Proximity labeling in mammalian cells with turboid and split-turboid

Proximity labeling in mammalian cells with turboid and split-turboid


Play all audios:


ABSTRACT This protocol describes the use of TurboID and split-TurboID in proximity labeling applications for mapping protein–protein interactions and subcellular proteomes in live mammalian


cells. TurboID is an engineered biotin ligase that uses ATP to convert biotin into biotin–AMP, a reactive intermediate that covalently labels proximal proteins. Optimized using directed


evolution, TurboID has substantially higher activity than previously described biotin ligase–related proximity labeling methods, such as BioID, enabling higher temporal resolution and


broader application in vivo. Split-TurboID consists of two inactive fragments of TurboID that can be reconstituted through protein–protein interactions or organelle–organelle interactions,


which can facilitate greater targeting specificity than full-length enzymes alone. Proteins biotinylated by TurboID or split-TurboID are then enriched with streptavidin beads and identified


by mass spectrometry. Here, we describe fusion construct design and characterization (variable timing), proteomic sample preparation (5–7 d), mass spectrometric data acquisition (2 d), and


proteomic data analysis (1 week). Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal


Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS OFF-THE-SHELF PROXIMITY BIOTINYLATION USING PROTA-TURBOID Article 12 October 2022 OFF-THE-SHELF PROXIMITY BIOTINYLATION FOR INTERACTION PROTEOMICS


Article Open access 18 August 2021 ENGINEERING OF ULTRAID, A COMPACT AND HYPERACTIVE ENZYME FOR PROXIMITY-DEPENDENT BIOTINYLATION IN LIVING CELLS Article Open access 04 July 2022 DATA


AVAILABILITY The data presented in this paper have been previously published, and associated raw data are provided in the original articles6,7. REFERENCES * Huber, L. A., Pfaller, K. &


Vietor, I. Organelle proteomics: implications for subcellular fractionation in proteomics. _Circ. Res._ 92, 962–968 (2003). Article  CAS  PubMed  Google Scholar  * Puig, O. et al. The tandem


affinity purification (TAP) method: a general procedure of protein complex purification. _Methods_ 24, 218–229 (2001). Article  CAS  PubMed  Google Scholar  * Stasyk, T. & Huber, L. A.


Zooming in: fractionation strategies in proteomics. _Proteomics_ 4, 3704–3716 (2004). Article  CAS  PubMed  Google Scholar  * Lee, W. C. & Lee, K. H. Applications of affinity


chromatography in proteomics. _Anal. Biochem._ 324, 1–10 (2004). Article  CAS  PubMed  Google Scholar  * Gingras, A. C., Abe, K. T. & Raught, B. Getting to know the neighborhood: using


proximity-dependent biotinylation to characterize protein complexes and map organelles. _Curr. Opin. Chem. Biol._ 48, 44–54 (2019). Article  CAS  PubMed  Google Scholar  * Branon, T. C. et


al. Efficient proximity labeling in living cells and organisms with TurboID. _Nat. Biotechnol._ 36, 880–887 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cho, K. F. et al.


Split-TurboID enables contact-dependent proximity labeling in cells. _Proc. Natl Acad. Sci. USA_ 117, 12143–12154 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Udeshi, N.


D. et al. Antibodies to biotin enable large-scale detection of biotinylation sites on proteins. _Nat. Methods_ 14, 1167–1170 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-Seq. _Cell_ 178, 473–490.e26 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Myers, S. A. et al.


Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. _Nat. Methods_ 15, 437–439 (2018). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Michalski, A. et al. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. _Mol. Cell. Proteom._ 10, M111.011015


(2011). Article  Google Scholar  * Eliuk, S. & Makarov, A. Evolution of Orbitrap mass spectrometry instrumentation. _Annu. Rev. Anal. Chem._ 8, 61–80 (2015). Article  Google Scholar  *


Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. _Nat. Protoc._ 11, 2301–2319 (2016). Article  CAS  PubMed  Google


Scholar  * Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. _Nat. Methods_ 12, 51–54 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. _Science_ 339, 1328–1331 (2013). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Mortensen, A. & Skibsted, L. H. Importance of carotenoid structure in radical-scavenging reactions. _J. Agric. Food Chem._ 45, 2970–2977 (1997). Article  CAS  Google


Scholar  * Wishart, J. F. & Rao, B. S. M. _Recent Trends in Radiation Chemistry_ (World Scientific, 2010). https://doi.org/10.1142/7413 * Martell, J. D. et al. Engineered ascorbate


peroxidase as a genetically encoded reporter for electron microscopy. _Nat. Biotechnol._ 30, 1143–1148 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rodríguez-López, J. N.


et al. Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: identification of intermediates in the catalytic cycle. _J. Am. Chem. Soc._ 123, 11838–11847 (2001). Article 


PubMed  CAS  Google Scholar  * Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. _Cell_ 166, 1295–1307.e21 (2016). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Bar, D. Z. et al. Biotinylation by antibody recognition—a method for proximity labeling. _Nat. Methods_ 15, 127–133 (2018). Article  CAS  PubMed  Google Scholar  *


Honke, K. & Kotani, N. The enzyme-mediated activation of radical source reaction: a new approach to identify partners of a given molecule in membrane microdomains. _J. Neurochem_ 116,


690–695 (2011). Article  CAS  PubMed  Google Scholar  * Li, X.-W. et al. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. _J. Biol. Chem._ 289,


14434–14447 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Paek, J. et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. _Cell_


169, 338–349.e11 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells.


_Cell_ 169, 350–360.e12 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein


identifies proximal and interacting proteins in mammalian cells. _J. Cell Biol._ 196, 801–810 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, D. I. et al. An improved


smaller biotin ligase for BioID proximity labeling. _Mol. Biol. Cell_ 27, 1188–1196 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ramanathan, M. et al. RNA-protein


interaction detection in living cells. _Nat. Methods_ 15, 207–212 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi-Rhee, E., Schulman, H. & Cronan, J. E. Promiscuous


protein biotinylation by _Escherichia coli_ biotin protein ligase. _Protein Sci._ 13, 3043–3050 (2008). Article  CAS  Google Scholar  * Kim, D. I. et al. Probing nuclear pore complex


architecture with proximity-dependent biotinylation. _Proc. Natl Acad. Sci. USA_ 111, E2453–E2461 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kido, K. et al. Airid, a


novel proximity biotinylation enzyme, for analysis of protein–protein interactions. _eLife_ 9, e54983 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Birendra, K. C. et al.


VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. _Mol. Biol. Cell_ 28, 2241–2250 (2017). Article  CAS  PubMed Central  Google Scholar  * Redwine, W. B. et


al. The human cytoplasmic dynein interactome reveals novel activators of motility. _eLife_ 6, e28257 (2017). Article  PubMed  PubMed Central  Google Scholar  * Jung, E. M. et al. Arid1b


haploinsufficiency disrupts cortical interneuron development and mouse behavior. _Nat. Neurosci._ 20, 1694–1707 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mair, A., Xu,


S. L., Branon, T. C., Ting, A. Y. & Bergmann, D. C. Proximity labeling of protein complexes and cell type specific organellar proteomes in _Arabidopsis_ enabled by TurboID. _eLife_ 8,


e47864 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y. et al. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated


immunity. _Nat. Commun._ 10, 3252 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Larochelle, M., Bergeron, D., Arcand, B. & Bachand, F. Proximity-dependent biotinylation


mediated by TurboID to identify protein-protein interaction networks in yeast. _J. Cell Sci._ 132, jcs232249 (2019). Article  CAS  PubMed  Google Scholar  * Struk, S. et al. Exploring the


protein–protein interaction landscape in plants. _Plant Cell Environ._ 42, 387–409 (2019). Article  CAS  PubMed  Google Scholar  * Opitz, N. et al. Capturing the Asc1p/receptor for activated


C kinase 1 (RACK1) microenvironment at the head region of the 40s ribosome with quantitative BioID in yeast. _Mol. Cell. Proteom._ 16, 2199–2218 (2017). Article  CAS  Google Scholar  *


Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. _Science_ 353, 1123–1129 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lin, Q. et


al. Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. _Front. Plant Sci._ 8, 749 (2017). Article  PubMed  PubMed Central  Google


Scholar  * Khan, M., Youn, J. Y., Gingras, A. C., Subramaniam, R. & Desveaux, D. In planta proximity dependent biotin identification (BioID). _Sci. Rep._ 8, 1123 (2018). Article  CAS 


Google Scholar  * Conlan, B., Stoll, T., Gorman, J. J., Saur, I. & Rathjen, J. P. Development of a rapid in planta bioid system as a probe for plasma membrane-associated immunity


proteins. _Front. Plant Sci._ 9, 1882 (2018). Article  PubMed  PubMed Central  Google Scholar  * Roux, K. J., Kim, D. I., Burke, B. & May, D. G. BioID: a screen for protein-protein


interactions. _Curr. Protoc. Protein Sci._ 91, 19.23.1–19.23.15 (2018). CAS  Google Scholar  * May, D. G., Scott, K. L., Campos, A. R. & Roux, K. J. Comparative application of BioID and


TurboID for protein-proximity biotinylation. _Cells_ 9, 1070 (2020). Article  PubMed Central  CAS  Google Scholar  * Chapman-Smith, A. & Cronan, J. E. Jr Molecular biology of biotin


attachment to proteins. _J. Nutr._ 129, 477S–484S (1999). Article  CAS  PubMed  Google Scholar  * Han, Y. et al. Directed evolution of split APEX2 peroxidase. _ACS Chem. Biol._ 14, 619–635


(2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Martell, J. D. et al. A split horseradish peroxidase for the detection of intercellular protein-protein interactions and


sensitive visualization of synapses. _Nat. Biotechnol._ 34, 774–780 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * De Munter, S. et al. Split-BioID: a proximity


biotinylation assay for dimerization-dependent protein interactions. _FEBS Lett._ 591, 415–424 (2017). Article  PubMed  CAS  Google Scholar  * Schopp, I. M. et al. Split-BioID a conditional


proteomics approach to monitor the composition of spatiotemporally defined protein complexes. _Nat. Commun._ 8, 15690 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kwak, C.


et al. Contact-ID, a new tool for profiling organelle contact site, reveals proteins of mitochondrial-associated membrane formation. _Proc. Natl Acad. Sci. USA_ 117, 12109–12120 (2020).


Article  CAS  PubMed  PubMed Central  Google Scholar  * McClellan, D. et al. Growth factor independence 1B-mediated transcriptional repression and lineage allocation require lysine-specific


demethylase 1-dependent recruitment of the BHC complex. _Mol. Cell. Biol._ 39, e00020-19 (2019). Article  PubMed  PubMed Central  Google Scholar  * Lambert, J. P. et al. Interactome rewiring


following pharmacological targeting of BET bromodomains. _Mol. Cell_ 73, 621–638.e17 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dingar, D. et al. BioID identifies novel


c-MYC interacting partners in cultured cells and xenograft tumors. _J. Proteom._ 118, 95–111 (2015). Article  CAS  Google Scholar  * Couzens, A. L. et al. Protein interaction network of the


mammalian hippo pathway reveals mechanisms of kinase-phosphatase interactions. _Sci. Signal._ 6, rs15–rs15 (2013). Article  PubMed  CAS  Google Scholar  * Gupta, G. D. et al. A dynamic


protein interaction landscape of the human centrosome-cilium interface. _Cell_ 163, 1484–1499 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Youn, J. Y. et al. High-density


proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. _Mol. Cell_ 69, 517–532.e11 (2018). Article  CAS  PubMed  Google Scholar  * Firat-Karalar, E.


N., Rauniyar, N., Yates, J. R. & Stearns, T. Proximity interactions among centrosome components identify regulators of centriole duplication. _Curr. Biol._ 24, 664–670 (2014). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. _Nat. Neurosci._ 21, 228–239


(2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kabeiseman, E. J., Cichos, K. H. & Moore, E. R. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion.


_Front. Cell. Infect. Microbiol._ 4, 129 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Mojica, S. A. et al. SINC, a type III secreted protein of _Chlamydia psittaci_,


targets the inner nuclear membrane of infected cells and uninfected neighbors. _Mol. Biol. Cell_ 26, 1918–1934 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Le Sage, V.,


Cinti, A., Valiente-Echeverría, F. & Mouland, A. J. Proteomic analysis of HIV-1 Gag interacting partners using proximity-dependent biotinylation. _Virol. J._ 12, 138 (2015). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Ritchie, C., Cylinder, I., Platt, E. J. & Barklis, E. Analysis of HIV-1 Gag protein interactions via biotin ligase tagging. _J. Virol._ 89,


3988–4001 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kueck, T. et al. Serine phosphorylation of HIV-1 Vpu and its binding to tetherin regulates interaction with


clathrin adaptors. _PLoS Pathog._ 11, e1005141 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Holthusen, K., Talaty, P. & Everly, D. N. Regulation of latent membrane


protein 1 signaling through interaction with cytoskeletal proteins. _J. Virol._ 89, 7277–7290 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Coyaud, E. et al. Global


interactomics uncovers extensive organellar targeting by Zika virus. _Mol. Cell. Proteom._ 17, 2242–2255 (2018). Article  CAS  Google Scholar  * Rider, M. A. et al. The interactome of EBV


LMP1 evaluated by proximity-based BioID approach. _Virology_ 516, 55–70 (2018). Article  CAS  PubMed  Google Scholar  * Cheerathodi, M. R. & Meckes, D. G. BioID combined with mass


spectrometry to study herpesvirus protein–protein interaction networks. _Methods Mol. Biol._ 2060, 327–341 (2020). Article  CAS  PubMed  Google Scholar  * Bradley, P. J., Rayatpisheh, S.,


Wohlschlegel, J. A. & Nadipuram, S. M. Using BioID for the identification of interacting and proximal proteins in subcellular compartments in _Toxoplasma gondii_. _Methods Mol. Biol._


2071, 323–346 (2020). Article  CAS  PubMed  Google Scholar  * Gillingham, A. K., Bertram, J., Begum, F. & Munro, S. In vivo identification of GTPase interactors by mitochondrial


relocalization and proximity biotinylation. _eLife_ 8, e45916 (2019). Article  PubMed  PubMed Central  Google Scholar  * Hoyer, M. J. et al. A novel class of ER membrane proteins regulates


ER-associated endosome fission. _Cell_ 175, 254–265.e14 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * van Vliet, A. R. et al. The ER stress sensor PERK coordinates


ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling. _Mol. Cell_ 65, 885–899.e6 (2017). Article  PubMed  CAS  Google Scholar  * Spence, E. F.


et al. In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation. _Nat. Commun._ 10, 386 (2019). Article  PubMed  PubMed Central


  CAS  Google Scholar  * Feng, W. et al. Identifying the cardiac dyad proteome in vivo by a BioID2 knock-in strategy. _Circulation_ 141, 940–942 (2020). Article  PubMed  PubMed Central 


Google Scholar  * Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. _Nat. Protoc._ 11, 456–475 (2016). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. _Mol. Cell_ 55, 332–341 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Han, S. et al. Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. _Cell Chem. Biol._ 24,


404–414 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hung, V. et al. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by


proximity biotinylation. _eLife_ 6, e24463 (2017). Article  PubMed  PubMed Central  Google Scholar  * Mertins, P. et al. Reproducible workflow for multiplexed deep-scale proteome and


phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. _Nat. Protoc._ 13, 1632–1661 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, J. et


al. Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. _Cell_ 180, 373–386.e15 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vandemoortele, G. et


al. A well-controlled BioID design for endogenous bait proteins. _J. Proteome Res._ 18, 95–106 (2019). CAS  PubMed  Google Scholar  * Bian, Y. et al. Robust, reproducible and quantitative


analysis of thousands of proteomes by micro-flow LC–MS/MS. _Nat. Commun._ 11, 157 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Käll, L., Krogh, A. & Sonnhammer, E. L.


L. A combined transmembrane topology and signal peptide prediction method. _J. Mol. Biol._ 338, 1027–1036 (2004). Article  PubMed  CAS  Google Scholar  * Ashburner, M. et al. Gene ontology:


tool for the unification of biology. _Nat. Genet._ 25, 25–29 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gene Ontology Consortium. Gene Ontology Consortium: going


forward. _Nucleic Acids Res._ 43, D1049–D1056 (2015). * Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for


proteomics using StageTips. _Nat. Protoc._ 2, 1896–1906 (2007). Article  CAS  PubMed  Google Scholar  * Bateman, A. et al. UniProt: the universal protein knowledgebase. _Nucleic Acids Res_


45, D158–D169 (2017). Article  CAS  Google Scholar  * Lee, S. Y. et al. APEX fingerprinting reveals the subcellular localization of proteins of interest. _Cell Rep._ 15, 1837–1847 (2016).


Article  CAS  PubMed  Google Scholar  * Cho, I. T. et al. Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic


reticulum–mitochondrial contacts. _J. Biol. Chem._ 292, 16382–16392 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cao, Q. et al. PAQR3 regulates endoplasmic


reticulum-to-Golgi trafficking of COPII vesicle via interaction with Sec13/Sec31 coat proteins. _iScience_ 9, 382–398 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Le


Guerroué, F. et al. Autophagosomal content profiling reveals an LC3C-dependent piecemeal mitophagy pathway. _Mol. Cell_ 68, 786–796.e6 (2017). Article  PubMed  CAS  Google Scholar  * Mick,


D. U. et al. Proteomics of primary cilia by proximity labeling. _Dev. Cell_ 35, 497–512 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Santin, Y. G. et al. In vivo TssA


proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. _Nat. Microbiol._ 3, 1304–1313 (2018). Article  CAS  PubMed  Google Scholar


  * Mannix, K. M., Starble, R. M., Kaufman, R. S. & Cooley, L. Proximity labeling reveals novel interactomes in live _Drosophila_ tissue. _Development_ 146, dev176644 (2019). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Liu, G. et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. _Nature_ 577, 695–700 (2020). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Chojnowski, A. et al. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. _eLife_ 4, 1–21 (2015). Article  Google Scholar  *


Cross, S. H. et al. The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification. _PLoS Genet_ 16, e1008583 (2020). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Pagac, M. et al. SEIPIN regulates lipid droplet expansion and adipocyte development by modulating the activity of glycerol-3-phosphate acyltransferase. _Cell Rep._


17, 1546–1559 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cole, A. et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid


leukemia. _Cancer Cell_ 27, 864–876 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Janer, A. et al. SLC 25A46 is required for mitochondrial lipid homeostasis and cristae


maintenance and is responsible for Leigh syndrome. _EMBO Mol. Med._ 8, 1019–1038 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Antonicka, H. et al. A pseudouridine synthase


module is essential for mitochondrial protein synthesis and cell viability. _EMBO Rep._ 18, 28–38 (2017). Article  CAS  PubMed  Google Scholar  * Van Itallie, C. M. et al. Biotin ligase


tagging identifies proteins proximal to E-cadherin, including lipoma preferred partner, a regulator of epithelial cell-cell and cell-substrate adhesion. _J. Cell Sci._ 127, 885–895 (2014).


PubMed  PubMed Central  Google Scholar  * Guo, Z. et al. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. _Sci. Signal._ 7, rs7 (2014). Article  PubMed 


PubMed Central  CAS  Google Scholar  * Hua, R. et al. VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. _J. Cell Biol._ 216, 367–377 (2017).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Chan, C. J. et al. BioID performed on Golgi enriched fractions identify C10orf76 as a GBF1 binding protein essential for Golgi


maintenance and secretion. _Mol. Cell. Proteom._ 18, 2285–2297 (2019). Article  CAS  Google Scholar  * Opitz, N. et al. Capturing the Asc1p/ _R_ eceptor for _A_ ctivated _C K_ inase _1_


(RACK1) microenvironment at the head region of the 40S ribosome with quantitative BioID in yeast. _Mol. Cell. Proteom._ 16, 2199–2218 (2017). Article  CAS  Google Scholar  * Domsch, K. et


al. The hox transcription factor ubx stabilizes lineage commitment by suppressing cellular plasticity in _Drosophila_. _eLife_ 8, e42675 (2019). Article  PubMed  PubMed Central  Google


Scholar  * Bagchi, P., Torres, M., Qi, L. & Tsai, B. Selective EMC subunits act as molecular tethers of intracellular organelles exploited during viral entry. _Nat. Commun._ 11, 1127


(2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yoshinaka, T. et al. Structural basis of mitochondrial scaffolds by prohibitin complexes: insight into a role of the


coiled-coil region. _iScience_ 19, 1065–1078 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Callegari, S. et al. A MICOS–TIM22 association promotes carrier import into human


mitochondria. _J. Mol. Biol._ 431, 2835–2851 (2019). Article  CAS  PubMed  Google Scholar  * Chen, Z. et al. Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that


regulates mitochondrial dynamics. _Nat. Commun._ 10, 104 (2019). Article  PubMed  PubMed Central  CAS  Google Scholar  * Liu, L., Doray, B. & Kornfeld, S. Recycling of Golgi


glycosyltransferases requires direct binding to coatomer. _Proc. Natl Acad. Sci. USA._ 115, 8984–8989 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mirza, A. N. et al. LAP2


proteins chaperone GLI1 movement between the lamina and chromatin to regulate transcription. _Cell_ 176, 198–212.e15 (2019). Article  CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS This work was supported by NIH R01-DK121409 (to A.Y.T. and S.A.C.) and the Stanford Wu Tsai Neurosciences Institute Big Ideas Initiative (to A.Y.T.). K.F.C. was supported by


NIH Training Grant 2T32CA009302-41 and the Blavatnik Graduate Fellowship. T.C.B. is a Robert Black Fellow of the Damon Runyon Cancer Research Foundation (DRG-2391-20). A.Y.T. is an


investigator of the Chan Zuckerberg Biohub. AUTHOR INFORMATION Author notes * These authors contributed equally: Kelvin F. Cho, Tess C. Branon. AUTHORS AND AFFILIATIONS * Cancer Biology


Program, Stanford University, Stanford, CA, USA Kelvin F. Cho * Department of Genetics, Stanford University, Stanford, CA, USA Kelvin F. Cho & Alice Y. Ting * Department of Molecular and


Cell Biology, University of California, Berkeley, Berkeley, CA, USA Tess C. Branon * Broad Institute of MIT and Harvard, Cambridge, MA, USA Namrata D. Udeshi, Samuel A. Myers & Steven


A. Carr * Department of Biology, Stanford University, Stanford, CA, USA Alice Y. Ting * Department of Chemistry, Stanford University, Stanford, CA, USA Alice Y. Ting * Chan Zuckerberg


Biohub, San Francisco, CA, USA Alice Y. Ting Authors * Kelvin F. Cho View author publications You can also search for this author inPubMed Google Scholar * Tess C. Branon View author


publications You can also search for this author inPubMed Google Scholar * Namrata D. Udeshi View author publications You can also search for this author inPubMed Google Scholar * Samuel A.


Myers View author publications You can also search for this author inPubMed Google Scholar * Steven A. Carr View author publications You can also search for this author inPubMed Google


Scholar * Alice Y. Ting View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS K.F.C., T.C.B, N.D.U., S.A.M., S.A.C., and A.Y.T. contributed to


the writing and editing of the manuscript. CORRESPONDING AUTHOR Correspondence to Alice Y. Ting. ETHICS DECLARATIONS COMPETING INTERESTS A.Y.T. and T.C.B. have filed a patent application


covering some aspects of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional


affiliations. RELATED LINKS KEY REFERENCES USING THIS PROTOCOL: Branon, T. C. et al. _Nat. Biotechnol_. 36, 880–887 (2018): https://www.nature.com/articles/nbt.4201 Cho, K. F. et al. _Proc.


Natl Acad. Sci. USA_ 117, 12143–12154 (2020): https://www.pnas.org/content/117/22/12143 SUPPLEMENTARY INFORMATION REPORTING SUMMARY SUPPLEMENTARY TABLE 1 Human proteome of proteins,


annotated by whether each protein was previously detected in a PL proteomic experiment from our lab (regions include: mitochondrial matrix6,15, mitochondrial intermembrane space76,


mitochondrial nucleoid77, ER membrane6,7,78, outer mitochondrial membrane7,78, ER-mitochondria contact sites7,78, nucleus6, synaptic cleft20, and cytosol6,7,78). For each protein, the


compartment(s) in which they were detected are listed. SUPPLEMENTARY TABLE 2 Compilation of data from previous PL proteomic mapping experiments performed by our lab, categorized by


organelle/region of interest (each tab is a different subcellular compartment). In each tab, the relevant studies and corresponding enrichment ratios (SILAC, TMT, or iTRAQ) for proteins


detected above the respective cutoffs are provided. Data are included for the mitochondrial matrix6,15 (Tab 1), mitochondrial intermembrane space76 (Tab 2), mitochondrial nucleoid77 (Tab 3),


ER membrane6,7,78 (Tab 4), outer mitochondrial membrane7,78 (Tab 5), ER-mitochondria contact sites7,78 (Tab 6), nucleus6 (Tab 7), synaptic cleft20 (Tab 8), and cytosol6,7,78 (Tab 9). RIGHTS


AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Cho, K.F., Branon, T.C., Udeshi, N.D. _et al._ Proximity labeling in mammalian cells with TurboID and


split-TurboID. _Nat Protoc_ 15, 3971–3999 (2020). https://doi.org/10.1038/s41596-020-0399-0 Download citation * Received: 17 May 2020 * Accepted: 18 August 2020 * Published: 02 November 2020


* Issue Date: December 2020 * DOI: https://doi.org/10.1038/s41596-020-0399-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative