www.reuters.com/article/us-quantum-si-m-a-highcape-capital-idUSKBN2AI1HT (18 February 2021). * Cohen,


L. & Walt, D. R. Single-molecule arrays for protein and nucleic acid analysis. _Annu. Rev. Anal. Chem._ 10, 345–363 (2017). Article  CAS  Google Scholar  * Aggarwal, V. & Ha, T.


Single-molecule fluorescence microscopy of native macromolecular complexes. _Curr. Opin. Struct. Biol._ 41, 225–232 (2016). Article  CAS  PubMed  Google Scholar  * Edman, P. A method for the


determination of the amino acid sequence in peptides. _Arch. Biochem._ 22, 475–476 (1949). CAS  PubMed  Google Scholar  * Swaminathan, J., Boulgakov, A. A. & Marcotte, E. M. A


theoretical justification for single molecule peptide sequencing. _PLoS Comput. Biol._ 11, 1076–1082 (2015). Article  Google Scholar  * Swaminathan, J. et al. Highly parallel single-molecule


identification of proteins in zeptomole-scale mixtures. _Nat. Biotechnol._ 36, 1076–1082 (2018). Article  CAS  Google Scholar  * Howard, C. J. et al. Solid-phase peptide capture and release


for bulk and single-molecule proteomics. _ACS Chem. Biol._ 15, 1401–1407 (2020). Article  CAS  PubMed  Google Scholar  * Miclotte, G., Martens, K. & Fostier, J. Computational assessment


of the feasibility of protonation-based protein sequencing. _PLoS ONE_ 15, e0238625 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tullman, J., Marino, J. P. & Kelman,


Z. Leveraging nature’s biomolecular designs in next-generation protein sequencing reagent development. _Appl. Microbiol. Biotechnol._ 104, 7261–7271 (2020). Article  CAS  PubMed  Google


Scholar  * Rodriques, S. G., Marblestone, A. H. & Boyden, E. S. A theoretical analysis of single molecule protein sequencing via weak binding spectra. _PLoS ONE_ 14, e0212868 (2019).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Tullman, J., Callahan, N., Ellington, B., Kelman, Z. & Marino, J. P. Engineering ClpS for selective and enhanced N-terminal amino


acid binding. _Appl. Microbiol. Biotechnol._ 103, 2621–2633 (2019). Article  CAS  PubMed  Google Scholar  * Smith, R. D., Cheng, X., Brace, J. E., Hofstadler, S. A. & Anderson, G. A.


Trapping, detection and reaction of very large single molecular ions by mass spectrometry. _Nature_ 369, 137–139 (1994). Article  CAS  Google Scholar  * Keifer, D. Z. & Jarrold, M. F.


Single-molecule mass spectrometry. _Mass Spectrom. Rev._ 36, 715–733 (2017). Article  CAS  PubMed  Google Scholar  * Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J.


High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. _Nat. Methods_ 9, 1084–1086 (2012). Article  CAS  PubMed  Google Scholar  * Makarov, A. & Denisov, E.


Dynamics of ions of intact proteins in the Orbitrap mass analyzer. _J. Am. Soc. Mass Spectr._ 20, 1486–1495 (2009). Article  CAS  Google Scholar  * Kafader, J. O. et al. Measurement of


individual ions sharply increases the resolution of Orbitrap mass spectra of proteins. _Anal. Chem._ 91, 2776–2783 (2019). Article  CAS  PubMed  Google Scholar  * Kafader, J. O. et al.


Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. _Nat. Methods_ 17, 391–394 (2020). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wörner, T. P. et al. Resolving heterogeneous macromolecular assemblies by Orbitrap-based single-particle charge detection mass spectrometry. _Nat. Methods_ 17, 395–398 (2020).


Article  PubMed  Google Scholar  * Kafader, J. O. et al. Individual ion mass spectrometry enhances the sensitivity and sequence coverage of top down mass spectrometry. _J. Proteome Res._ 19,


1346–1350 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Smith, L. et al. The human proteoform project: a plan to define the human proteome. Preprint at _Preprints_


https://doi.org/10.20944/preprints202010.0368.v1 (2020). * Ekinci, K. L., Huang, X. M. H. & Roukes, M. L. Ultrasensitive nanoelectromechanical mass detection. _Appl. Phys. Lett._ 84,


4469–4471 (2004). Article  CAS  Google Scholar  * Hanay, M. S. et al. Single-protein nanomechanical mass spectrometry in real time. _Nat. Nanotechnol._ 7, 602–608 (2012). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Sage, E. et al. Neutral particle mass spectrometry with nanomechanical systems. _Nat. Commun._ 6, 6482 (2015). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Dominguez-Medina, S. et al. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. _Science_ 362, 918–922 (2018). Article  CAS 


PubMed  Google Scholar  * Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. _Nat. Nanotechnol._ 7, 301–304 (2012). Article  CAS  PubMed  Google Scholar  * Hanay, M.


S. et al. Inertial imaging with nanomechanical systems. _Nat. Nanotechnol._ 10, 339–344 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Malvar, O. et al. Mass and stiffness


spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators. _Nat. Commun._ 7, 13452 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wilm,


M. & Mann, M. Analytical properties of the nanoelectrospray ion source. _Anal. Chem._ 68, 1–8 (1996). Article  CAS  PubMed  Google Scholar  * El-Faramawy, A., Siu, K. M. & Thomson,


B. A. Efficiency of nano-electrospray ionization. _J. Am. Soc. Mass Spectr._ 16, 1702–1707 (2005). Article  CAS  Google Scholar  * Bush, J. et al. The nanopore mass spectrometer. _Rev. Sci.


Instrum._ 88, 113307 (2017). Article  PubMed  PubMed Central  Google Scholar  * Maulbetsch, W., Wiener, B., Poole, W., Bush, J. & Stein, D. Preserving the sequence of a biopolymer’s


monomers as they enter an electrospray mass spectrometer. _Phys. Rev. Appl._ 6, 054006 (2016). Article  Google Scholar  * Brodbelt, J. S. Photodissociation mass spectrometry: new tools for


characterization of biological molecules. _Chem. Soc. Rev._ 43, 2757–2783 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chang, S. et al. Tunnelling readout of


hydrogen-bonding-based recognition. _Nat. Nanotechnol._ 4, 297–301 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhao, Y. et al. Single-molecule spectroscopy of amino acids


and peptides by recognition tunnelling. _Nat. Nanotechnol._ 9, 466–473 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ohshiro, T. et al. Detection of post-translational


modifications in single peptides using electron tunnelling currents. _Nat. Nanotechnol._ 9, 835–840 (2014). Article  CAS  PubMed  Google Scholar  * Zhang, B. et al. Observation of giant


conductance fluctuations in a protein. _Nano Futures_ 1, 035002 (2017). Article  PubMed  PubMed Central  Google Scholar  * Zhang, B. et al. Engineering an enzyme for direct electrical


monitoring of activity. _ACS Nano_ 14, 1360–1368 (2020). Article  CAS  PubMed  Google Scholar  * Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. _Nat. Rev. Mater._ 3, 17068 (2017).


Article  Google Scholar  * Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. _Nat. Protoc._ 12, 1198–1228


(2017). Article  CAS  PubMed  Google Scholar  * Dai, M., Jungmann, R. & Yin, P. Optical imaging of individual biomolecules in densely packed clusters. _Nat. Nanotechnol._ 11, 798–807


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jungmann, R. et al. Quantitative super-resolution imaging with qPAINT. _Nat. Methods_ 13, 439–442 (2016). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Dai, M. & Yin, P. Methods and compositions relating to super-resolution imaging and modification. US patent 10006917 (2018). * Woo, S. & Yin, P.


Methods and compositions for protein identification. US patent 10697974 (2020). * Schaus, T. E., Woo, S., Xuan, F., Chen, X. & Yin, P. A DNA nanoscope via auto-cycling proximity


recording. _Nat. Commun._ 8, 696 (2017). Article  PubMed  PubMed Central  Google Scholar  * Kishi, J. Y., Schaus, T. E., Gopalkrishnan, N., Xuan, F. & Yin, P. Programmable autonomous


synthesis of single-stranded DNA. _Nat. Chem._ 10, 155–164 (2018). Article  CAS  PubMed  Google Scholar  * Gopalkrishnan, N., Punthambaker, S., Schaus, T. E., Church, G. M. & Yin, P. A


DNA nanoscope that identifies and precisely localizes over a hundred unique molecular features with nanometer accuracy. Preprint at _bioRxiv_ https://doi.org/10.1101/2020.08.27.271072


(2020). * Filius, M., Kim, S. H., Severins, I. & Joo, C. High-resolution single-molecule FRET via DNA eXchange (FRET X). _Nano Lett._ 21, 3295–3301 (2021). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. _Science_ 359, eaan1133 (2018). Article 


PubMed  PubMed Central  Google Scholar  * Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel.


_Proc. Natl Acad. Sci. USA_ 93, 13770–13773 (1996). Article  CAS  PubMed  Google Scholar  * Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. _Nat. Biotechnol._


34, 518–524 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Loman, N. J. & Watson, M. Successful test launch for nanopore sequencing. _Nat. Methods_ 12, 303–304 (2015).


Article  CAS  PubMed  Google Scholar  * Rozevsky, Y. et al. Quantification of mRNA expression using single-molecule nanopore sensing. _ACS Nano_ 14, 13964–13974 (2020). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Di Muccio, G., Rossini, A. E., Di Marino, D., Zollo, G. & Chinappi, M. Insights into protein sequencing with an α-hemolysin nanopore by atomistic


simulations. _Sci. Rep._ 9, 6440 (2019). Article  PubMed  PubMed Central  Google Scholar  * Wilson, J., Sarthak, K., Si, W., Gao, L. & Aksimentiev, A. Rapid and accurate determination of


nanopore ionic current using a steric exclusion model. _ACS Sens._ 4, 634–644 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Huang, G., Voet, A. & Maglia, G. FraC


nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. _Nat. Commun._ 10, 835 (2019). Article  PubMed  PubMed Central  Google Scholar  *


Piguet, F. et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. _Nat. Commun._ 9, 966 (2018). Article  PubMed  PubMed


Central  Google Scholar  * Cao, C. et al. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores. _Nat. Commun._ 10, 4918 (2019). Article  PubMed  PubMed


Central  Google Scholar  * Galenkamp, N. S., Soskine, M., Hermans, J., Wloka, C. & Maglia, G. Direct electrical quantification of glucose and asparagine from bodily fluids using


nanopores. _Nat. Commun._ 9, 4085 (2018). Article  PubMed  PubMed Central  Google Scholar  * Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an


aerolysin nanopore. _Nat. Biotechnol._ 38, 176–181 (2020). Article  CAS  PubMed  Google Scholar  * Restrepo-Pérez, L., Wong, C. H., Maglia, G., Dekker, C. & Joo, C. Label-free detection


of post-translational modifications with a nanopore. _Nano Lett._ 19, 7957–7964 (2019). Article  PubMed  PubMed Central  Google Scholar  * Korotkov, K. V., Sandkvist, M. & Hol, W. G. The


type II secretion system: biogenesis, molecular architecture and mechanism. _Nat. Rev. Microbiol._ 10, 336–351 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Olivares, A.


O., Baker, T. A. & Sauer, R. T. Mechanical protein unfolding and degradation. _Annu. Rev. Physiol._ 80, 413–429 (2018). Article  CAS  PubMed  Google Scholar  * Nivala, J., Marks, D. B.


& Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. _Nat. Biotechnol._ 31, 247–250 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Nivala, J., Mulroney, L., Li, G., Schreiber, J. & Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. _ACS Nano_ 8, 12365–12375 (2014). Article  CAS 


PubMed  Google Scholar  * Zhang, S. et al. Bottom–up fabrication of a multi-component nanopore sensor that unfolds, processes and recognizes single proteins. Preprint at _bioRxiv_


https://doi.org/10.1101/2020.12.04.411884 (2020). * Sachelaru, I. et al. YidC and SecYEG form a heterotetrameric protein translocation channel. _Sci. Rep._ 7, 101 (2017). Article  PubMed 


PubMed Central  Google Scholar  * Knyazev, D. G., Kuttner, R., Zimmermann, M., Sobakinskaya, E. & Pohl, P. Driving forces of translocation through bacterial translocon SecYEG. _J. Membr.


Biol._ 251, 329–343 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Backes, S. & Herrmann, J. M. Protein translocation into the intermembrane space and matrix of


mitochondria: mechanisms and driving forces. _Front. Mol. Biosci._ 4, 83 (2017). Article  PubMed  PubMed Central  Google Scholar  * Feng, J. et al. Transmembrane protein rotaxanes reveal


kinetic traps in the refolding of translocated substrates. _Commun. Biol._ 3, 159 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosen, C. B., Bayley, H. &


Rodriguez-Larrea, D. Free-energy landscapes of membrane co-translocational protein unfolding. _Commun. Biol._ 3, 160 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Rodriguez-Larrea, D. Single-aminoacid discrimination in proteins with homogeneous nanopore sensors and neural networks. _Biosens. Bioelectron._ 180, 113108 (2021). Article  CAS  PubMed 


Google Scholar  * Cardozo, N. et al. Multiplexed direct detection of barcoded protein reporters on a nanopore array. Preprint at _bioRxiv_ https://doi.org/10.1101/837542 (2019). * Yao, Y.,


Docter, M., Van Ginkel, J., de Ridder, D. & Joo, C. Single-molecule protein sequencing through fingerprinting: computational assessment. _Phys. Biol._ 12, 055003 (2015). Article  PubMed


  Google Scholar  * Ohayon, S., Girsault, A., Nasser, M., Shen-Orr, S. & Meller, A. Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification.


_PLoS Comput. Biol._ 15, e1007067 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Restrepo-Pérez, L. et al. Resolving chemical modifications to a single amino acid within a


peptide using a biological nanopore. _ACS Nano_ 13, 13668–13676 (2019). Article  PubMed  PubMed Central  Google Scholar  * Asandei, A. et al. Placement of oppositely charged aminoacids at a


polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores. _Sci. Rep._ 5, 10419 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wang, R. et al. Single-molecule discrimination of labeled DNAs and polypeptides using photoluminescent-free TiO2 nanopores. _ACS Nano_ 12, 11648–11656 (2018). Article  CAS  PubMed


  Google Scholar  * Zrehen, A., Ohayon, S., Huttner, D. & Meller, A. On-chip protein separation with single-molecule resolution. _Sci. Rep._ 10, 15313 (2020). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Assad, O. N. et al. Light-enhancing plasmonic-nanopore biosensor for superior single-molecule detection. _Adv. Mater._ 29, 1605442 (2017). Article  Google


Scholar  * Spitzberg, J. D., Zrehen, A., van Kooten, X. F. & Meller, A. Plasmonic-nanopore biosensors for superior single-molecule detection. _Adv. Mater._ 31, 1900422 (2019). Article 


Google Scholar  * Houghtaling, J., List, J. & Mayer, M. Nanopore-based, rapid characterization of individual amyloid particles in solution: concepts, challenges, and prospects. _Small_


14, 1802412 (2018). Article  Google Scholar  * Plesa, C. et al. Fast translocation of proteins through solid state nanopores. _Nano Lett._ 13, 658–663 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. _Nat. Nanotechnol._ 6, 253–260 (2011). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Houghtaling, J. et al. Estimation of shape, volume, and dipole moment of individual proteins freely transiting a synthetic nanopore. _ACS Nano_ 13,


5231–5242 (2019). Article  CAS  PubMed  Google Scholar  * Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. _Nat. Nanotechnol._ 12,


360–367 (2017). Article  CAS  PubMed  Google Scholar  * Pang, Y. & Gordon, R. Optical trapping of a single protein. _Nano Lett._ 12, 402–406 (2012). Article  CAS  PubMed  Google Scholar


  * Verschueren, D., Shi, X. & Dekker, C. Nano-optical tweezing of single proteins in plasmonic nanopores. _Small Methods_ 3, 1800465 (2019). Article  Google Scholar  * Schmid, S.,


Stömmer, P., Dietz, H. & Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Preprint at _bioRxiv_


https://doi.org/10.1101/2021.03.09.434634 (2021). * Larkin, J., Henley, R. Y., Muthukumar, M., Rosenstein, J. K. & Wanunu, M. High-bandwidth protein analysis using solid-state nanopores.


_Biophys. J._ 106, 696–704 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nir, I., Huttner, D. & Meller, A. Direct sensing and discrimination among ubiquitin and


ubiquitin chains using solid-state nanopores. _Biophys. J._ 108, 2340–2349 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Waduge, P. et al. Nanopore-based measurements of


protein size, fluctuations, and conformational changes. _ACS Nano_ 11, 5706–5716 (2017). Article  CAS  PubMed  Google Scholar  * Varongchayakul, N., Hersey, J. S., Squires, A., Meller, A.


& Grinstaff, M. W. A solid-state hard microfluidic-nanopore biosensor with multilayer fluidics and on-chip bioassay/purification chamber. _Adv. Funct. Mater._ 28, 1804182 (2018). Article


  PubMed  PubMed Central  Google Scholar  * Hu, R. et al. Differential enzyme flexibility probed using solid-state nanopores. _ACS Nano_ 12, 4494–4502 (2018). Article  CAS  PubMed  Google


Scholar  * Huang, G. et al. Electro-osmotic vortices promote the capture of folded proteins by PlyAB nanopores. _Nano Lett._ 20, 3819–3827 (2020). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Soskine, M., Biesemans, A. & Maglia, G. Single-molecule analyte recognition with ClyA nanopores equipped with internal protein adaptors. _J. Am. Chem. Soc._ 137,


5793–5797 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wloka, C. et al. Label-free and real-time detection of protein ubiquitination with a biological nanopore. _ACS Nano_


11, 4387–4394 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Aramesh, M. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore


microscope. _Nat. Nanotechnol._ 14, 791–798 (2019). Article  CAS  PubMed  Google Scholar  * Hernandez, E. T., Swaminathan, J., Marcotte, E. M. & Anslyn, E. V. Solution-phase and


solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing. _New J. Chem._ 41, 462–469 (2017). Article  CAS 


PubMed  Google Scholar  * Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass


spectrometry-based proteomics. _Nat. Methods_ 14, 513–520 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhong, J. et al. Proteoform characterization based on top–down mass


spectrometry. _Brief._ _Bioinform._ 22, 1729–1750 (2021). * Creasy, D. M. & Cottrell, J. S. Unimod: protein modifications for mass spectrometry. _Proteomics_ 4, 1534–1536 (2004). Article


  CAS  PubMed  Google Scholar  * Marx, V. A dream of single-cell proteomics. _Nat. Methods_ 16, 809–812 (2019). Article  CAS  PubMed  Google Scholar  * Rissin, D. M. et al. Single-molecule


enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. _Nat. Biotechnol._ 28, 595–599 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu,


C., Garden, P. M. & Walt, D. R. Ultrasensitive detection of attomolar protein concentrations by dropcast single molecule assays. _J. Am. Chem. Soc._ 142, 12314–12323 (2020). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Norman, M. et al. Ultrasensitive high-resolution profiling of early seroconversion in patients with COVID-19. _Nat. Biomed. Eng._ 4, 1180–1187


(2020). Article  PubMed  Google Scholar  * Liu, F., Rijkers, D. T., Post, H. & Heck, A. J. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. _Nat.


Methods_ 12, 1179–1184 (2015). Article  CAS  PubMed  Google Scholar  * Iacobucci, C., Götze, M. & Sinz, A. Cross-linking/mass spectrometry to get a closer view on protein interaction


networks. _Curr. Opin. Biotechnol._ 63, 48–53 (2020). Article  CAS  PubMed  Google Scholar  * Dunham, W. H., Mullin, M. & Gingras, A.-C. Affinity-purification coupled to mass


spectrometry: basic principles and strategies. _Proteomics_ 12, 1576–1590 (2012). Article  CAS  PubMed  Google Scholar  * Gentzel, M., Pardo, M., Subramaniam, S., Stewart, A. F. &


Choudhary, J. S. Proteomic navigation using proximity-labeling. _Methods_ 164, 67–72 (2019). Article  PubMed  Google Scholar  * Zhao, Y. G. & Zhang, H. Phase separation in membrane


biology: the interplay between membrane-bound organelles and membraneless condensates. _Dev. Cell_ 55, 30–44 (2020). Article  CAS  PubMed  Google Scholar  * Steen, H. & Mann, M. The


ABC’s (and XYZ’s) of peptide sequencing. _Nat. Rev. Mol. Cell Biol._ 5, 699–711 (2004). Article  CAS  PubMed  Google Scholar  * Toby, T. K., Fornelli, L. & Kelleher, N. L. Progress in


top–down proteomics and the analysis of proteoforms. _Annu. Rev. Anal. Chem._ 9, 499–519 (2016). Article  CAS  Google Scholar  * Samaras, P. et al. ProteomicsDB: a multi-omics and


multi-organism resource for life science research. _Nucleic Acids Res._ 48, D1153–D1163 (2020). CAS  PubMed  Google Scholar  * Ruggles, K. V. et al. An analysis of the sensitivity of


proteogenomic mapping of somatic mutations and novel splicing events in cancer. _Mol. Cell. Proteomics_ 15, 1060–1071 (2016). Article  CAS  PubMed  Google Scholar  * Zhu, Y. et al.


Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. _Nat. Commun._ 9, 882 (2018). Article  PubMed  PubMed Central  Google Scholar  *


Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. _Genome Biol._ 19,


161 (2018). Article  PubMed  PubMed Central  Google Scholar  * Zhu, Y. et al. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and


ultrasensitive NanoLC–MS. _Angew. Chem. Int. Ed._ 57, 12370–12374 (2018). Article  CAS  Google Scholar  * Kelly, R. T. Single-cell proteomics: progress and prospects. _Mol. Cell. Proteomics_


19, 1739–1748 (2020). Article  CAS  PubMed  Google Scholar  * Gavrilyuk, J., Ban, H., Nagano, M., Hakamata, W. & Barbas, C. F. Formylbenzene diazonium hexafluorophosphate reagent for


tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde. _Bioconjugate Chem._ 23, 2321–2328 (2012). Article  CAS  Google Scholar  * Ban, H., Gavrilyuk,


J. & Barbas, C. F. III Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. _J. Am. Chem. Soc._ 132, 1523–1525 (2010). Article  CAS  PubMed 


Google Scholar  * Bach, K., Beerkens, B. L., Zanon, P. R. & Hacker, S. M. Light-activatable, 2,5-disubstituted tetrazoles for the proteome-wide profiling of aspartates and glutamates in


living bacteria. _ACS Cent. Sci._ 6, 546–554 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Taylor, M. T., Nelson, J. E., Suero, M. G. & Gaunt, M. J. A protein


functionalization platform based on selective reactions at methionine residues. _Nature_ 562, 563–568 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lin, S. et al.


Redox-based reagents for chemoselective methionine bioconjugation. _Science_ 355, 597–602 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Christian, A. H. et al. A physical


organic approach to tuning reagents for selective and stable methionine bioconjugation. _J. Am. Chem. Soc._ 141, 12657–12662 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Jia, S., He, D. & Chang, C. J. Bioinspired thiophosphorodichloridate reagents for chemoselective histidine bioconjugation. _J. Am. Chem. Soc._ 141, 7294–7301 (2019). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. _Nat. Chem._ 10, 205–211


(2018). Article  CAS  PubMed  Google Scholar  * Rosen, C. B. & Francis, M. B. Targeting the N terminus for site-selective protein modification. _Nat. Chem. Biol._ 13, 697–705 (2017).


Article  CAS  PubMed  Google Scholar  * Busch, G. K. et al. Specific N-terminal protein labelling: use of FMDV 3C pro protease and native chemical ligation. _Chem. Commun._ 29, 3369–3371


(2008). Article  Google Scholar  * Bandyopadhyay, A., Cambray, S. & Gao, J. Fast and selective labeling of N-terminal cysteines at neutral pH via thiazolidino boronate formation. _Chem.


Sci._ 7, 4589–4593 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Agten, S. M., Dawson, P. E. & Hackeng, T. M. Oxime conjugation in protein chemistry: from carbonyl


incorporation to nucleophilic catalysis. _J. Pept. Sci._ 22, 271–279 (2016). Article  CAS  PubMed  Google Scholar  * MacDonald, J. I., Munch, H. K., Moore, T. & Francis, M. B. One-step


site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. _Nat. Chem. Biol._ 11, 326–331 (2015). Article  CAS  PubMed  Google Scholar  * Matheron, L. et al. Improving


the selectivity of the phosphoric acid β-elimination on a biotinylated phosphopeptide. _J. Am. Soc. Mass Spectr._ 23, 1981–1990 (2012). Article  CAS  Google Scholar  * Du, J. et al.


Metabolic glycoengineering: sialic acid and beyond. _Glycobiology_ 19, 1382–1401 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tommasone, S. et al. The challenges of glycan


recognition with natural and artificial receptors. _Chem. Soc. Rev._ 48, 5488–5505 (2019). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank all the


presenting delegates of the 2019 Single-Molecule Protein Sequencing conference (Jerusalem). We thank the PL-Grid and CI-TASK Infrastructure, Poland, for providing their hardware and software


resources. S.S. acknowledges Postdoc Mobility fellowship no. P400PB 180889 from the Swiss National Science Foundation. E.M.M. and E.V.A. acknowledge funding from the NIH (R35 GM122480 and


R01 DK110520 to E.M.M.), Welch Foundation (F1515 to E.M.M. and F-0046 to E.V.A.), Army Research Office grant W911NF-12-1-0390 and Erisyon. E.M.M. and E.V.A. are co-founders and shareholders


of Erisyon. R.T.K. acknowledges funding from NIGMS (R01 GM138931). P.Y. acknowledges funding from an NIH Director’s New Innovator Award (1DP2OD007292), an NIH Transformative Research Award


(1R01EB018659), an NIH Pioneer Award (1DP1GM133052), and the Molecular Robotics Initiative fund at the Wyss Institute for Biologically Inspired Engineering. M.D. acknowledges funding from a


Systems Biology Department Fellowship from Harvard Medical School and a Technology Development Fellowship from Wyss Institute for Biologically Inspired Engineering. C.C. acknowledges the


Peter and Traudl Engelhorn Foundation. C.D. acknowledges the ERC Advanced Grant Looping DNA (no. 883684) and the NWO programs NanoFront and Basyc. E.M.M., E.V.A. and C.J.H. are co-inventors


on patents relevant to this work. S.O. acknowledges the support of the Azrieli fellowship foundation. N.L.K. acknowledges funding from the Paul G. Allen Frontiers Program (11715), the NIH


HuBMAP program (UH3 CA246635) and NIGMS (P41 GM108569). J.P.M. and Z.K. acknowledge internal funding from NIST and are co-inventors on patents relevant to this work. M. Wanunu acknowledges


funding from the NIH (HG009186). K.S. and A.A. acknowledge funding from the NSF (PHY-1430124). C.J., C.D. and R.E. acknowledge funding from NWO-I (SMPS). C.J. acknowledges funding from HFSP


(RGP0026/2019). A.P. acknowledges Bekker fellowship no. PPN/BEK/2018/1/00296 from the Polish National Agency for Academic Exchange. C.M. and S.H. acknowledge funding from the European


Research Council (ERC ‘Enlightened’, GA 616251) and the CEA Transverse Program ‘Instrumentation and Detection’ (PTC-ID VIRIONEMS). Support from the Proteomics French Infrastructure (PROFI)


is also gratefully acknowledged. G.D. acknowledges funding from FNR (C17/BM/11642138). M.M. acknowledges funding from the Adolphe Merkle Foundation, the Michael J. Fox Foundation for


Parkinson’s Research (grant 17924) and the Swiss National Science Foundation (grant no. 200021-169304). A.M. acknowledges funding from the European Union’s Horizon 2020 research and


innovation programme under grant agreement no. 833399-ERC NanoProt-ID and ISF award 3485/19. M.C. acknowledges computational resources from CINECA (NATWE project) and the Swiss National


Super-Computing Centre (CSCS), under projects sm11 and s865. E.C. acknowledges funding from I-Site Lille, Région Hauts-de-France, and the European Union’s Horizon 2020 Marie Skłodowska-Curie


no. 843052. The study was supported by the project ‘International Centre for Cancer Vaccine Science’ that is carried out within the International Agendas Programme of the Foundation for


Polish Science co-financed by the European Union under the European Regional Development Fund. D.G. thanks Genome Canada and Genome British Columbia for financial support for Genomics


Technology Platforms (GTP) funding for operations and technology development (264PRO). We thank V. Globyte for critical reading. AUTHOR INFORMATION Author notes * These authors contributed


equally: Javier Alfaro, Peggy Bohländer, Mingjie Dai, Mike Filius, Cecil J. Howard, Xander F. van Kooten, Shilo Ohayon, Adam Pomorski, Sonja Schmid. * These authors jointly supervised this


work: Javier Alfaro, Amit Meller, Chirlmin Joo. AUTHORS AND AFFILIATIONS * International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland Javier Antonio Alfaro, 


Georges Bedran, David Goodlett & Umesh Kalathiya * Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands Peggy Bohländer & Rienk Eelkema * Wyss


Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA Mingjie Dai & Peng Yin * Department of Systems Biology, Harvard Medical School, Boston, MA, USA


Mingjie Dai & Peng Yin * Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands Mike Filius, Adam Pomorski, Cees Dekker, 


Sung Hyun Kim & Chirlmin Joo * Department of Chemistry, University of Texas at Austin, Austin, TX, USA Cecil J. Howard & Eric V. Anslyn * Department of Biomedical Engineering,


Technion–Israel Institute of Technology, Haifa, Israel Xander F. van Kooten, Shilo Ohayon & Amit Meller * NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Wageningen,


the Netherlands Sonja Schmid * Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA Aleksei Aksimentiev & Kumar Sarthak * Institute of Bioengineering,


School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland Chan Cao * Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Rome, Italy


Mauro Chinappi * Univ. Lille, Inserm, CHU Lille, U1192–Protéomique Réponse Inflammatoire Spectrométrie de Masse–PRISM, Lille, France Etienne Coyaud * Department of Infection and Immunity,


Luxembourg Institute of Health, Strassen, Luxembourg Gunnar Dittmar * Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg Gunnar Dittmar *


Department of Physics, Brown University, Providence, RI, USA Nicholas Drachman & Derek Stein * Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada


David Goodlett * Université Grenoble Alpes, CEA, LETI, Grenoble, France Sébastien Hentz * Departments of Chemistry and Molecular Biosciences, and the Feinberg School of Medicine,


Northwestern University, Evanston, IL, USA Neil L. Kelleher * Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA Ryan T. Kelly * Institute for Bioscience and


Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Rockville, MD, USA Zvi Kelman & John P. Marino * Biomolecular Labeling Laboratory,


Institute for Bioscience and Biotechnology Research, Rockville, MD, USA Zvi Kelman * Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany Bernhard Kuster, 


Patroklos Samaras & Mathias Wilhelm * Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany Bernhard Kuster * Department of Biochemistry and Molecular Biology, Biofisika


Institute (CSIC, UPV/EHU), Leioa, Spain David Rodriguez-Larrea * Biodesign Institute, School of Molecular Sciences, Department of Physics, Arizona State University, Tempe, AZ, USA Stuart


Lindsay * Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands Giovanni Maglia * Department of Molecular Biosciences, Center for


Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA Edward M. Marcotte * Université Grenoble Alpes, CEA, Inserm, BGE U1038, Grenoble, France Christophe Masselon *


Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland Michael Mayer * University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada Lusia Sepiashvili *


Department of Physics, Northeastern University, Boston, MA, USA Meni Wanunu * Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA Meni Wanunu * Russell


Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa, Israel Amit Meller Authors * Javier Antonio Alfaro View author publications You can also search for this


author inPubMed Google Scholar * Peggy Bohländer View author publications You can also search for this author inPubMed Google Scholar * Mingjie Dai View author publications You can also


search for this author inPubMed Google Scholar * Mike Filius View author publications You can also search for this author inPubMed Google Scholar * Cecil J. Howard View author publications


You can also search for this author inPubMed Google Scholar * Xander F. van Kooten View author publications You can also search for this author inPubMed Google Scholar * Shilo Ohayon View


author publications You can also search for this author inPubMed Google Scholar * Adam Pomorski View author publications You can also search for this author inPubMed Google Scholar * Sonja


Schmid View author publications You can also search for this author inPubMed Google Scholar * Aleksei Aksimentiev View author publications You can also search for this author inPubMed Google


Scholar * Eric V. Anslyn View author publications You can also search for this author inPubMed Google Scholar * Georges Bedran View author publications You can also search for this author


inPubMed Google Scholar * Chan Cao View author publications You can also search for this author inPubMed Google Scholar * Mauro Chinappi View author publications You can also search for this


author inPubMed Google Scholar * Etienne Coyaud View author publications You can also search for this author inPubMed Google Scholar * Cees Dekker View author publications You can also


search for this author inPubMed Google Scholar * Gunnar Dittmar View author publications You can also search for this author inPubMed Google Scholar * Nicholas Drachman View author


publications You can also search for this author inPubMed Google Scholar * Rienk Eelkema View author publications You can also search for this author inPubMed Google Scholar * David Goodlett


View author publications You can also search for this author inPubMed Google Scholar * Sébastien Hentz View author publications You can also search for this author inPubMed Google Scholar *


Umesh Kalathiya View author publications You can also search for this author inPubMed Google Scholar * Neil L. Kelleher View author publications You can also search for this author inPubMed


 Google Scholar * Ryan T. Kelly View author publications You can also search for this author inPubMed Google Scholar * Zvi Kelman View author publications You can also search for this author


inPubMed Google Scholar * Sung Hyun Kim View author publications You can also search for this author inPubMed Google Scholar * Bernhard Kuster View author publications You can also search


for this author inPubMed Google Scholar * David Rodriguez-Larrea View author publications You can also search for this author inPubMed Google Scholar * Stuart Lindsay View author


publications You can also search for this author inPubMed Google Scholar * Giovanni Maglia View author publications You can also search for this author inPubMed Google Scholar * Edward M.


Marcotte View author publications You can also search for this author inPubMed Google Scholar * John P. Marino View author publications You can also search for this author inPubMed Google


Scholar * Christophe Masselon View author publications You can also search for this author inPubMed Google Scholar * Michael Mayer View author publications You can also search for this


author inPubMed Google Scholar * Patroklos Samaras View author publications You can also search for this author inPubMed Google Scholar * Kumar Sarthak View author publications You can also


search for this author inPubMed Google Scholar * Lusia Sepiashvili View author publications You can also search for this author inPubMed Google Scholar * Derek Stein View author publications


You can also search for this author inPubMed Google Scholar * Meni Wanunu View author publications You can also search for this author inPubMed Google Scholar * Mathias Wilhelm View author


publications You can also search for this author inPubMed Google Scholar * Peng Yin View author publications You can also search for this author inPubMed Google Scholar * Amit Meller View


author publications You can also search for this author inPubMed Google Scholar * Chirlmin Joo View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS J.A.A., C.J. and A.M. conceived and initiated, coordinated and supervised the project. The first draft of the manuscript was written by J.A.A., C.J., A.M., P.B., M.F.,


X.F.v.K., S.O., A.P., S.S., C.J.H., M.D., P.S., G.B., M. Wilhelm and L.S. The manuscript was revised and approved by all authors. CORRESPONDING AUTHORS Correspondence to Javier Antonio


Alfaro, Amit Meller or Chirlmin Joo. ETHICS DECLARATIONS COMPETING INTERESTS S.H. and C.M. are co-inventors on the patent application EP14158255. E.M.M. and E.V.A. are co-inventors on patent


9625469. D.S. is sponsored by Oxford Nanopore for his work on nanotip MS. E.M.M. and E.V.A. are co-founders and shareholders of Erisyon. B.K. and M. Wilhelm are founders and shareholders of


OmicScouts and MSAID. They have no operational role in either company. M.D. and P.Y. are co-inventors on US patent 10006917. P.Y. is an inventor on US patent 10697974 and provisional patent


and patent applications on various aspects of DNA nanotechnology–based protein sequencing methods described in this article. P.Y. is a co-founder, director and consultant of Ultivue Inc.


and Spear Bio Inc. All remaining authors declare no competing interests. Some authors may be bound by confidentiality agreements that prevent them from disclosing their competing interests


in this work; the corresponding authors are not aware of such cases. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Methods_ thanks Tae-Young Yoon and the other, anonymous,


reviewer(s) for their contribution to the peer review of this work. Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with


the rest of the editorial team. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Alfaro, J.A., Bohländer, P., Dai, M. _et al._ The emerging landscape of single-molecule protein sequencing


technologies. _Nat Methods_ 18, 604–617 (2021). https://doi.org/10.1038/s41592-021-01143-1 Download citation * Received: 04 June 2020 * Accepted: 02 April 2021 * Published: 07 June 2021 *


Issue Date: June 2021 * DOI: https://doi.org/10.1038/s41592-021-01143-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative