Integrated scenarios to support analysis of the food–energy–water nexus

Integrated scenarios to support analysis of the food–energy–water nexus


Play all audios:


ABSTRACT The literature emphasizes the important relationships between the consumption and production of food, energy and water, and environmental challenges such as climate change and loss


of biodiversity. New tools are needed to analyse the future dynamics of this nexus. Here, we introduce a set of model-based scenarios and associated Sankey diagrams that enable analysis of


the relevant relationships and dynamics, as well as the options to formulate response strategies. The scenarios show that if no new policies are adopted, food production and energy


generation could further increase by around 60%, and water consumption by around 20% over the period 2015–2050, leading to further degradation of resources and increasing environmental


pressure. Response strategies in terms of climate policies, higher agricultural yields, dietary change and reduction of food waste are analysed to reveal how they may contribute to reversing


these trends, and possibly even lead to a reduction of land use in the future. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CONDUCTING WATER-ENERGY-FOOD NEXUS STUDIES: WHAT, WHY, AND HOW Article Open


access 09 November 2024 GLOBAL IMPACTS OF HEAT AND WATER STRESS ON FOOD PRODUCTION AND SEVERE FOOD INSECURITY Article Open access 22 June 2024 APPLYING THE FOOD–ENERGY–WATER NEXUS CONCEPT AT


THE LOCAL SCALE Article 13 May 2021 DATA AVAILABILITY The data relating to the scenarios described in this paper are available for download from


https://models.pbl.nl/image/index.php/Download. The data supporting the figures are available from the IMAGE website at PBL (https://go.nature.com/32CZSLh). REFERENCES * De Stercke, S.


_Dynamics of Energy Systems: A Useful Perspective_ IIASA Interim Report IR-14-013 (IIASA, 2014). * _FAOSTAT_ (UN Food and Agriculture Organization, 2017); http://www.fao.org/faostat/en/#home


* Reid, W. et al. _Millennium Ecosystem Assessment Synthesis Report_ (Island Press, 2005). * Hoff, H. _Understanding the Nexus: Background Paper for the Bonn2011 Nexus Conference_


(Stockholm Environment Institute, 2011). * Howells, M. et al. Integrated analysis of climate change, land-use, energy and water strategies. _Nat. Clim. Change_ 3, 621–626 (2013). Article 


Google Scholar  * Momblanch, A. et al. Untangling the water–food–energy–environment nexus for global change adaptation in a complex Himalayan water resource system. _Sci. Total Environ._


655, 35–47 (2019). Article  CAS  Google Scholar  * Welsch, M. et al. Adding value with CLEWS—modelling the energy system and its interdependencies for Mauritius. _Appl. Energy_ 113,


1434–1445 (2014). Article  Google Scholar  * Hussien, W. A., Memon, F. A. & Savic, D. A. An integrated model to evaluate water–energy–food nexus at a household scale. _Environ. Model.


Softw._ 93, 366–380 (2017). Article  Google Scholar  * Bleischwitz, R. et al. Resource nexus perspectives towards the United Nations Sustainable Development Goals. _Nat. Sustain._ 1, 737–743


(2018). Article  Google Scholar  * Konadu, D. et al. Not all low-carbon energy pathways are environmentally “no-regrets” options. _Glob. Environ. Change_ 35, 379–390 (2015). Article  Google


Scholar  * Johnson, N. et al. Integrated solutions for the water-energy-land nexus: are global models rising to the challenge? _Water_ 11, 2223 (2019). Article  Google Scholar  *


Obersteiner, M. et al. Assessing the land resource–food price nexus of the Sustainable Development Goals. _Sci. Adv._ 2, e1501499 (2016). Article  Google Scholar  * Byers, E. et al. Global


exposure and vulnerability to multi-sector development and climate change hotspots. _Environ. Res. Lett._ 13, 055012 (2018). Article  Google Scholar  * Oberle, B. et al. _Global Resources


Outlook 2019: Natural Resources for the Future We Want_ (United Nations Environment Programme & International Resource Panel, 2019). * Nilsson, M., Griggs, D. J. & Visbeck, M.


Policy: map the interactions between Sustainable Development Goals. _Nature_ 534, 320–322 (2016). Article  Google Scholar  * Stafford-Smith, M. et al. Integration: the key to implementing


the Sustainable Development Goals. _Sustain. Sci._ 12, 911–919 (2017). Article  Google Scholar  * Rockström, J. et al. A safe operating space for humanity. _Nature_ 461, 472–475 (2009).


Article  CAS  Google Scholar  * _Transforming our World: the 2030 Agenda for Sustainable Development_ (United Nations, 2015). * _Transformations to Achieve the Sustainable Development Goals_


(IIASA & The World in 2050, 2018). * Foley, J. A. et al. Solutions for a cultivated planet. _Nature_ 478, 337–342 (2011). Article  CAS  Google Scholar  * Stehfest, E., Van Vuuren, D.


P., Kram, T. & Bouwman, A. F. _Integrated Assessment of Global Environmental Change with IMAGE 3.0 - Model Description and Policy applications_ (PBL Netherlands Environmental Assessment


Agency, 2014); https://models.pbl.nl/image/index.php/Welcome_to_IMAGE_3.0_Documentation * Bijl, D. L. et al. A physically-based model of long-term food demand. _Glob. Environ. Change_ 45,


47–62 (2017). Article  Google Scholar  * Van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. _Glob. Environ. Change_ 42,


237–250 (2017). Article  Google Scholar  * Schmidt, M. The Sankey diagram in energy and material flow management: part I: history. _J. Ind. Ecol._ 12, 82–94 (2008). Article  Google Scholar 


* Schmidt, M. The Sankey diagram in energy and material flow management—part II: methodology and current applications. _J. Ind. Ecol._ 12, 173–185 (2008). Article  Google Scholar  * Curmi,


E. et al. Visualising a stochastic model of Californian water resources using Sankey diagrams. _Water Resour. Manag._ 27, 3035–3050 (2013). Article  Google Scholar  * Alexander, P. et al.


Losses, inefficiencies and waste in the global food system. _Agric. Syst._ 153, 190–200 (2017). Article  Google Scholar  * Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. M. & van


Vuuren, D. P. Long-term water demand for electricity, industry and households. _Environ. Sci. Policy_ 55, 75–86 (2016). Article  Google Scholar  * Smith, P. et al. Competition for land.


_Phil. Trans. R. Soc. B Biol. Sci._ 365, 2941–2957 (2010). Article  Google Scholar  * Daioglou, V., Stehfest, E., Wicke, B., Faaij, A. & van Vuuren, D. P. Projections of the availability


and cost of residues from agriculture and forestry. _GCB Bioenergy_ 8, 456–470 (2016). Article  Google Scholar  * GEA _The Global Energy Assessment: Toward a More Sustainable Future_


(Cambridge Univ. Press, 2012). * Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. _Glob. Environ.


Change_ 42, 153–168 (2017). Article  Google Scholar  * Tilman, D. & Clarke, M. Global diets link environmental sustainability and human health. _Nature_ 515, 518–522 (2014). Article  CAS


  Google Scholar  * Smith, P. et al. How much land based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? _Glob. Change Biol._ 19,


2285–2302 (2013). Article  Google Scholar  * Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. _Glob. Environ. Change_


15, 138–147 (2015). Article  Google Scholar  * Stehfest, E. et al. Climate benefits of changing diet. _Clim. Change_ 95, 83–102 (2009). Article  CAS  Google Scholar  * Bijl, D. L. et al. A


physically-based model of long-term food demand. _Glob. Environ. Change_ 45, 47–62 (2017). Article  Google Scholar  * _Food, Planet, Health. Healthy Diets from Sustainable Food Systems_ (The


EAT-Lancet Commission, 2019); https://go.nature.com/2NDRXJ6 * Leahy, E., Lyons, S. & Tol, R. _An Estimate of the Number of Vegetarians in the World_ ESRI Working Paper 340 (Economic and


Social Research Institute, 2010). * Röös, E. et al. Protein futures for Western Europe: potential land use and climate impacts in 2050. _Reg. Environ. Change_ 17, 367–377 (2017). Article 


Google Scholar  * Neumann, K. & Verburg, P. H. & Stehfest, E. & Müller, C. The yield gap of global grain production: a spatial analysis. _Agric. Syst._ 103, 316–326 (2010).


Article  Google Scholar  * Rosegrant, M. W. et al. _Agriculture at a Crossroads: Global Report_ (eds McIntyre, B. D. et al.) (Island Press, 2009). * Mueller, N. D. X. et al. Closing yield


gaps through nutrient and water management. _Nature_ 490, 254–257 (2012). Article  CAS  Google Scholar  * Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A.


_Global Food Losses and Food Waste_ (FAO, 2011). * Clarke, L. et al. in _Climate Change 2014: Mitigation of Climate Change_ (eds Edenhofer, O. et al.) 414–510 (Cambridge Univ. Press, 2014).


* Hejazi, M. I. et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. _Proc. Natl Acad. Sci. USA_ 112, 10635–10640


(2015). Article  CAS  Google Scholar  * Engel, E. Die productions- und consumtionsverhältnisse des Königreichs Sachsen. _Z. Stat. Bur. Konig. Sachsischen Min. Inner._ 8–9, 28–29 (1857).


Google Scholar  * Daioglou, V., van Ruijven, B. J. & van Vuuren, D. P. Model projections for household energy use in developing countries. _Energy_ 37, 601–615 (2012). Article  Google


Scholar  * Gustavsson, J., Cederberg, C., Sonesson, U. & Emanuelsson, A. _The Methodology of the FAO Study: Global Food Losses and Food Waste – Extent, Causes and Prevention_ (SIK—The


Swedish Institute for Food and Biotechnology, 2013). * Van Vuuren, D. P. et al. Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs.


_Clim. Change_ 81, 119–159 (2007). Article  CAS  Google Scholar  * Girod, B., van Vuuren, D. P. & Deetman, S. Global travel within the 2 °C climate target. _Energy Policy_ 45, 152–166


(2012). Article  Google Scholar  * Van Ruijven, B. J. et al. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. _Resour. Conserv.


Recy._ 112, 15–36 (2016). Article  Google Scholar  * Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. _Glob. Change Biol._ 13,


679–706 (2007). Article  Google Scholar  * Gerten, D. Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. _Environ. Res. Lett._ 8, 034032 (2013).


Article  Google Scholar  * Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model


description and calibration. _Atmos. Chem. Phys._ 11, 1417–1456 (2011). Article  CAS  Google Scholar  * Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a


middle-of-the-road scenario for the 21st century. _Glob. Environ. Change_ 42, 251–267 (2017). Article  Google Scholar  * Alexandratos, N. & Bruinsma, J. _World Agriculture Towards


2030/2050: The 2012 Revision_ (UN Food and Agriculture Organization, 2012). * _World Energy Outlook 2015_ (International Energy Agency, 2015). * Willett, W. C. & Skerrett, P. J. _Eat,


Drink, and Be Healthy: The Harvard Medical School Guide to Healthy Eating_ (Free Press, 2005). * Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their


impacts on freshwater, cropland, and fertiliser use. _Sci. Total Environ._ 438, 477–489 (2012). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS The research presented in


this Analysis benefited from funding under the European Union’s Horizon 2020 research and innovation programme, under grant agreement no 689150 SIM4NEXUS and the PICASSO project (EU ERC,


contract 819566). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands Detlef P. Van Vuuren, David L.


Bijl, Patrick Bogaart, Stefan C. Dekker, David E. H. J. Gernaat & Mathijs Harmsen * PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands Detlef P. Van Vuuren, Elke


Stehfest, Jonathan C. Doelman, David E. H. J. Gernaat & Mathijs Harmsen * Statistics Netherlands, The Hague, the Netherlands Patrick Bogaart * Wageningen University and Research,


Wageningen, the Netherlands Hester Biemans Authors * Detlef P. Van Vuuren View author publications You can also search for this author inPubMed Google Scholar * David L. Bijl View author


publications You can also search for this author inPubMed Google Scholar * Patrick Bogaart View author publications You can also search for this author inPubMed Google Scholar * Elke


Stehfest View author publications You can also search for this author inPubMed Google Scholar * Hester Biemans View author publications You can also search for this author inPubMed Google


Scholar * Stefan C. Dekker View author publications You can also search for this author inPubMed Google Scholar * Jonathan C. Doelman View author publications You can also search for this


author inPubMed Google Scholar * David E. H. J. Gernaat View author publications You can also search for this author inPubMed Google Scholar * Mathijs Harmsen View author publications You


can also search for this author inPubMed Google Scholar CONTRIBUTIONS D.P.V.V. and D.L.B. designed the experiments. All authors contributed to the scenario analysis and the writing of the


paper. CORRESPONDING AUTHOR Correspondence to Detlef P. Van Vuuren. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S


NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary


Figs. 1–3, Table 1 and references. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Van Vuuren, D.P., Bijl, D.L., Bogaart, P. _et al._ Integrated


scenarios to support analysis of the food–energy–water nexus. _Nat Sustain_ 2, 1132–1141 (2019). https://doi.org/10.1038/s41893-019-0418-8 Download citation * Received: 02 April 2019 *


Accepted: 02 October 2019 * Published: 02 December 2019 * Issue Date: December 2019 * DOI: https://doi.org/10.1038/s41893-019-0418-8 SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative