
A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:

ABSTRACT Measurement of oxygen consumption is a powerful and uniquely informative experimental technique. It can help identify mitochondrial mechanisms of action following pharmacologic and
genetic interventions, and characterize energy metabolism in physiology and disease. The conceptual and practical benefits of respirometry have made it a frontline technique to understand
how mitochondrial function can interface with—and in some cases control—cell physiology. Nonetheless, an appreciation of the complexity and challenges involved with such measurements is
required to avoid common experimental and analytical pitfalls. Here we provide a practical guide to oxygen consumption measurements covering the selection of experimental models and
instrumentation, as well as recommendations for the collection, interpretation and normalization of data. These guidelines are provided with the intention of aiding experimental design and
enhancing the overall reputability, transparency and reliability of oxygen consumption measurements. Access through your institution Buy or subscribe This is a preview of subscription
content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access
subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more
Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:
* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MULTIFACETED MITOCHONDRIA: MOVING MITOCHONDRIAL SCIENCE
BEYOND FUNCTION AND DYSFUNCTION Article 26 April 2023 MITOCHONDRIAL GENETICS, SIGNALLING AND STRESS RESPONSES Article 10 March 2025 MECHANISMS OF MITOCHONDRIAL RESPIRATORY ADAPTATION Article
08 July 2022 REFERENCES * Pagliarini, D. J. & Rutter, J. Hallmarks of a new era in mitochondrial biochemistry. _Genes Dev._ 27, 2615–2627 (2013). Article CAS PubMed PubMed Central
Google Scholar * Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. _Nature_ 514, 628–632 (2014). Article CAS PubMed PubMed Central
Google Scholar * Huang, S. C. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. _Nat. Immunol._ https://doi.org/10.1038/ni.2956 (2014).
Article PubMed PubMed Central Google Scholar * Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. _Nature_ https://doi.org/10.1038/nature11986
(2013). Article PubMed PubMed Central Google Scholar * Choi, S. W., Gerencser, A. A. & Nicholls, D. G. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a
microgram scale: spare respiratory capacity and stochastic mitochondrial failure. _J. Neurochem._ https://doi.org/10.1111/j.1471-4159.2009.06055.x (2009). Article PubMed PubMed Central
Google Scholar * Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. _Nat. Immunol._ 14, 1064–1072 (2013). Article CAS
PubMed Google Scholar * Chandel, N. S. Evolution of mitochondria as signaling organelles. _Cell Metab._ https://doi.org/10.1016/j.cmet.2015.05.013 (2015). Article PubMed Google Scholar
* Murphy, M. P. & Hartley, R. C. Mitochondria as a therapeutic target for common pathologies. _Nat. Rev. Drug Discov._ https://doi.org/10.1038/nrd.2018.174 (2018). Article PubMed
Google Scholar * Pelletier, M., Billingham, L. K., Ramaswamy, M. & Siegel, R. M. Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption. _Methods
Enzymol._ https://doi.org/10.1016/B978-0-12-416618-9.00007-8 (2014). Article PubMed Google Scholar * Mitchell, P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.
_Biochim. Biophys. Acta_ 1807, 1507–1538 (2011). Article CAS PubMed Google Scholar * Nicholls, D. G. & Ferguson, S. J. _Bioenergetics 4_ (Academic Press, 2013). * Divakaruni, A. S.,
Paradyse, A., Ferrick, D. A., Murphy, A. N. & Jastroch, M. Analysis and interpretation of microplate-based oxygen consumption and pH data. in _Methods in Enzymology_
https://doi.org/10.1016/B978-0-12-801415-8.00016-3 (2014). * Doerrier, C. et al. High-resolution fluorespirometry and oxphos protocols for human cells, permeabilized fibers from small
biopsies of muscle, and isolated mitochondria. in _Methods in Molecular Biology_ https://doi.org/10.1007/978-1-4939-7831-1_3 (2018). * Will, Y., Hynes, J., Ogurtsov, V. I. & Papkovsky,
D. B. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. _Nat. Protoc._ https://doi.org/10.1038/nprot.2006.351 (2007). Article Google Scholar * Perry, C. G.
R., Kane, D. A., Lanza, I. R. & Neufer, P. D. Methods for assessing mitochondrial function in diabetes. _Diabetes_ https://doi.org/10.2337/db12-1219 (2013). * Schmidt, C. A.,
Fisher-Wellman, K. H. & Neufer, P. D. From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies. _J. Biol. Chem._ 297, 101140 (2021). Article
CAS PubMed PubMed Central Google Scholar * Brand, M. D. & Nicholls, D. G. Assessing mitochondrial dysfunction in cells. _Biochem. J._ https://doi.org/10.1042/BJ20110162 (2011).
Article PubMed Google Scholar * Jones, A. E. et al. Forces, fluxes, and fuels: tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and
metabolites. _Am. J. Physiol._ 320, C80–C91 (2021). Google Scholar * Connolly, N. M. C. et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of
neurodegenerative diseases. _Cell Death Differ._ https://doi.org/10.1038/s41418-017-0020-4 (2018). Article PubMed Google Scholar * Dranka, B. P., Hill, B. G. & Darley-Usmar, V. M.
Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. _Free Radic. Biol. Med._ https://doi.org/10.1016/j.freeradbiomed.2010.01.015
(2010). Article PubMed PubMed Central Google Scholar * Rogers, G. W. et al. High-throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. _PLoS
ONE_ https://doi.org/10.1371/journal.pone.0021746 (2011). Article PubMed PubMed Central Google Scholar * Divakaruni, A. S., Rogers, G. W. & Murphy, A. N. Measuring mitochondrial
function in permeabilized cells using the Seahorse XF analyzer or a Clark-type oxygen electrode. _Curr. Protoc. Toxicol._ https://doi.org/10.1002/0471140856.tx2502s60 (2014). Article PubMed
Google Scholar * Hynes, J., Swiss, R. L. & Will, Y. High-throughput analysis of mitochondrial oxygen consumption. in _Methods in Molecular Biology_
https://doi.org/10.1007/978-1-4939-7831-1_4 (2018). * Acin-Perez, R., Benincá, C., Shabane, B., Shirihai, O. S. & Stiles, L. Utilization of human samples for assessment of mitochondrial
bioenergetics: gold standards, limitation and future perspectives. _Life_ 11, 949 (2021). Article CAS PubMed PubMed Central Google Scholar * Hill, B. G. et al. Integration of cellular
bioenergetics with mitochondrial quality control and autophagy. _Biol. Chem._ 393, 1485–1512 (2012). Article CAS PubMed PubMed Central Google Scholar * Frezza, C., Cipolat, S. &
Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. _Nat. Protoc._ 2, 287–295 (2007). Article CAS PubMed Google Scholar *
Wieckowski, M. R. M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. _Nat.
Protoc._ 4, 1582–1590 (2009). Article CAS PubMed Google Scholar * Kushnareva, Y. E., Wiley, S. E., Ward, M. W., Andreyev, A. Y. & Murphy, A. N. Excitotoxic injury to mitochondria
isolated from cultured neurons. _J. Biol. Chem._ 280, 28894–28902 (2005). Article CAS PubMed Google Scholar * Yang, K., Doan, M. T., Stiles, L. & Divakaruni, A. S. Measuring
CPT-1-mediated respiration in permeabilized cells and isolated mitochondria. _STAR Protoc._ 2, 100687 (2021). Article PubMed PubMed Central CAS Google Scholar * Benador, I. Y. et al.
Mitochondria bound to lipid droplets have unique bioenergetics, composition and dynamics that support lipid droplet expansion. _Cell Metab._ 27, 869–885 (2018). Article CAS PubMed PubMed
Central Google Scholar * Divakaruni, A. S. et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. _Proc. Natl Acad. Sci. USA_
https://doi.org/10.1073/pnas.1303360110 (2013). Article PubMed PubMed Central Google Scholar * Salabei, J. K., Gibb, A. A. & Hill, B. G. Comprehensive measurement of respiratory
activity in permeabilized cells using extracellular flux analysis. _Nat. Protoc._ https://doi.org/10.1038/nprot.2014.018 (2014). Article PubMed PubMed Central Google Scholar * Quintana,
A., Kruse, S. E., Kapur, R. P., Sanz, E. & Palmiter, R. D. Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. _Proc.
Natl Acad. Sci. USA_ 107, 10996–11001 (2010). Article CAS PubMed PubMed Central Google Scholar * Rich, P. R. & Maréchal, A. The mitochondrial respiratory chain. _Essays Biochem._
https://doi.org/10.1042/BSE0470001 (2010). Article PubMed Google Scholar * Kiss, G. et al. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix
substrate-level phosphorylation. _FASEB J._ 27, 2393–2406 (2013). Article CAS Google Scholar * Ryan, D. G. et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer.
_Nat. Metab._ https://doi.org/10.1038/s42255-018-0014-7 (2019). Article PubMed PubMed Central Google Scholar * Gray, L. R. et al. Hepatic mitochondrial pyruvate carrier 1 is required for
efficient regulation of gluconeogenesis and whole-body glucose homeostasis. _Cell Metab._ 22, 669–681 (2015). Article CAS PubMed PubMed Central Google Scholar * Taylor, E. B.
Functional properties of the mitochondrial carrier system. _Trends Cell Biol._ https://doi.org/10.1016/j.tcb.2017.04.004 (2017). Article PubMed PubMed Central Google Scholar * Woodall,
B. P. et al. Parkin does not prevent accelerated cardiac aging in mitochondrial DNA mutator mice. _JCI Insight_ 5, e127713 (2019). Article Google Scholar * Norton, M. et al. ROMO1 is an
essential redox-dependent regulator of mitochondrial dynamics. _Sci. Signal._ 7, ra10 (2014). Article PubMed CAS Google Scholar * Fu, Z. et al. Requirement of mitochondrial transcription
factor A in tissue-resident regulatory T cell maintenance and function. _Cell Rep._ 28, 159–171 (2019). Article CAS PubMed PubMed Central Google Scholar * Pagliarini, D. J. et al.
Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic β cells. _Mol. Cell_ 19, 197–207 (2005). Article CAS PubMed Google
Scholar * Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with iPSC and heart-on-chip technologies. _Nat. Med._ 20, 616–623 (2014). Article PubMed Central
Google Scholar * Leonardi, R., Zhang, Y. M., Rock, C. O. & Jackowski, S. Coenzyme A: back in action. _Prog. Lipid Res._ https://doi.org/10.1016/j.plipres.2005.04.001 (2005). Article
PubMed Google Scholar * Solmonson, A. & DeBerardinis, R. J. Lipoic acid metabolism and mitochondrial redox regulation. _J. Biol. Chem._ 293, 7522–7530 (2018). Article PubMed Google
Scholar * Stefely, J. A. & Pagliarini, D. J. Biochemistry of mitochondrial coenzyme Q biosynthesis. _Trends Biochem. Sci._ 42, 824–843 (2017). Article CAS PubMed PubMed Central
Google Scholar * Daan Westenbrink, B. et al. Mitochondrial reprogramming induced by CaMKIIδ mediates hypertrophy decompensation. _Circ. Res._ 116, e28–e39 (2015). PubMed PubMed Central
Google Scholar * Rotig, A. et al. Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. _Nat. Genet._ 17, 215–217 (1997). Article CAS PubMed Google Scholar *
Diers, A. R., Broniowska, K. A., Chang, C. F., Hill, R. B. & Hogg, N. _S_-nitrosation of monocarboxylate transporter 1: inhibition of pyruvate-fueled respiration and proliferation of
breast cancer cells. _Free Radic. Biol. Med._ 69, 229–238 (2014). Article CAS PubMed PubMed Central Google Scholar * CHANCE, B. & WILLIAMS, G. R. Respiratory enzymes in oxidative
phosphorylation. III. The steady state. _J. Biol. Chem._ 217, 409–427 (1955). Article CAS PubMed Google Scholar * Estabrook, R. W. Mitochondrial respiratory control and the polarographic
measurement of ADP:O ratios. _Methods Enzymol._ 10, 41–47 (1967). Article CAS Google Scholar * Ernster, L. & Schatz, G. Mitochondria: a historical review. _J. Cell Biol_. 91, 227–255
(1981). * Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. _Circ. Res._ 128, 1487–1513 (2021). Article CAS PubMed
PubMed Central Google Scholar * Sun, H. & Wang, Y. Branched chain amino acid metabolic reprogramming in heart failure. _Biochim. Biophys. Acta_ 1862, 2270–2275 (2016). Article CAS
PubMed Google Scholar * White, P. J. & Newgard, C. B. Branched-chain amino acids in disease. _Science_ 363, 582–583 (2019). Article CAS PubMed Google Scholar * Picard, M. et al.
Mitochondrial structure and function are disrupted by standard isolation methods. _PLoS ONE_ 6, e18317 (2011). Article CAS PubMed PubMed Central Google Scholar * Arruda, A. P. et al.
Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. _Nat. Med._ 20, 1427–1435 (2014). Article CAS PubMed PubMed Central
Google Scholar * Nicholls, D. G. Spare respiratory capacity, oxidative stress and excitotoxicity. _Biochem. Soc. Trans._ https://doi.org/10.1042/BST0371385 (2009). Article PubMed Google
Scholar * Adhihetty, P. J. et al. The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle. _Am. J. Physiol. Cell Physiol_ 297, C217–C225 (2009). Article CAS
PubMed Google Scholar * Agier, V. et al. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous _OPA1_
mutations. _Biochim. Biophys. Acta_ 1822, 1570–1580 (2012). Article CAS PubMed Google Scholar * Clerc, P. & Polster, B. M. Investigation of mitochondrial dysfunction by sequential
microplate-based respiration measurements from intact and permeabilized neurons. _PLoS ONE_ 7, e34465 (2012). Article CAS PubMed PubMed Central Google Scholar * Schulz, I.
Permeabilizing cells: some methods and applications for the study of intracellular processes. _Methods Enzymol._ 192, 280–300 (1990). Article CAS PubMed Google Scholar * Buescher, J. M.
et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. _Curr. Opin. Biotechnol._ https://doi.org/10.1016/j.copbio.2015.02.003 (2015). Article PubMed PubMed Central
Google Scholar * Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. _Cell_ https://doi.org/10.1016/j.cell.2018.03.055 (2018). Article PubMed PubMed Central
Google Scholar * Antoniewicz, M. R. A guide to 13C metabolic flux analysis for the cancer biologist. _Exp. Mol. Med._ https://doi.org/10.1038/s12276-018-0060-y (2018). Article PubMed
PubMed Central Google Scholar * Divakaruni, A. S. & Brand, M. D. The regulation and physiology of mitochondrial proton leak. _Physiology_ https://doi.org/10.1152/physiol.00046.2010
(2011). Article PubMed Google Scholar * Bertholet, A. M. & Kirichok, Y. Mitochondrial H+ leak and thermogenesis. _Annu. Rev. Physiol._ 84, 381–407 (2022). Article PubMed CAS Google
Scholar * Duchen, M. R. Ca2+-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. _Biochem. J._ 283, 41–50 (1992). Article PubMed PubMed Central
Google Scholar * De Stefani, D., Rizzuto, R. & Pozzan, T. Enjoy the trip: calcium in mitochondria back and forth. https://doi.org/10.1146/annurev-biochem-060614-034216 (2016). *
Villalobo, A. & Lehninger, A. L. Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+. _J. Biol. Chem._ 255, 2457–2464 (1980).
Article CAS PubMed Google Scholar * Murphy, A. N., Bredesen, D. E., Cortopassi, G., Wang, E. & Fiskum, G. Bcl-2 potentiates the maximal calcium uptake capacity of neural cell
mitochondria. _Proc. Natl Acad. Sci. USA._ 93, 9893–9898 (1996). Article CAS PubMed PubMed Central Google Scholar * Veliova, M. et al. Blocking mitochondrial pyruvate import in brown
adipocytes induces energy wasting via lipid cycling. _EMBO Rep._ 21, e49634 (2020). Article CAS PubMed PubMed Central Google Scholar * Gross, M. I. et al. Antitumor activity of the
glutaminase inhibitor CB-839 in triple-negative breast cancer. _Mol. Cancer Ther._ 13, 890–901 (2014). Article CAS PubMed Google Scholar * Leek, R., Grimes, D. R., Harris, A. L. &
McIntyre, A. Methods: using three-dimensional culture (spheroids) as an in vitro model of tumour hypoxia. _Adv. Exp. Med. Biol._ 899, 167–196 (2016). Article CAS PubMed Google Scholar *
Simian, M. & Bissell, M. J. Organoids: a historical perspective of thinking in three dimensions. _J. Cell Biol._ 216, 31–40 (2017). Article CAS PubMed PubMed Central Google Scholar
* De Graaf, I. A. M. et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. _Nat. Protoc._ 5, 1540–1551
(2010). Article PubMed CAS Google Scholar * Lau, A. N. & Vander Heiden, M. G. Metabolism in the tumor microenvironment. _Annu. Rev. Cancer Biol._ 4, 17–40 (2020). Article Google
Scholar * Kanow, M. A. et al. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. _Elife_ 6, e28899 (2017). Article
PubMed PubMed Central Google Scholar * Harada, A. E., Healy, T. M. & Burton, R. S. Variation in thermal tolerance and its relationship to mitochondrial function across populations of
_Tigriopus californicus_. _Front. Physiol._ 10, 213 (2019). Article PubMed PubMed Central Google Scholar * Luz, A. L., Smith, L. L., Rooney, J. P. & Meyer, J. N. Seahorse XFe24
extracellular flux analyzer-based analysis of cellular respiration in _Caenorhabditis elegans_. _Curr. Protoc. Toxicol._ 66, 25.7.1–25.7.15 (2015). Article Google Scholar * Lay, S.,
Sanislav, O., Annesley, S. J. & Fisher, P. R. Mitochondrial stress tests using seahorse respirometry on intact _Dictyostelium discoideum_ cells. _Methods Mol. Biol_ 1407, 41–61 (2016).
Article CAS PubMed Google Scholar * Muthusamy, T. et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. _Nature_ 586, 790–795 (2020). Article CAS PubMed
PubMed Central Google Scholar * Jiang, L. et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. _Nature_ 532, 255–258 (2016). Article CAS PubMed
PubMed Central Google Scholar * Tschöp, M. H. et al. A guide to analysis of mouse energy metabolism. _Nat. Methods_ 9, 57–63 (2012). Article CAS Google Scholar * Müller, T. D.,
Klingenspor, M. & Tschöp, M. H. Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. _Nat. Metab._ 3, 1134–1136 (2021). Article PubMed Google Scholar *
Tyrrell, D. J. et al. Blood-cell bioenergetics are associated with physical function and inflammation in overweight/obese older adults. _Exp. Gerontol._ 70, 84–91 (2015). Article CAS
PubMed PubMed Central Google Scholar * Kenwood, B. M. et al. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. _Mol. Metab._ 3, 114–123
(2013). Article PubMed PubMed Central CAS Google Scholar * Davila, A. et al. Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. _Elife_ 7, e33246 (2018).
Article PubMed PubMed Central Google Scholar * Luongo, T. S. et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter. _Nature_ 588, 174–179 (2020). Article CAS PubMed PubMed
Central Google Scholar * Affourtit, C. & Brand, M. D. Stronger control of ATP/ADP by proton leak in pancreatic beta cells than skeletal muscle mitochondria. _Biochem. J._
https://doi.org/10.1042/BJ20051280 (2006). Article PubMed PubMed Central Google Scholar * Krasnikov, B. F. et al. Comparative kinetic analysis reveals that inducer-specific ion release
precedes the mitochondrial permeability transition. _Biochim. Biophys. Acta_ 1708, 375–392 (2005). Article CAS PubMed Google Scholar * Mookerjee, S. A., Goncalves, R. L. S., Gerencser,
A. A., Nicholls, D. G. & Brand, M. D. The contributions of respiration and glycolysis to extracellular acid production. _Biochim. Biophys. Acta_ 1847, 171–181 (2015). Article CAS
PubMed Google Scholar * Desousa, B. R. et al. Calculating ATP production rates from oxidative phosphorylation and glycolysis during cell activation. Preprint at _bioRxiv_
https://doi.org/10.1101/2022.04.16.488523 (2022). * Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. Quantifying intracellular rates of glycolytic and oxidative ATP
production and consumption using extracellular flux measurements. _J. Biol. Chem._ https://doi.org/10.1074/jbc.M116.774471 (2017). Article PubMed PubMed Central Google Scholar *
Divakaruni, A. S., Andreyev, A. Y., Rogers, G. W. & Murphy, A. N. In situ measurements of mitochondrial matrix enzyme activities using plasma and mitochondrial membrane permeabilization
agents. _Anal. Biochem._ 552, 60–65 (2018). Article CAS PubMed Google Scholar * Divakaruni, A. S. et al. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic
neuronal death. _J. Cell Biol._ https://doi.org/10.1083/jcb.201612067 (2017). Article PubMed PubMed Central Google Scholar * Grassian, A. R., Metallo, C. M., Coloff, J. L.,
Stephanopoulos, G. & Brugge, J. S. Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. _Genes Dev._ 25, 1716–1733 (2011). Article CAS PubMed
PubMed Central Google Scholar * Sullivan, W. J. et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. _Cell_ 175, 117–132 (2018). Article CAS
PubMed PubMed Central Google Scholar * Sessions, A. O. et al. Preserved cardiac function by vinculin enhances glucose oxidation and extends health- and life-span. _APL Bioeng._ 2,
036101 (2018). Article PubMed PubMed Central CAS Google Scholar * Fan, Y. Y. et al. A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells.
_Am. J. Physiol. Gastrointest. Liver Physiol._ 309, 1–9 (2015). Article CAS Google Scholar * Taddeo, E. P. et al. Individual islet respirometry reveals functional diversity within the
islet population of mice and human donors. _Mol. Metab._ 16, 150–159 (2018). Article CAS PubMed PubMed Central Google Scholar * Kooragayala, K. et al. Quantification of oxygen
consumption in retina ex vivo demonstrates limited reserve capacity of photoreceptor mitochondria. _Invest. Ophthalmol. Vis. Sci._ 56, 8428–8436 (2015). Article CAS PubMed PubMed Central
Google Scholar * Ludikhuize, M. C., Meerlo, M., Burgering, B. M. T. & Rodríguez Colman, M. J. Protocol to profile the bioenergetics of organoids using Seahorse. _STAR Protoc._ 2,
100386 (2021). Article PubMed PubMed Central CAS Google Scholar * Gerencser, A. A. et al. Quantitative microplate-based respirometry with correction for oxygen diffusion. _Anal. Chem._
https://doi.org/10.1021/ac900881z (2009). Article PubMed PubMed Central Google Scholar * Oliver, D. G., Sanders, A. H., Douglas Hogg, R. & Woods Hellman, J. Thermal gradients in
microtitration plates. Effects on enzyme-linked immunoassay. _J. Immunol. Methods_ 42, 195–201 (1981). Article CAS PubMed Google Scholar * Lundholt, B. K., Scudder, K. M. & Pagliaro,
L. A simple technique for reducing edge effect in cell-based assays. _J. Biomol. Screen._ 8, 566–570 (2003). Article CAS PubMed Google Scholar * Schoonen, W. G. E. J., Stevenson, J. C.
R., Westerink, W. M. A. & Horbach, G. J. Cytotoxic effects of 109 reference compounds on rat H4IIE and human HepG2 hepatocytes. III: Mechanistic assays on oxygen consumption with
MitoXpress and NAD(P)H production with Alamar Blue. _Toxicol. In Vitro_ 26, 511–525 (2012). Article CAS PubMed Google Scholar * Little, A. C. et al. High-content fluorescence imaging
with the metabolic flux assay reveals insights into mitochondrial properties and functions. _Commun. Biol._ 3, 271 (2020). Article CAS PubMed PubMed Central Google Scholar * Wiley, S.
E. et al. Wolfram syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis. _EMBO Mol. Med._ 5, 904–918 (2013). Article CAS PubMed
PubMed Central Google Scholar * Wettmarshausen, J. & Perocchi, F. Isolation of functional mitochondria from cultured cells and mouse tissues. _Methods Mol. Biol._ 1567, 15–32 (2017).
Article CAS PubMed Google Scholar * Kirkinezos, I. G. et al. Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. _J. Neurosci._ 25,
164–172 (2005). Article CAS PubMed PubMed Central Google Scholar * Rolfe, D. F. S. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in
mammals. _Physiol. Rev._ 77, 731–758 (1997). Article CAS PubMed Google Scholar * Chacko, B. K. et al. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes,
monocytes and neutrophils, and the oxidative burst from human blood. _Lab. Invest._ 93, 690–700 (2013). Article CAS PubMed PubMed Central Google Scholar * van der Windt, G. J. W. et al.
Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. _Immunity_ 36, 68–78 (2012). PubMed Google Scholar * McMurray, J. et al. Dapagliflozin in
patients with heart failure and reduced ejection fraction. _N. Engl. J. Med._ 381, 1995–2008 (2019). Article CAS PubMed Google Scholar * Molina, J. R. et al. An inhibitor of oxidative
phosphorylation exploits cancer vulnerability. _Nat. Med._ 24, 1036–1046 (2018). Article CAS PubMed Google Scholar * Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now
with sub-organelle localization and pathway annotations. _Nucleic Acids Res._ 49, D1541–D1547 (2021). Article CAS PubMed Google Scholar * Nowinski, S. M. et al. Mitochondrial fatty acid
synthesis coordinates oxidative metabolism in mammalian mitochondria. _Elife_ 9, e58041 (2020). Article Google Scholar * Floyd, B. J. et al. Mitochondrial protein interaction mapping
identifies regulators of respiratory chain function. _Mol. Cell_ 63, 621–632 (2016). Article CAS PubMed PubMed Central Google Scholar * Brand, M. D. The efficiency and plasticity of
mitochondrial energy transduction. _Biochem. Soc. Trans._ 33, 897–904 (2005). Article CAS PubMed Google Scholar * Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. W. &
Walker, J. E. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. _Proc. Natl Acad. Sci. USA_ 107, 16823–16827 (2010). Article CAS PubMed PubMed Central
Google Scholar * Hinkle, P. C. P/O ratios of mitochondrial oxidative phosphorylation. _Biochim. Biophys. Acta_ 1706, 1–11 (2005). Article CAS PubMed Google Scholar * Müller, T. D. et
al. P62 links β-adrenergic input to mitochondrial function and thermogenesis. _J. Clin. Invest._ 123, 469–478 (2013). Article PubMed CAS Google Scholar * Kory, N. et al. MCART1/SLC25A51
is required for mitochondrial NAD transport. _Sci. Adv_ 6, 43 (2020). Article CAS Google Scholar * Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in
yeast, _Drosophila_ and humans. _Science_ https://doi.org/10.1126/science.1218099 (2012). Article PubMed PubMed Central Google Scholar * Herzig, S. et al. Identification and functional
expression of the mitochondrial pyruvate carrier. _Science_ https://doi.org/10.1126/science.1218530 (2012). Article PubMed Google Scholar * Sharma, A. et al. Impaired skeletal muscle
mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. _Elife_ 8, e45873 (2019). Article PubMed PubMed Central Google Scholar * Bertholet, A. M. The use
of the patch-clamp technique to study the thermogenic capacity of mitochondria. _J. Vis. Exp_. 171, (2021). * Gerencser, A. A. et al. Quantitative measurement of mitochondrial membrane
potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. _J. Physiol._ https://doi.org/10.1113/jphysiol.2012.228387 (2012). Article PubMed PubMed
Central Google Scholar Download references ACKNOWLEDGEMENTS A.S.D. is supported by National Institutes of Health grants R35GM138003, P30DK063491 and P50CA092131, as well as the W. M. Keck
Foundation. M.J. is supported by the Novo Nordisk Research Fonden (NNF20OC0059646). We thank members of both of our laboratories for their helpful discussions during the preparation of this
manuscript, as well as L. Stiles (UCLA), B. Desousa (UCSF) and A. Murphy (Cytokinetics) for their critical perspective. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Molecular
and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA Ajit S. Divakaruni * Department of Molecular Biosciences, The
Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden Martin Jastroch Authors * Ajit S. Divakaruni View author publications You can also search for
this author inPubMed Google Scholar * Martin Jastroch View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.S.D. and M.J. both contributed to
the conceptualization, preparation, writing and editing of this manuscript. CORRESPONDING AUTHOR Correspondence to Ajit S. Divakaruni. ETHICS DECLARATIONS COMPETING INTERESTS The authors
declare no current competing interests. A.S.D. has previously served as a paid consultant for Agilent Technologies. PEER REVIEW PEER REVIEW INFORMATION _Nature Metabolism_ thanks Alexander
Galkin, David Nicholls and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the
_Nature Metabolism_ team. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
RIGHTS AND PERMISSIONS Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS
ARTICLE Divakaruni, A.S., Jastroch, M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. _Nat Metab_ 4, 978–994 (2022).
https://doi.org/10.1038/s42255-022-00619-4 Download citation * Received: 28 October 2021 * Accepted: 17 June 2022 * Published: 15 August 2022 * Issue Date: August 2022 * DOI:
https://doi.org/10.1038/s42255-022-00619-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not
currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative