Conditioning the genome identifies additional diabetes resistance loci in type i diabetes resistant nor/lt mice

Conditioning the genome identifies additional diabetes resistance loci in type i diabetes resistant nor/lt mice


Play all audios:


ABSTRACT While sharing the _H2__g7_ MHC and many other important Type I diabetes susceptibility (_Idd_) genes with NOD mice, the NOR strain remains disease free due to resistance alleles


within the ∼12% portion of their genome that is of C57BLKS/J origin. Previous F2 segregation analyses indicated multiple genes within the ‘_Idd13_’ locus on Chromosome 2 provide the primary


component of NOR diabetes resistance. However, it was clear other genes also contribute to NOR diabetes resistance, but were difficult to detect in the original segregation analyses because


they were relatively weak compared to the strong _Idd13_ protection component. To identify these further genetic components of diabetes resistance, we performed a new F2 segregation analyses


in which NOD mice were outcrossed to a ‘genome-conditioned’ NOR stock in which a large component of _Idd13_-mediated resistance was replaced with NOD alleles. These F2 segregation studies


combined with subsequent congenic analyses confirmed the presence of additional NOR resistance genes on Chr. 1 and Chr. 4, and also potentially on Chr. 11. These findings emphasize the value


for diabetes gene discovery of stratifying not only MHC loci conferring the highest relative risk but also as many as possible of the non-MHC loci presumed to contribute significantly.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 6 digital issues and online access to articles $119.00 per year only $19.83 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article


PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact


customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NOVEL LOCI FOR HYPERGLYCEMIA IDENTIFIED BY QTL MAPPING OF LONGITUDINAL PHENOTYPES AND CONGENIC ANALYSIS Article Open access 24 January


2023 SPONTANEOUS AKT2 DEFICIENCY IN A COLONY OF NOD MICE EXHIBITING EARLY DIABETES Article Open access 20 April 2024 IDENTIFICATION OF FOUR NOVEL QTL LINKED TO THE METABOLIC SYNDROME IN THE


BERLIN FAT MOUSE Article Open access 23 October 2021 REFERENCES * Serreze DV, Leiter EH . Genes and pathways underlying autoimmune diabetes in NOD mice. In: von Herrath M (ed). _Molecular


Pathology of Insulin-Dependent Diabetes Mellitus_. Karger: New York, 2001, pp 31–67. Chapter  Google Scholar  * Prochazka M, Serreze DV, Frankel WN, Leiter EH . NOR/Lt; MHC-matched


diabetes-resistant control strain for NOD mice. _Diabetes_ 1992; 41: 98–106. Article  CAS  PubMed  Google Scholar  * Serreze DV, Prochazka M, Reifsnyder PC, Bridgett MM, Leiter EH . Use of


recombinant congenic and congenic strains of NOD mice to identify a new insulin dependent diabetes resistance gene. _J Exp Med_ 1994; 180: 1553–1558. Article  CAS  PubMed  Google Scholar  *


Naggert JK, Mu M-L, Frankel WF, Paigen B . Genomic analysis of the C57BL/Ks mouse strain. _Mammal Genome_ 1995; 6: 131–133. Article  CAS  Google Scholar  * McAleer MA, Reifsnyder P, Palmer


SM et al. Crosses of NOD mice with the related NON strain: a polygenic model for type I diabetes. _Diabetes_ 1995; 44: 1186–1195. Article  CAS  PubMed  Google Scholar  * Wicker LS, Todd JA,


Peterson LB . Genetic control of autoimmune diabetes in the NOD mouse. _Ann Rev Immunol_ 1995; 13: 179–200. Article  CAS  Google Scholar  * Serreze DV, Bridgett MB, Chapman HD, Chen E,


Richard SB, Leiter EH . Subcongenic analysis of the _Idd13_ locus in NOD/Lt mice: evidence for several susceptibility genes including a possible diabetogenic role for β2-microglobulin. _J


Immunol_ 1998; 160: 1472–1478. CAS  PubMed  Google Scholar  * Hamilton-Williams EE, Serreze DV, Charlton B et al. Transgenic rescue implicates β2-microglobulin as a diabetes susceptibility


gene in NOD mice. _Proc Natl Acad Sci USA_ 2001; 98: 11533–11538. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fox CJ, Danska JS . Independent genetic regulation of T-cell and


antigen-presenting cell participation in autoimmune islet inflammation. _Diabetes_ 1998; 47: 331–338. Article  CAS  PubMed  Google Scholar  * Fox CJ, Paterson AD, Mortin-Toth SM, Danska JS .


Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. _Am J Hum Genet_ 2000; 67: 67–81. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Morahan G, McClive P, Huang D, Little P, Baxter A . Genetic and physiological association of diabetes susceptibility with raised Na+/H+ exchange activity. _Proc Natl Acad Sci USA_


1994; 91: 5898–5902. Article  CAS  PubMed  PubMed Central  Google Scholar  * Brodnicki TC, McClive P, Couper S, Morahan G . Localization of Idd11 using NOD congenic mouse strains:


elimination of Slc9a1 as a candidate gene. _Immunogenetics_ 2000; 51: 37–41. Article  CAS  PubMed  Google Scholar  * Lyons PA, Hancock WW, Denny P et al. The NOD _Idd9_ genetic interval


influences the pathogenicity of insulitis and contains molecular variants of _Cd30_, _Tnfr2_, and _Cd137_. _Immunity_ 2000; 13: 107–115. Article  CAS  PubMed  Google Scholar  * Petkov PM,


Ding Y, Cassell MA et al. An efficient SNP system for mouse genome scanning and elucidating strain relationships. _Genome Res_ 2004; 14: 1806–1811. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. _Nature_ 2003; 423: 506–511. Article  CAS 


PubMed  Google Scholar  * Todd JA, Aitman TJ, Cornall RJ et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. _Nature_ 1991; 351: 542–547. Article  CAS  PubMed  Google


Scholar  * Ghosh S, Palmer SM, Rodrigues NR et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. _Nat Genet_ 1993; 4: 404–409. Article  CAS  PubMed  Google Scholar  *


Wicker LS, Todd JA, Prins J-B, Podolin PL, Renjilian RJ, Peterson LB . Resistance alleles in two non-MHC-linked insulin dependent diabetes loci on chromosome 3, _Idd3_ and _Idd10_, protect


NOD mice from diabetes. _J Exp Med_ 1994; 180: 1705–1713. Article  CAS  PubMed  Google Scholar  * Grattan M, Mi QS, Meagher C, Delovitch TL . Congenic mapping of the diabetogenic locus Idd4


to a 5.2-cM region of chromosome 11 in NOD mice: identification of two potential candidate subloci. _Diabetes_ 2002; 51: 215–223. Article  CAS  PubMed  Google Scholar  * Simpson PB, Mistry


MS, Maki RA et al. Cutting edge: diabetes-associated quantitative trait locus, Idd4, is responsible for the IL-12p40 overexpression defect in nonobese diabetic (NOD) mice. _J Immunol_ 2003;


171: 3333–3337. Article  CAS  PubMed  Google Scholar  * McDuffie M . Derivation of diabetes-resistant congenic lines from the nonobese diabetic mouse. _Clin Immunol_ 2000; 96: 119–130.


Article  CAS  PubMed  Google Scholar  * Hill NJ, Lyons PA, Armitage N, Todd JA, Wicker LS, Peterson LB . The NOD _Idd5_ locus controls insulitis and diabetes and overlaps the orthologous


CTLA4/IDDM12 and NRAMP1 loci in humans. _Diabetes_ 2000; 49: 1744–1747. Article  CAS  PubMed  Google Scholar  * Verdaguer J, Amrani A, Anderson B, Schmidt D, Santamaria P . Two mechanisms


for the non-MHC-linked resistance to spontaneous autoimmunity. _J Immunol_ 1999; 162: 4614–4626. CAS  PubMed  Google Scholar  * Stratmann T, Martin-Orozco N, Mallet-Designe V et al.


Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. _J Clin Invest_ 2003; 112: 902–914. Article  CAS  PubMed  PubMed Central  Google Scholar  * Baxter AG,


Smyth MJ . The role of NK cells in autoimmune disease. _Autoimmunity_ 2002; 35: 1–14. Article  CAS  PubMed  Google Scholar  * Matsuki N, Stanic AK, Embers ME, Van Kaer L, Morel L, Joyce S .


Genetic dissection of V alpha 14J alpha 18 natural T cell number and function in autoimmune-prone mice. _J Immunol_ 2003; 170: 5429–5437. Article  CAS  PubMed  Google Scholar  * Esteban LM,


Tsoutsman T, Jordan MA et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. _J Immunol_ 2003; 171: 2873–2878. Article  CAS  PubMed  Google Scholar  * Sen P,


Bhattacharyya S, Wallet M et al. NF-kappa B hyperactivation has differential effects on the APC function of nonobese diabetic mouse macrophages. _J Immunol_ 2003; 170: 1770–1780. Article 


CAS  PubMed  Google Scholar  * Wicker LS, Chamberlain G, Hunter K et al. Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates


for Idd51 and Idd52 in the nonobese diabetic mouse. _J Immunol_ 2004; 173: 164–173. Article  CAS  PubMed  Google Scholar  * Lamhamedi-Cherradi SE, Boulard O, Gonzalez C et al. Further


mapping of the Idd51 locus for autoimmune diabetes in NOD mice. _Diabetes_ 2001; 50: 2874–2878. Article  CAS  PubMed  Google Scholar  * Leiter E . The NOD mouse: a model for insulin


dependent diabetes mellitus. In: Coligan JE, Kruisbeek AM, Margulies DM, Shevach EM, Strober W (eds). _Current Protocols in Immunology_. John Wiley & Sons Inc.: New York, 1997, pp


15.19.11–15.19.23. Google Scholar  * Sen S, Churchill GA . A statistical framework for quantitative trait mapping. _Genetics_ 2001; 159: 371–387. CAS  PubMed  PubMed Central  Google Scholar


  * Lander ES, Bottstein D . Mapping complex genetic traits in humans: new methods using a complete RFLP linkage map. _Cold Spring Harb Symp Quant Biol_ 1986; LI: 49–62. Article  Google


Scholar  * Churchill GA, Doerge RW . Empirical threshold value for quantitative trait mapping. _Genetics_ 1994; 138: 963–971. CAS  PubMed  PubMed Central  Google Scholar  * Sugiyama F,


Churchill GA, Higgins DC et al. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. _Genomics_ 2001; 71: 70–77. Article  CAS  PubMed  Google


Scholar  Download references ACKNOWLEDGEMENTS We gratefully acknowledge the assistance provided by Pamela Stanley, Bruce Regimbal and Steve Langley for animal breeding, and by Gunjan Wagner


for assistance with SNP genotyping. This work was supported by NIH Grants DK27722 and DK36175. Institutional shared services were supported by National Cancer Institute Center Support Grant


CA-34196. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * The Jackson Laboratory, Bar Harbor, ME, USA P C Reifsnyder, R Li, G Churchill, D V Serreze & E H Leiter * Centenary Institute of


Cancer Medicine and Cell Biology, Newtown, NSW, Australia P A Silveira Authors * P C Reifsnyder View author publications You can also search for this author inPubMed Google Scholar * R Li


View author publications You can also search for this author inPubMed Google Scholar * P A Silveira View author publications You can also search for this author inPubMed Google Scholar * G


Churchill View author publications You can also search for this author inPubMed Google Scholar * D V Serreze View author publications You can also search for this author inPubMed Google


Scholar * E H Leiter View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to E H Leiter. RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Reifsnyder, P., Li, R., Silveira, P. _et al._ Conditioning the genome identifies additional diabetes resistance loci in Type I diabetes


resistant NOR/Lt mice. _Genes Immun_ 6, 528–538 (2005). https://doi.org/10.1038/sj.gene.6364241 Download citation * Received: 21 December 2004 * Revised: 06 June 2005 * Accepted: 07 June


2005 * Published: 14 July 2005 * Issue Date: 01 September 2005 * DOI: https://doi.org/10.1038/sj.gene.6364241 SHARE THIS ARTICLE Anyone you share the following link with will be able to read


this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative


KEYWORDS * mice * diabetes * autoimmunity * genetics * NOD