High-speed imaging of glutamate release with genetically encoded sensors

High-speed imaging of glutamate release with genetically encoded sensors


Play all audios:


ABSTRACT The strength of an excitatory synapse depends on its ability to release glutamate and on the density of postsynaptic receptors. Genetically encoded glutamate indicators (GEGIs)


allow eavesdropping on synaptic transmission at the level of cleft glutamate to investigate properties of the release machinery in detail. Based on the sensor iGluSnFR, we recently developed


accelerated versions of GEGIs that allow investigation of synaptic release during 100-Hz trains. Here, we describe the detailed procedures for design and characterization of fast iGluSnFR


variants in vitro, transfection of pyramidal cells in organotypic hippocampal cultures, and imaging of evoked glutamate transients with two-photon laser-scanning microscopy. As the released


glutamate spreads from a point source—the fusing vesicle—it is possible to localize the vesicle fusion site with a precision exceeding the optical resolution of the microscope. By using a


spiral scan path, the temporal resolution can be increased to 1 kHz to capture the peak amplitude of fast iGluSnFR transients. The typical time frame for these experiments is 30 min per


synapse. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature


and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues


and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local


taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING


VIEWED BY OTHERS GLUTAMATE INDICATORS WITH IMPROVED ACTIVATION KINETICS AND LOCALIZATION FOR IMAGING SYNAPTIC TRANSMISSION Article Open access 04 May 2023 ALL-OPTICAL REPORTING OF INHIBITORY


RECEPTOR DRIVING FORCE IN THE NERVOUS SYSTEM Article Open access 16 October 2024 DETERMINANTS OF SYNAPSE DIVERSITY REVEALED BY SUPER-RESOLUTION QUANTAL TRANSMISSION AND ACTIVE ZONE IMAGING


Article Open access 11 January 2022 DATA AVAILABILITY The data that support the findings of this study are available from the corresponding author on request. REFERENCES * Pulido, C. &


Marty, A. Quantal fluctuations in central mammalian synapses: functional role of vesicular docking sites. _Physiol. Rev._ 97, 1403–1430 (2017). Article  CAS  Google Scholar  * Choquet, D.


& Triller, A. The dynamic synapse. _Neuron_ 80, 691–703 (2013). Article  CAS  Google Scholar  * Namiki, S., Sakamoto, H., Iinuma, S., Iino, M. & Hirose, K. Optical glutamate sensor


for spatiotemporal analysis of synaptic transmission. _Eur. J. Neurosci._ 25, 2249–2259 (2007). Article  Google Scholar  * Okubo, Y. et al. Imaging extrasynaptic glutamate dynamics in the


brain. _Proc. Natl. Acad. Sci. USA_ 107, 6526–6531 (2010). Article  CAS  Google Scholar  * Brun, M. A. et al. A semisynthetic fluorescent sensor protein for glutamate. _J. Am. Chem. Soc._


134, 7676–7678 (2012). Article  CAS  Google Scholar  * Okumoto, S. et al. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. _Proc. Natl.


Acad. Sci. USA_ 102, 8740–8745 (2005). Article  CAS  Google Scholar  * Tsien, R. Y. Building and breeding molecules to spy on cells and tumors. _FEBS Lett._ 579, 927–932 (2005). Article  CAS


  Google Scholar  * Hires, S. A., Zhu, Y. & Tsien, R. Y. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters.


_Proc. Natl. Acad. Sci. USA_ 105, 4411–4416 (2008). Article  CAS  Google Scholar  * Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. _Nat.


Methods_ 10, 162–170 (2013). Article  CAS  Google Scholar  * Borghuis, B. G., Looger, L. L., Tomita, S. & Demb, J. B. Kainate receptors mediate signaling in both transient and sustained


OFF bipolar cell pathways in mouse retina. _J. Neurosci._ 34, 6128–6139 (2014). Article  CAS  Google Scholar  * O’Herron, P. et al. Neural correlates of single-vessel haemodynamic responses


in vivo. _Nature_ 534, 378–382 (2016). Article  Google Scholar  * Brunert, D., Tsuno, Y., Rothermel, M., Shipley, M. T. & Wachowiak, M. Cell-type-specific modulation of sensory responses


in olfactory bulb circuits by serotonergic projections from the raphe nuclei. _J. Neurosci._ 36, 6820–6835 (2016). Article  CAS  Google Scholar  * Helassa, N. et al. Ultrafast glutamate


sensors resolve high-frequency release at Schaffer collateral synapses. _Proc. Natl. Acad. Sci. USA_ 115, 5594–5599 (2018). Article  CAS  Google Scholar  * Wu, J. et al. Genetically encoded


glutamate indicators with altered color and topology. _ACS Chem. Biol._ 13, 1832–1837 (2018). Article  CAS  Google Scholar  * Marvin, J. S. et al. Stability, affinity, and chromatic variants


of the glutamate sensor iGluSnFR. _Nat. Methods_ 15, 936–939 (2018). Article  CAS  Google Scholar  * Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and


synaptic transmission with pH-sensitive green fluorescent proteins. _Nature_ 394, 192–195 (1998). Article  CAS  Google Scholar  * Granseth, B., Odermatt, B., Royle, S. J. & Lagnado, L.


Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. _Neuron_ 51, 773–786 (2006). Article  CAS  Google Scholar  * Fernández-Alfonso, T.,


Kwan, R. & Ryan, T. A. Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. _Neuron_ 51, 179–186 (2006). Article  Google Scholar  *


Voglmaier, S. M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. _Neuron_ 51, 71–84 (2006). Article  CAS  Google Scholar  * Li, H.


Concurrent imaging of synaptic vesicle recycling and calcium dynamics. _Front. Mol. Neurosci._ 4, 1–10 (2011). Article  CAS  Google Scholar  * Li, Y. & Tsien, R. W. pHTomato, a red,


genetically encoded indicator that enables multiplex interrogation of synaptic activity. _Nat. Neurosci._ 15, 1047–1053 (2012). Article  CAS  Google Scholar  * Rose, T., Schoenenberger, P.,


Jezek, K. & Oertner, T. G. Developmental refinement of vesicle cycling at Schaffer collateral synapses. _Neuron_ 77, 1109–1121 (2013). Article  CAS  Google Scholar  * Balaji, J. &


Ryan, T. A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. _Proc. Natl. Acad. Sci. USA_ 104, 20576–20581 (2007).


Article  CAS  Google Scholar  * Gandhi, S. P. & Stevens, C. F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. _Nature_ 423, 607–613 (2003). Article  CAS


  Google Scholar  * Zhu, Y., Xu, J. & Heinemann, S. F. Synaptic vesicle exocytosis-endocytosis at central synapses. _Commun. Integr. Biol._ 2, 418–419 (2009). Article  Google Scholar  *


Maschi, D. & Klyachko, V. A. Spatiotemporal regulation of synaptic vesicle fusion sites in central synapses. _Neuron_ 94, 65–73.e3 (2017). Article  CAS  Google Scholar  * Betz, W. J.


& Bewick, G. S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. _Science_ 255, 200–203 (1992). Article  CAS  Google Scholar  * Laviv, T. et al.


Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins. _Nat. Methods_ 13, 989–992 (2016). Article  CAS  Google Scholar  * Campbell, R. E. et al. A


monomeric red fluorescent protein. _Proc Natl. Acad. Sci. USA_ 99, 7877–7882 (2002). Article  CAS  Google Scholar  * Gee, C. E., Ohmert, I., Wiegert, J. S. & Oertner, T. G. Preparation


of slice cultures from rodent hippocampus. _Cold Spring Harb. Protoc_. 2017, 094888 (2017). * Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating


laser scanning microscopes. _Biomed. Eng. Online_ 2, 13 (2003). Article  Google Scholar  * Suter, B. A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments.


_Front. Neural Circuits_ 4, 1–12 (2010). Article  Google Scholar  * Negrean, A. & Mansvelder, H. D. Optimal lens design and use in laser-scanning microscopy. _Biomed. Opt. Express_ 5,


1588–1609 (2014). Article  Google Scholar  * Jensen, T. P., Zheng, K., Tyurikova, O., Reynolds, J. P. & Rusakov, D. A. Monitoring single-synapse glutamate release and presynaptic calcium


concentration in organised brain tissue. _Cell Calcium_ 64, 102–108 (2017). Article  CAS  Google Scholar  * Hires, S. A., Zhu, Y. & Tsien, R. Y. Optical measurement of synaptic


glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. _Proc. Natl. Acad. Sci. USA_ 105, 4411–4416 (2008). Article  CAS  Google Scholar  * de


Lorimier, R. M. et al. Construction of a fluorescent biosensor family. _Protein Sci._ 11, 2655–2675 (2002). Article  Google Scholar  * Wiegert, J. S., Gee, C. E. & Oertner, T. G.


Single-cell electroporation of neurons. _Cold Spring Harb. Protoc._ 2017, 135–138 (2017). Google Scholar  * Luisier, F., Vonesch, C., Blu, T. & Unser, M. Fast interscale wavelet


denoising of Poisson-corrupted images. _Signal Process._ 90, 415–427 (2010). Article  Google Scholar  * Taschenberger, H., Woehler, A. & Neher, E. Superpriming of synaptic vesicles as a


common basis for intersynapse variability and modulation of synaptic strength. _Proc. Natl. Acad. Sci. USA_ 113, E4548–E4557 (2016). Article  CAS  Google Scholar  * Oertner, T. G., Sabatini,


B. L., Nimchinsky, E. A. & Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. _Nat. Neurosci._ 5, 657–664 (2002). Article  CAS  Google Scholar  * Grabner,


C. P. & Moser, T. Individual synaptic vesicles mediate stimulated exocytosis from cochlear inner hair cells. _Proc. Natl. Acad. Sci. USA_ 115, 12811–12816 (2018). Article  CAS  Google


Scholar  * Helassa, N., Podor, B., Fine, A. & Török, K. Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics. _Sci. Rep._ 6,


38276 (2016). Article  CAS  Google Scholar  * Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. _Annu. Rev. Physiol._ 64, 355–405 (2002). Article  CAS  Google Scholar 


Download references ACKNOWLEDGEMENTS We thank I. Ohmert and S. Graf for the preparation of organotypic cultures and excellent technical assistance. This study was supported by the German


Research Foundation through Research Unit FOR 2419 P4 (T.G.O.) and P7 (J.S.W.), Priority Programs SPP 1665 (T.G.O.) and SPP 1926 (J.S.W.), Collaborative Research Center grant SFB 936 B7


(T.G.O.), and BBSRC grants BB/M02556X/1 (K.T.) and BB/S003894 (K.T.). We thank R. Y. Tsien (University of California, San Diego) for providing pCI syn tdimer2. AUTHOR INFORMATION Author


notes * J. Simon Wiegert Present address: Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Hamburg, Germany * Nordine Helassa Present


address: Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK * Silke Kerruth Present address: Department of


Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Prague, Czech Republic AUTHORS AND AFFILIATIONS * Institute for Synaptic Physiology, Center for Molecular Neurobiology


Hamburg, Hamburg, Germany Céline D. Dürst, J. Simon Wiegert, Christian Schulze & Thomas G. Oertner * Molecular and Clinical Sciences Research Institute, St George’s, University of


London, London, UK Nordine Helassa, Silke Kerruth, Catherine Coates & Katalin Török * School of Biosciences, University of Kent, Canterbury, UK Michael A. Geeves Authors * Céline D.


Dürst View author publications You can also search for this author inPubMed Google Scholar * J. Simon Wiegert View author publications You can also search for this author inPubMed Google


Scholar * Nordine Helassa View author publications You can also search for this author inPubMed Google Scholar * Silke Kerruth View author publications You can also search for this author


inPubMed Google Scholar * Catherine Coates View author publications You can also search for this author inPubMed Google Scholar * Christian Schulze View author publications You can also


search for this author inPubMed Google Scholar * Michael A. Geeves View author publications You can also search for this author inPubMed Google Scholar * Katalin Török View author


publications You can also search for this author inPubMed Google Scholar * Thomas G. Oertner View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS C.D.D., J.S.W., K.T., and T.G.O. designed the experiments and prepared the manuscript. C.D.D. performed synaptic imaging experiments. N.H., S.K., C.C., and M.G. created and


characterized novel iGluSnFR variants, C.S. wrote software to acquire and analyze GEGI data. CORRESPONDING AUTHOR Correspondence to Thomas G. Oertner. ETHICS DECLARATIONS COMPETING INTERESTS


The authors declare no competing interests. ADDITIONAL INFORMATION JOURNAL PEER REVIEW INFORMATION: _Nature Protocols_ thanks Edwin R. Chapman, Yulong Li, Jason Vevea and other anonymous


reviewer(s) for their contribution to the peer review of this work. PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional


affiliations. RELATED LINKS KEY REFERENCE USING THIS PROTOCOL Helassa, N. et al. _Proc. Natl. Acad. Sci. USA_ 115, 5594–5599 (2018): https://www.pnas.org/content/115/21/5594 INTEGRATED


SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1 BLEACHING OF IGLUSNFR FLUORESCENCE DURING A 100-TRIAL SINGLE-BOUTON EXPERIMENT DOES NOT AFFECT GLUTAMATE-INDUCED RESPONSES. (A) Raw traces


(~100 trials) of iGluSnFR signals measured in a single presynaptic terminal in response to single APs elicited every 10 s. Note downward slope of baseline in every trial due to bleaching of


iGluSnFR, and slow decrease of F0 over the time course of the experiment (17 min). Partial recovery between trials is likely due to lateral diffusion of unbleached iGluSnFR molecules in the


axonal membrane. (B) Decrease in iGluSnFR resting fluorescence (F0) over the time course of the experiment (17 min). (C) Peak amplitude of individual trials expressed as relative change in


fluorescence (ΔF/F0) is stable over the time course of the experiment. (D) Peak amplitude (ΔF/F0) is independent of F0. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary


Figure 1 REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Dürst, C.D., Wiegert, J.S., Helassa, N. _et al._ High-speed imaging of


glutamate release with genetically encoded sensors. _Nat Protoc_ 14, 1401–1424 (2019). https://doi.org/10.1038/s41596-019-0143-9 Download citation * Received: 08 October 2018 * Accepted: 22


January 2019 * Published: 15 April 2019 * Issue Date: May 2019 * DOI: https://doi.org/10.1038/s41596-019-0143-9 SHARE THIS ARTICLE Anyone you share the following link with will be able to


read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative