Intracellular dynamics of hippocampal place cells during virtual navigation

Intracellular dynamics of hippocampal place cells during virtual navigation


Play all audios:


ABSTRACT Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, here we measured the intracellular dynamics


of place cells by combining _in vivo_ whole-cell recordings with a virtual-reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual


environment to perform spatial behaviours. Robust place-cell activity was present during movement along a virtual linear track. From whole-cell recordings, we identified three subthreshold


signatures of place fields: an asymmetric ramp-like depolarization of the baseline membrane potential, an increase in the amplitude of intracellular theta oscillations, and a phase


precession of the intracellular theta oscillation relative to the extracellularly recorded theta rhythm. These intracellular dynamics underlie the primary features of place-cell rate and


temporal codes. The virtual-reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation. Access through your institution Buy or


subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online


access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


EXPERIENCE-DEPENDENT CONTEXTUAL CODES IN THE HIPPOCAMPUS Article 22 March 2021 HIPPOCAMPAL PLACE CODES ARE GATED BY BEHAVIORAL ENGAGEMENT Article Open access 21 April 2022 REMAPPING


REVISITED: HOW THE HIPPOCAMPUS REPRESENTS DIFFERENT SPACES Article 07 May 2024 REFERENCES * Moser, E. I., Kropff, E. & Moser, M. B. Place cells, grid cells, and the brain’s spatial


representation system. _Annu. Rev. Neurosci._ 31, 69–89 (2008) Article  CAS  Google Scholar  * O’Keefe, J. & Burgess, N. Dual phase and rate coding in hippocampal place cells:


theoretical significance and relationship to entorhinal grid cells. _Hippocampus_ 15, 853–866 (2005) Article  Google Scholar  * O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial


map. Preliminary evidence from unit activity in the freely-moving rat. _Brain Res._ 34, 171–175 (1971) Article  Google Scholar  * O’Keefe, J. & Recce, M. L. Phase relationship between


hippocampal place units and the EEG theta rhythm. _Hippocampus_ 3, 317–330 (1993) Article  Google Scholar  * Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase


precession in hippocampal neuronal populations and the compression of temporal sequences. _Hippocampus_ 6, 149–172 (1996) Article  CAS  Google Scholar  * Buzsáki, G. Theta oscillations in


the hippocampus. _Neuron_ 33, 325–340 (2002) Article  Google Scholar  * Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J. & McNaughton, B. L. Population dynamics and theta rhythm phase


precession of hippocampal place cell firing: a spiking neuron model. _Hippocampus_ 6, 271–280 (1996) Article  CAS  Google Scholar  * Jensen, O. & Lisman, J. E. Hippocampal CA3 region


predicts memory sequences: accounting for the phase precession of place cells. _Learn. Mem._ 3, 279–287 (1996) Article  CAS  Google Scholar  * Wallenstein, G. V. & Hasselmo, M. E.


GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. _J. Neurophysiol._ 78, 393–408 (1997) Article  CAS 


Google Scholar  * Kamondi, A., Acsady, L., Wang, X. J. & Buzsaki, G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells _in vivo_: activity-dependent


phase-precession of action potentials. _Hippocampus_ 8, 244–261 (1998) Article  CAS  Google Scholar  * Magee, J. C. Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal


neurons. _J. Neurophysiol._ 86, 528–532 (2001) Article  CAS  Google Scholar  * Mehta, M. R., Lee, A. K. & Wilson, M. A. Role of experience and oscillations in transforming a rate code


into a temporal code. _Nature_ 417, 741–746 (2002) Article  ADS  CAS  Google Scholar  * Harris, K. D. et al. Spike train dynamics predicts theta-related phase precession in hippocampal


pyramidal cells. _Nature_ 417, 738–741 (2002) Article  ADS  CAS  Google Scholar  * Lengyel, M., Szatmary, Z. & Erdi, P. Dynamically detuned oscillations account for the coupled rate and


temporal code of place cell firing. _Hippocampus_ 13, 700–714 (2003) Article  Google Scholar  * Gasparini, S. & Magee, J. C. State-dependent dendritic computation in hippocampal CA1


pyramidal neurons. _J. Neurosci._ 26, 2088–2100 (2006) Article  CAS  Google Scholar  * Maurer, A. P. & McNaughton, B. L. Network and intrinsic cellular mechanisms underlying theta phase


precession of hippocampal neurons. _Trends Neurosci._ 30, 325–333 (2007) Article  CAS  Google Scholar  * Lee, A. K., Manns, I. D., Sakmann, B. & Brecht, M. Whole-cell recordings in


freely moving rats. _Neuron_ 51, 399–407 (2006) Article  CAS  Google Scholar  * Lee, A. K., Epsztein, J. & Brecht, M. Head-anchored whole-cell recordings in freely moving rats. _Nature


Protocols_ 4, 385–392 (2009) Article  CAS  Google Scholar  * Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity with cellular


resolution in awake, mobile mice. _Neuron_ 56, 43–57 (2007) Article  CAS  Google Scholar  * Hölscher, C., Schnee, A., Dahmen, H., Setia, L. & Mallot, H. A. Rats are able to navigate in


virtual environments. _J. Exp. Biol._ 208, 561–569 (2005) Article  Google Scholar  * Chahl, J. S. & Srinivasan, M. V. Reflective surfaces for panoramic imaging. _Appl. Opt._ 36,


8275–8285 (1997) Article  ADS  CAS  Google Scholar  * Ranck, J. B. Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and


firing repertoires. _Exp. Neurol._ 41, 461–531 (1973) Article  Google Scholar  * Kandel, E. R. & Spencer, W. A. Electrophysiology of hippocampal neurons. II. After-potentials and


repetitive firing. _J. Neurophysiol._ 24, 243–259 (1961) Article  CAS  Google Scholar  * Quirk, M. C. & Wilson, M. A. Interaction between spike waveform classification and temporal


sequence detection. _J. Neurosci. Methods_ 94, 41–52 (1999) Article  CAS  Google Scholar  * McNaughton, B. L., Barnes, C. A. & O’Keefe, J. The contributions of position, direction, and


velocity to single unit activity in the hippocampus of freely-moving rats. _Exp. Brain Res._ 52, 41–49 (1983) Article  CAS  Google Scholar  * Nakazawa, K. et al. Hippocampal CA3 NMDA


receptors are crucial for memory acquisition of one-time experience. _Neuron_ 38, 305–315 (2003) Article  CAS  Google Scholar  * Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R.


D. & Kandel, E. R. Increased attention to spatial context increases both place field stability and spatial memory. _Neuron_ 42, 283–295 (2004) Article  CAS  Google Scholar  * Cacucci,


F., Wills, T. J., Lever, C., Giese, K. P. & O’Keefe, J. Experience-dependent increase in CA1 place cell spatial information, but not spatial reproducibility, is dependent on the


autophosphorylation of the alpha-isoform of the calcium/calmodulin-dependent protein kinase II. _J. Neurosci._ 27, 7854–7859 (2007) Article  CAS  Google Scholar  * Sun, L. D. & Wilson,


M. A. _Impaired and Enhanced Spatial Representations of the PSD-95 Knockout Mouse_. PhD thesis, Massachusetts Institute of Technology. (2003) * Margrie, T. W., Brecht, M. & Sakmann, B.


_In vivo_, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. _Pflugers Arch._ 444, 491–498 (2002) Article  CAS  Google Scholar  * Crochet, S.


& Petersen, C. C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. _Nature Neurosci._ 9, 608–610 (2006) Article  CAS  Google Scholar  * Wilson, M. A.


& McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. _Science_ 261, 1055–1058 (1993) Article  ADS  CAS  Google Scholar  * Guzowski, J. F., McNaughton, B. L., Barnes,


C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. _Nature Neurosci._ 2, 1120–1124 (1999) Article  CAS  Google


Scholar  * Henze, D. A. et al. Intracellular features predicted by extracellular recordings in the hippocampus _in vivo_ . _J. Neurophysiol._ 84, 390–400 (2000) Article  CAS  Google Scholar


  * Kandel, E. R. & Spencer, W. A. Electrophysiology of hippocampal neurons. IV. Fast prepotentials. _J. Neurophysiol._ 24, 272–285 (1961) Article  Google Scholar  * Wong, R. K. &


Prince, D. A. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. _Brain Res._ 159, 385–390 (1978) Article  CAS  Google Scholar  * Hafting, T., Fyhn, M.,


Bonnevie, T., Moser, M. B. & Moser, E. I. Hippocampus-independent phase precession in entorhinal grid cells. _Nature_ 453, 1248–1252 (2008) Article  ADS  CAS  Google Scholar  * Greene,


N. Environment mapping and other applications of world projections. _IEEE Comput. Graph. Appl._ 6, 21–29 (1986) Google Scholar  * Wong, A. A. & Brown, R. E. Visual detection, pattern


discrimination and visual acuity in 14 strains of mice. _Genes Brain Behav._ 5, 389–403 (2006) Article  CAS  Google Scholar  * Rinberg, D., Koulakov, A. & Gelperin, A. Sparse odor coding


in awake behaving mice. _J. Neurosci._ 26, 8857–8865 (2006) Article  CAS  Google Scholar  * Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in


freely moving mice. _Nature_ 451, 61–64 (2008) Article  ADS  CAS  Google Scholar  * Jacobs, G. H., Neitz, J. & Deegan, J. F. Retinal receptors in rodents maximally sensitive to


ultraviolet light. _Nature_ 353, 655–656 (1991) Article  ADS  CAS  Google Scholar  * Buzsáki, G., Leung, L. W. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat.


_Brain Res._ 287, 139–171 (1983) Article  Google Scholar  Download references ACKNOWLEDGEMENTS We thank E. Chaffin for help with mouse behaviour, J. Carmack and id Software for providing the


Quake2 code, A. Shishlov for programming advice, G. Buzsaki, J. Magee, H. Dahmen and D. Markowitz for discussions, and C. Brody, M. Berry and E. Civillico for comments on the manuscript.


This work was supported by the NIH (1R01MH083686-01, 5R01MH060651-09), a Helen Hay Whitney Fellowship (to C.D.H.), and a Patterson Trust Fellowship (to D.A.D.). AUTHOR CONTRIBUTIONS C.D.H.


performed behaviour and intracellular recording experiments with technical assistance from D.A.D. C.D.H. and D.A.D. performed extracellular recording experiments. F.C., D.A.D. and D.W.T.


designed, and C.D.H., F.C. and D.W.T. implemented, the virtual-reality instrumentation. F.C. performed virtual-reality software development. C.D.H. analysed all data with strategy and


methods contributions from all authors. C.D.H. and D.W.T. wrote the paper. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Princeton Neuroscience Institute,, Christopher D. Harvey, Forrest


Collman, Daniel A. Dombeck & David W. Tank * Lewis-Sigler Institute for Integrative Genomics,, Christopher D. Harvey, Forrest Collman, Daniel A. Dombeck & David W. Tank * Department


of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA, Christopher D. Harvey, Forrest Collman, Daniel A. Dombeck & David W. Tank Authors * Christopher D. Harvey


View author publications You can also search for this author inPubMed Google Scholar * Forrest Collman View author publications You can also search for this author inPubMed Google Scholar *


Daniel A. Dombeck View author publications You can also search for this author inPubMed Google Scholar * David W. Tank View author publications You can also search for this author inPubMed 


Google Scholar CORRESPONDING AUTHOR Correspondence to David W. Tank. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURES This file contains Supplementary Figures 1-12 and legends. (PDF 3729 kb)


POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5 RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Harvey, C., Collman, F., Dombeck, D. _et al._ Intracellular dynamics of hippocampal place cells during virtual navigation. _Nature_ 461,


941–946 (2009). https://doi.org/10.1038/nature08499 Download citation * Received: 08 July 2009 * Accepted: 15 September 2009 * Issue Date: 15 October 2009 * DOI:


https://doi.org/10.1038/nature08499 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative