Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales

Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales


Play all audios:


ABSTRACT The reversible unfolding and refolding of proteins is a regulatory mechanism of tissue elasticity and signalling used by cells to sense and adapt to extracellular and intracellular


mechanical forces. However, most of these proteins exhibit low mechanical stability, posing technical challenges to the characterization of their conformational dynamics under force. Here,


we detail step-by-step instructions for conducting single-protein nanomechanical experiments using ultra-stable magnetic tweezers, which enable the measurement of the equilibrium


conformational dynamics of single proteins under physiologically relevant low forces applied over biologically relevant timescales. We report the basic principles determining the functioning


of the magnetic tweezer instrument, review the protein design strategy and the fluid chamber preparation and detail the procedure to acquire and analyze the unfolding and refolding


trajectories of individual proteins under force. This technique adds to the toolbox of single-molecule nanomechanical techniques and will be of particular interest to those interested in


proteins involved in mechanosensing and mechanotransduction. The procedure takes 4 d to complete, plus an additional 6 d for protein cloning and production, requiring basic expertise in


molecular biology, surface chemistry and data analysis. KEY POINTS * Ultra-stable magnetic tweezers are used for measuring the conformational dynamics of individual proteins at


physiologically relevant low forces and over long timescales. * Magnetic fields are created by using either permanent magnets or a tape head, which generates precisely calibrated forces for


pulling single proteins tethered between a superparamagnetic bead and a functionalized glass substrate. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE ROLE OF SINGLE-PROTEIN ELASTICITY IN MECHANOBIOLOGY Article 24


October 2022 OPTICAL TWEEZERS IN SINGLE-MOLECULE BIOPHYSICS Article 25 March 2021 MAGNETIC TWEEZERS TO CAPTURE THE FAST-FOLDING Λ6-85 IN SLOW MOTION Article Open access 07 January 2025 DATA


AVAILABILITY Example data from Figs. 7 and 10 can be found as Supplementary Data. Modified pFN18a plasmids from Fig. 5 are available in Addgene (pFN18A-HaloTag-Biotin: Addgene plasmid


#206039; pFN18A-HaloTag-SpyCatcher Addgene plasmid #206041). Other data that support the plots within this paper are available from the corresponding author upon reasonable request. CODE


AVAILABILITY Scripts for the fluctuation analysis are included in the Supplementary Data. The data acquisition code can be accessed at https://doi.org/10.5281/zenodo.8092186. REFERENCES *


Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. _Science_ 341, 1240104 (2013). Article  PubMed  PubMed Central  Google Scholar  *


De Belly, H., Paluch, E. K. & Chalut, K. J. Interplay between mechanics and signalling in regulating cell fate. _Nat. Rev. Mol. Cell Biol._ 23, 465–480 (2022). Article  PubMed  Google


Scholar  * Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape—the rise of mechanotransduction in cell biology. _Nat. Rev. Mol. Cell Biol._ 15, 825–833 (2014).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. _Nat. Rev.


Cancer_ 17, 131–140 (2017). Article  CAS  PubMed  Google Scholar  * Dumortier, J. G. et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. _Science_


365, 465–468 (2019). Article  CAS  PubMed  Google Scholar  * Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. _Nature_ 561, 401–405 (2018).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Pesce, M. et al. Cardiac fibroblasts and mechanosensation in heart development, health and disease. _Nat. Rev. Cardiol._ 20, 309–324


(2022). Article  PubMed  Google Scholar  * Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. _Nature_ 587,


567–576 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Huse, M. Mechanical forces in the immune system. _Nat. Rev. Immunol._ 17, 679–690 (2017). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. _Nat. Rev. Mol. Cell Biol._ 22, 22–38 (2021).


Article  CAS  PubMed  Google Scholar  * Romani, P. et al. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. _Nat.


Cell Biol._ 24, 168–180 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. _Nat. Rev. Mol. Cell Biol._ 10,


63–73 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chemla, Y. R. et al. Mechanism of force generation of a viral DNA packaging motor. _Cell_ 122, 683–692 (2005). Article 


CAS  PubMed  Google Scholar  * Ranade, S. S., Syeda, R. & Patapoutian, A. Mechanically activated ion channels. _Neuron_ 87, 1162–1179 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. _Nat. Methods_ 5, 491–505 (2008). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Krieg, M. et al. Atomic force microscopy-based mechanobiology. _Nat. Rev. Phys._ 1, 41–57 (2018). Article  Google Scholar  * Bustamante, C. J.,


Chemla, Y. R., Liu, S. & Wang, M. D. Optical tweezers in single-molecule biophysics. _Nat. Rev. Methods Prim._ 1, 25 (2021). Article  CAS  Google Scholar  * Popa, I., Kosuri, P.,


Alegre-Cebollada, J., Garcia-Manyes, S. & Fernandez, J. M. Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy. _Nat. Protoc._ 8, 1261–1276


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, H. et al. Reverse engineering of the giant muscle protein titin. _Nature_ 418, 998–1002 (2002). Article  CAS  PubMed 


Google Scholar  * Echelman, D. J., Lee, A. Q. & Fernandez, J. M. Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin. _J. Biol. Chem._ 292, 8988–8997


(2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Milles, L. F., Schulten, K., Gaub, H. E. & Bernardi, R. C. Molecular mechanism of extreme mechanostability in a pathogen


adhesin. _Science_ 359, 1527–1533 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mora, M., Stannard, A. & Garcia-Manyes, S. The nanomechanics of individual proteins.


_Chem. Soc. Rev._ 49, 6816–6832 (2020). Article  CAS  PubMed  Google Scholar  * Dudko, O. K., Hummer, G. & Szabo, A. Theory, analysis, and interpretation of single-molecule force


spectroscopy experiments. _Proc. Natl Acad. Sci. USA_ 105, 15755–15760 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cecconi, C., Shank, E. A., Bustamante, C. &


Marqusee, S. Direct observation of the three-state folding of a single protein molecule. _Science_ 309, 2057–2060 (2005). Article  CAS  PubMed  Google Scholar  * Stigler, J., Ziegler, F.,


Gieseke, A., Gebhardt, J. C. & Rief, M. The complex folding network of single calmodulin molecules. _Science_ 334, 512–516 (2011). Article  CAS  PubMed  Google Scholar  * Neupane, K.,


Manuel, A. P. & Woodside, M. T. Protein folding trajectories can be described quantitatively by one-dimensional diffusion over measured energy landscapes. _Nat. Phys._ 12, 700–703


(2016). Article  CAS  Google Scholar  * Woodside, M. T. & Block, S. M. Reconstructing folding energy landscapes by single-molecule force spectroscopy. _Annu. Rev. Biophys._ 43, 19–39


(2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaiser, C. M., Goldman, D. H., Chodera, J. D., Tinoco, I. Jr. & Bustamante, C. The ribosome modulates nascent protein


folding. _Science_ 334, 1723–1727 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lipfert, J., Kerssemakers, J. W., Jager, T. & Dekker, N. H. Magnetic torque tweezers:


measuring torsional stiffness in DNA and RecA-DNA filaments. _Nat. Methods_ 7, 977–980 (2010). Article  CAS  PubMed  Google Scholar  * Ding, F. et al. Single-molecule mechanical


identification and sequencing. _Nat. Methods_ 9, 367–372 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hodeib, S. et al. Single molecule studies of helicases with magnetic


tweezers. _Methods_ 105, 3–15 (2016). Article  CAS  PubMed  Google Scholar  * Lionnet, T. et al. Magnetic trap construction. _Cold Spring Harb. Protoc._ 2012, 133–138 (2012). Article  PubMed


  Google Scholar  * Rivas-Pardo, J. A. et al. Work done by titin protein folding assists muscle contraction. _Cell Rep._ 14, 1339–1347 (2016). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Chen, H. et al. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces. _J. Am. Chem. Soc._ 137, 3540–3546 (2015). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Bauer, M. S. et al. A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. _Proc. Natl Acad. Sci. USA_ 119, e2114397119 (2022).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Yao, M. et al. The mechanical response of talin. _Nat. Commun._ 7, 11966 (2016). Article  PubMed  PubMed Central  Google Scholar  *


Popa, I. et al. A HaloTag anchored ruler for week-long studies of protein dynamics. _J. Am. Chem. Soc._ 138, 10546–10553 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lof,


A. et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. _Proc. Natl Acad. Sci. USA_ 116,


18798–18807 (2019). Article  PubMed  PubMed Central  Google Scholar  * Zhao, X., Zeng, X., Lu, C. & Yan, J. Studying the mechanical responses of proteins using magnetic tweezers.


_Nanotechnology_ 28, 414002 (2017). Article  PubMed  Google Scholar  * Choi, H. K. et al. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. _Science_


366, 1150–1156 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi, H. K. et al. Evolutionary balance between foldability and functionality of a glucose transporter. _Nat.


Chem. Biol._ 18, 713–723 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi, H. K., Kim, H. G., Shon, M. J. & Yoon, T. Y. High-resolution single-molecule magnetic


tweezers. _Annu. Rev. Biochem._ 91, 33–59 (2022). Article  CAS  PubMed  Google Scholar  * Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of


single DNA molecules by using magnetic beads. _Science_ 258, 1122–1126 (1992). Article  CAS  PubMed  Google Scholar  * Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. &


Croquette, V. The elasticity of a single supercoiled DNA molecule. _Science_ 271, 1835–1837 (1996). Article  CAS  PubMed  Google Scholar  * Gosse, C. & Croquette, V. Magnetic tweezers:


micromanipulation and force measurement at the molecular level. _Biophys. J._ 82, 3314–3329 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maier, B., Bensimon, D. &


Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. _Proc. Natl Acad. Sci. USA_ 97, 12002–12007 (2000). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Dekker, N. H. et al. The mechanism of type IA topoisomerases. _Proc. Natl Acad. Sci. USA_ 99, 12126–12131 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Crut, A.,


Koster, D. A., Seidel, R., Wiggins, C. H. & Dekker, N. H. Fast dynamics of supercoiled DNA revealed by single-molecule experiments. _Proc. Natl Acad. Sci. USA_ 104, 11957–11962 (2007).


Article  CAS  PubMed  PubMed Central  Google Scholar  * England, C. G., Luo, H. & Cai, W. HaloTag technology: a versatile platform for biomedical applications. _Bioconjug. Chem._ 26,


975–986 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin.


_Proc. Natl Acad. Sci. USA_ 109, E690–E697 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tapia-Rojo, R., Eckels, E. C. & Fernandez, J. M. Ephemeral states in protein


folding under force captured with a magnetic tweezers design. _Proc. Natl Acad. Sci. USA_ 116, 7873–7878 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stannard, A. et al.


Molecular fluctuations as a ruler of force-induced protein conformations. _Nano Lett._ 21, 2953–2961 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tapia-Rojo, R.,


Alonso-Caballero, A. & Fernandez, J. M. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. _Sci. Adv._ 6, eaaz4707 (2020). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Franz, F. et al. Allosteric activation of vinculin by talin. _Nat. Commun._ 14, 4311 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Tapia-Rojo, R. et al. Enhanced statistical sampling reveals microscopic complexity in the talin mechanosensor folding energy landscape. _Nat. Phys._ 19, 52–60 (2023). Article  CAS  PubMed 


Google Scholar  * Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. _Nat. Cell Biol._ 17, 1597–1606 (2015). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and


ROCK-independent mechanism. _J. Cell Biol._ 153, 1175–1186 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Grashoff, C. et al. Measuring mechanical tension across vinculin


reveals regulation of focal adhesion dynamics. _Nature_ 466, 263–266 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Garcia-Manyes, S. et al. Single-molecule force


spectroscopy predicts a misfolded, domain-swapped conformation in human γD-crystallin protein. _J. Biol. Chem._ 291, 4226–4235 (2016). Article  CAS  PubMed  Google Scholar  * Mora, M. et al.


A single-molecule strategy to capture non-native intramolecular and intermolecular protein disulfide bridges. _Nano Lett._ 22, 3922–3930 (2022). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Petrosyan, R., Patra, S., Rezajooei, N., Garen, C. R. & Woodside, M. T. Unfolded and intermediate states of PrP play a key role in the mechanism of action of an antiprion


chaperone. _Proc. Natl Acad. Sci. USA_ 118, e2010213118 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gupta, A. N. et al. Pharmacological chaperone reshapes the energy


landscape for folding and aggregation of the prion protein. _Nat. Commun._ 7, 12058 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sen Mojumdar, S. et al. Partially native


intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. _Nat. Commun._ 8, 1881 (2017). Article  PubMed  PubMed Central  Google Scholar  * Yao, M. et al.


Force-dependent conformational switch of alpha-catenin controls vinculin binding. _Nat. Commun._ 5, 4525 (2014). Article  CAS  PubMed  Google Scholar  * Dahal, N., Sharma, S., Phan, B., Eis,


A. & Popa, I. Mechanical regulation of talin through binding and history-dependent unfolding. _Sci. Adv._ 8, eabl7719 (2022). Article  CAS  PubMed  Google Scholar  * Kemmerich, F. E. et


al. Simultaneous single-molecule force and fluorescence sampling of DNA nanostructure conformations using magnetic tweezers. _Nano Lett._ 16, 381–386 (2016). Article  CAS  PubMed  Google


Scholar  * Ivanov, I. E. et al. Multimodal measurements of single-molecule dynamics using FluoRBT. _Biophys. J._ 114, 278–282 (2018). Article  CAS  PubMed  Google Scholar  * Tapia-Rojo, R.,


Alonso-Caballero, A. & Fernandez, J. M. Talin folding as the tuning fork of cellular mechanotransduction. _Proc. Natl Acad. Sci. USA_ 117, 21346–21353 (2020). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Alonso-Caballero, A. et al. Protein folding modulates the chemical reactivity of a Gram-positive adhesin. _Nat. Chem._ 13, 172–181 (2021). Article  CAS 


PubMed  Google Scholar  * Guo, H. A simple algorithm for fitting a gaussian function. In _Streamlining Digital Signal Processing_ 297–305 (John Wiley & Sons, 2012). * Fonnum, G.,


Johansson, C., Molteberg, A., Mørup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. _J. Magn. Magn. Mater._ 293, 41–47 (2005).


Article  CAS  Google Scholar  * Ostrofet, E., Papini, F. S. & Dulin, D. Correction-free force calibration for magnetic tweezers experiments. _Sci. Rep._ 8, 15920 (2018). Article  PubMed


  PubMed Central  Google Scholar  * Buschow, K. H. J., Long, G. J. & Grandjean, F. _High Density Digital Recording_ (Springer, 1993). * Liu, R., Garcia-Manyes, S., Sarkar, A., Badilla,


C. L. & Fernandez, J. M. Mechanical characterization of protein L in the low-force regime by electromagnetic tweezers/evanescent nanometry. _Biophys. J._ 96, 3810–3821 (2009). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Valle-Orero, J. et al. Proteins breaking bad: a free energy perspective. _J. Phys. Chem. Lett._ 8, 3642–3647 (2017). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Alegre-Cebollada, J., Badilla, C. L. & Fernandez, J. M. Isopeptide bonds block the mechanical extension of pili in pathogenic _Streptococcus pyogenes_.


_J. Biol. Chem._ 285, 11235–11242 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schlierf, M., Li, H. & Fernandez, J. M. The unfolding kinetics of ubiquitin captured


with single-molecule force-clamp techniques. _Proc. Natl Acad. Sci. USA_ 101, 7299–7304 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Evans, E. & Ritchie, K. Dynamic


strength of molecular adhesion bonds. _Biophys. J._ 72, 1541–1555 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y., Jiao, J. & Rebane, A. A. Hidden Markov


modeling with detailed balance and its application to single protein folding. _Biophys. J._ 111, 2110–2124 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * McKinney, S. A.,


Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. _Biophys. J._ 91, 1941–1951 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. _Phys. Rev. Lett._ 96, 108101 (2006). Article  PubMed  Google


Scholar  * Bullerjahn, J. T., Sturm, S. & Kroy, K. Theory of rapid force spectroscopy. _Nat. Commun._ 5, 4463 (2014). Article  CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS We are deeply grateful to J. Fernandez and C. Badilla (Columbia University) for their pioneering work on technique development and protein engineering and for their legacy


in the field. We thank S. Board, J. Walker and P. Paracuellos for help in protein expression and purification. This work was supported in part by the Francis Crick Institute, which receives


its core funding from Cancer Research U.K. (CC0102), the U.K. Medical Research Council (CC0102) and the Wellcome Trust (CC0102). R.T.-R. is the recipient of a King’s Prize Fellowship. This


work was supported by the European Commission (Mechanocontrol, Grant Agreement 731957), BBSRC sLoLa (BB/V003518/1), Leverhulme Trust Research Leadership Award RL 2016-015, Wellcome Trust


Investigator Award 212218/Z/18/Z and Royal Society Wolfson Fellowship RSWF/R3/183006 to S.G.-M. AUTHOR INFORMATION Author notes * These authors contributed equally: Rafael Tapia-Rojo, Marc


Mora. AUTHORS AND AFFILIATIONS * Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK Rafael Tapia-Rojo, Marc Mora & Sergi Garcia-Manyes * Department of


Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK Rafael Tapia-Rojo, 


Marc Mora & Sergi Garcia-Manyes Authors * Rafael Tapia-Rojo View author publications You can also search for this author inPubMed Google Scholar * Marc Mora View author publications You


can also search for this author inPubMed Google Scholar * Sergi Garcia-Manyes View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS R.T.-R, M.M.


and S.G.-M wrote the paper. CORRESPONDING AUTHORS Correspondence to Rafael Tapia-Rojo, Marc Mora or Sergi Garcia-Manyes. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Protocols_ thanks Tony Huang and the other, anonymous, reviewer(s) for their contribution to the peer review process of this


work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RELATED LINKS KEY


REFERENCE USING THIS PROTOCOL Tapia-Rojo, R. et al. _Nat. Phys_. 19, 52–60 (2023): https://doi.org/10.1038/s41567-022-01808-4 EXTENDED DATA EXTENDED DATA FIG. 1 CALCULATING THE STIFFNESS OF


THE MAGNETIC TRAP. Stiffness of the magnetic trap created by the N52 magnets (voice-coil configuration) (A) and magnetic tape head (B). The magnetic trap stiffnesses can be simply calculated


as _dF/dz_, where _z_ is the distance between the gap (magnets or tape head) and the magnetic bead. Because of the nonlinearity of _F_(_z_), the stiffness changes over the control parameter


(magnet position or electric current), but in the operating regime of the trap this results in a very soft trap (~10−4 pN/nm), resulting in effective force clamp conditions (no appreciable


change in force over the range in which the bead moves). EXTENDED DATA FIG. 2 CALIBRATION OF THE TWEEZERS. Calibration of the voice coil-based (A) or tape head–based (B) magnetic tweezers


using the worm-like chain model for polymer elasticity (left) and comparison of the calibration using the worm-like chain (WLC) and freely jointed chain (FJC) (right). The FJC gives a lower


contour length (_ΔL_c = 16.3 nm) compared to the WLC (_ΔL_c = 18.6 nm). All error bars are s.d. EXTENDED DATA FIG. 3 TAPE HEAD AND MAGNETS. The magnetic tape head and voice-coil-mounted


permanent magnets with a magnification of the gap region. SUPPLEMENTARY INFORMATION REPORTING SUMMARY SUPPLEMENTARY DATA 1 Raw traces from talin R3IVVI pulled at 1 pN/s and protein L pulled


at 5 and 10 pN/s SUPPLEMENTARY DATA 2 Raw trace and fluctuation analysis of talin R3IVVI pulled at 8.5 pN SUPPLEMENTARY VIDEOS 1–3 1, how to pull on a protein by using single-molecule


magnetic tweezers; 2, how to assemble the fluid chambers; 3, how to calibrate the distance between the bottom glass cover slide and the magnets RIGHTS AND PERMISSIONS Springer Nature or its


licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the


accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Tapia-Rojo, R., Mora, M. & Garcia-Manyes, S. Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales.


_Nat Protoc_ 19, 1779–1806 (2024). https://doi.org/10.1038/s41596-024-00965-5 Download citation * Received: 26 April 2023 * Accepted: 18 December 2023 * Published: 11 March 2024 * Issue


Date: June 2024 * DOI: https://doi.org/10.1038/s41596-024-00965-5 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative