Oxygen consumption in platelets as an adjunct diagnostic method for pediatric mitochondrial disease

Oxygen consumption in platelets as an adjunct diagnostic method for pediatric mitochondrial disease


Play all audios:


ABSTRACT BACKGROUND Diagnosing mitochondrial disease (MD) is a challenge. In addition to genetic analyses, clinical practice is to perform invasive procedures such as muscle biopsy for


biochemical and histochemical analyses. Blood cell respirometry is rapid and noninvasive. Our aim was to explore its possible role in diagnosing MD. METHODS Blood samples were collected from


113 pediatric patients, for whom MD was a differential diagnosis. A respiratory analysis model based on ratios (independent of mitochondrial specific content) was derived from a group of


healthy controls and tested on the patients. The diagnostic accuracy of platelet respirometry was evaluated against routine diagnostic investigation. RESULTS MD prevalence in the cohort was


16%. A ratio based on the respiratory response to adenosine diphosphate in the presence of complex I substrates had 96% specificity for disease and a positive likelihood ratio of 5.3. None


of the individual ratios had sensitivity above 50%, but a combined model had 72% sensitivity. CONCLUSION Normal findings of platelet respirometry are not able to rule out MD, but


pathological results make the diagnosis more likely and could strengthen the clinical decision to perform further invasive analyses. Our results encourage further study into the role of


blood respirometry as an adjunct diagnostic tool for MD. SIMILAR CONTENT BEING VIEWED BY OTHERS MITOCHONDRIAL FUNCTION IN PERIPHERAL BLOOD CELLS ACROSS THE HUMAN LIFESPAN Article Open access


07 February 2024 GENETIC TESTING FOR MITOCHONDRIAL DISEASE: THE UNITED KINGDOM BEST PRACTICE GUIDELINES Article Open access 13 December 2022 USE OF DUAL GENOMIC SEQUENCING TO SCREEN


MITOCHONDRIAL DISEASES IN PEDIATRICS: A RETROSPECTIVE ANALYSIS Article Open access 14 March 2023 MAIN For the clinician facing a severely sick child with indistinct but serious symptoms such


as seizures, hypotonia, or liver failure, mitochondrial disease (MD) is one of the conditions that need to be considered. While certain diagnoses have a characteristic clinical picture, and


some cases can be rapidly confirmed by targeted genetic testing, diagnosing MD is often a challenge (1, 2). Standardized clinical criteria have been proposed to facilitate a general


mitochondrial diagnosis and rely on a combination of symptoms and tests of varying difficulty (3, 4). Elevated blood lactate is an important indicator for MD, but is nonspecific and may be


caused by numerous systemic conditions such as hypoxia or sepsis (5). Cerebrospinal fluid lactate is more specific in diagnosing mitochondrial encephalopathy, but requires an invasive


procedure (6). Magnetic resonance imaging of the brain may show typical patterns (as in Leigh syndrome) or less specific pathology. Analysis of organic acids in urine, like lactate, is


noninvasive but may have low sensitivity if the patient is clinically stable (7). A muscle biopsy is often necessary to confirm the diagnosis. It is used for biochemical, histochemical, and,


in some cases, genetic analyses (1, 8, 9). Muscle biopsy is an invasive procedure requiring sedation or most often general anesthesia in children. Fresh muscle tissue is preferred over


frozen and patients need to be transferred to centers with accredited laboratories for such analyses (7). Physicians can obviously not order this investigation on too wide a suspicion, nor


expect expeditious results. While new methods of genetic testing facilitate large nuclear gene panels and whole-exome sequencing, and will likely play an increasingly important role in the


future, they are not considered first-line diagnostic tools. An accessible mitochondrial test derived from a normal blood sample would be of value to direct the early stages of diagnostic


investigations. Mitochondrial function in platelets has been suggested as a marker of systemic mitochondrial function and has been studied in a variety of conditions where mitochondrial


dysfunction is part of the pathology, such as amyotrophic lateral sclerosis, Alzheimer’s disease, and sepsis (10, 11, 12). Only a few studies have investigated blood cells from patients with


primary MD, mostly in lymphocytes. Results have indicated that blood cell mitochondria are affected in some primary MDs, but study populations have often been small (13, 14, 15, 16). Two


studies on lymphocyte respirometry suggest candidate measurements for diagnostic use (14, 16). To our knowledge, no published study has evaluated respirometry in blood cells as a diagnostic


method on a larger group of patients where MD was a differential diagnosis. The aim of this study was to investigate the value of platelet respirometry as a complement to existing diagnostic


tests for MD. The method is rapid and noninvasive and could be performed in the early stages of investigation. RESULTS CLINICAL DATA The study included 113 patients where MD was considered


a differential diagnosis. A wide pediatric age span was represented in the material, but most patients were under 5 years (Table 1). Central nervous system symptoms were heavily featured


among reported symptoms (Table 2). Thirty-three patients went through a more extensive clinical investigation including muscle biopsy, genetic testing, or both. Eighteen patients were


confirmed to have MD and the basis for these diagnoses is presented in Table 3. Five patients still had suspected but unconfirmed MD after extended investigation. These patients were


considered as not having MD for all calculations in the study. In the remaining 90 cases, routine clinical investigation did not indicate MD (Figure 1). EVALUATION OF DIAGNOSTIC RESPIRATORY


RATIOS Absolute values for platelet respirometry in the reference group and established reference bounds for respiratory ratios are shown in Table 4. Diagnostic evaluation of the six


separate tests (4 one-sided ratios and 1 two-sided ratio) and the combined model is presented in Table 5. Oxidative phosphorylation (OXPHOS) CImalate and pyruvate/digitonin, malate and


pyruvate successfully identified 4 out of 18 MD patients, with few false positives resulting in 96% specificity and a positive-likelihood ratio (PLR) of 5.3. Low values of Log(ETS


CI+II/Routine) and ΔADP (adenosine diphosphate)/ΔSuccinate identified 9 and 6 MD patients, respectively. The remaining two tests had no true positives. The sensitivity for the combined model


(positive here being defined as testing positive in any of the six tests) was 72% and the specificity 56%. No single test had higher sensitivity than 50%. Table 6 shows an overview of the


18 MD patients’ individual respirometry results in relation to other clinical tests. Thirteen out of the 18 MD patients were identified by at least one respiratory ratio. EXPLORATIVE


ANALYSES A correlation between high blood lactate and pathologic respirometry results has previously been described (14). We plotted respiratory ratios in relation to lactate values (Figure


2), and while no linear correlation was seen, selected tests in combination with high lactate improved specificity (Table 7). A low OXPHOS CIMP/DMP ratio in combination with high lactate had


99% specificity and a PLR of 21. Also, Log(ETS CI+II/Routine) and ΔADP/ΔSuccinate, respectively, combined with high lactate raised specificity and PLR. Positive result in all of the three


best tests had 100% specificity for MD, but this model only identified three of the patients. A scaled down version of the main model, using only the two most sensitive tests and counting a


positive result on either test or on both tests as positive, retained a sensitivity of 67% and raised specificity to 73% (Table 7). Finally, when applying stricter criteria for true


positive, defining confirmed diagnosis as confirmed by genetic testing, sensitivity and specificity for the three best tests and the combined model did not change conspicuously (Table 8).


DISCUSSION We show that platelet respirometry provides useful diagnostic information through a rapid and noninvasive procedure in pediatric patients, in whom MD was clinically considered a


differential diagnosis. Positive results substantially increase the likelihood of MD. Diagnosis of MD is a clinical challenge. MD is the most common group of inherited metabolic disorders,


but their diverse presentation and complex pathophysiology make them hard to investigate. Many of the patients are young children with severe symptoms and the invasiveness or inaccessibility


of the best diagnostic methods may delay or even prevent confirmation of diagnosis. The study population is a representative cohort of pediatric patients with clinically suspected MD at a


tertiary hospital, making the study highly relevant to clinicians investigating these often severely sick children. The prevalence of MD in the study population was 16%, in line with


previous reports from patient cohorts with similar clinical presentation (6, 14, 23). Oxygen consumption in platelets was assessed to evaluate mitochondrial function. We used ratios rather


than absolute values of oxygen consumption, circumventing the need to calculate and adjust for mitochondrial content in the samples. A low OXPHOS CIMP/DMP ratio had high specificity (96%)


and a PLR of 5.3, meaning that in this sample the likelihood of disease rose from 16 to 50% after testing positive. The ratio was constructed to be sensitive to CI dysfunction, as inadequate


response to ADP in the presence of CI substrates would lower the ratio (14, 16). While all true-positive findings had confirmed CI dysfunction according to the current standard


investigation, some patients with CI dysfunction were not caught by the test. The ratio OXPHOS CIMP/DMP had a low sensitivity, possibly only detecting severe dysfunction. Log(ETS


CI+II/Routine) and ΔADP/ΔSuccinate appear to better detect mild dysfunction; they were more sensitive and their true positives overlap those of OXPHOS CIMP/DMP. Pathological results in all


three best tests made the diagnosis of mitochondrial disorder very likely (in this material 100% specificity). Each ratio was chosen to test a different aspect of the ETS (electron transport


system) and thus a relatively low sensitivity for MD of any kind is expected when looking at the ratios individually. The combined model had a higher sensitivity at 72% but suffered from


many false positives. Although not enough to rule out disease on its own (negative likelihood ratio (NLR) of 0.5), platelet respirometry may be a useful part of an investigation. With the


currently used diagnostic procedures, each individual test is in most cases insufficient to rule out MD, and that is also the case with this method. Blood respirometry has the advantage of


swiftness, low invasiveness, and potential high availability and could be performed early in an investigation. In this material, two patients with normal muscle biopsy that later were


confirmed to have MD by genetic testing had pathologic respirometry. Plasma lactate is known to be a sensitive indicator of MD and can be obtained easily. A combination of high lactate and a


low OXPHOS CIMP/DMP ratio had 99% specificity (Table 7), comparable to the highest estimates of cerebrospinal fluid lactate, which is a markedly more invasive method (6). The likelihood for


disease in a patient testing positive rose from 16 to 80%. Cerebrospinal fluid lactate is primarily suitable to detect MD affecting the central nervous system and has lower specificity in


acutely ill patients (24, 25). Blood lactate values, in contrast to platelet respirometry results, were technically not independent from the clinical findings that informed the final


diagnosis. However, elevated lactate did not have a pivotal role for any of the MD diagnoses (Table 3). We hypothesized that a limitation of OXPHOS at complex V (CV) would yield higher ETS


than OXPHOS and result in a low OXPHOS CI+II/ETS CI+II ratio, indicating CV dysfunction. No patient had biochemically or genetically confirmed dysfunction in CV, so this hypothesis could not


be tested. A low OXPHOS CIMP/OXPHOS CIMPG ratio failed to single out any of the three patients with pyruvate dehydrogenase (PDH) deficiency, despite them being identified by other ratios.


Study limitations include insufficient information on any ongoing, potentially confounding medical treatment at the time of sampling (14). Further, the diversity of MD makes categorizing at


all levels problematic. Although a clinical definition of confirmed MD was thought to best serve the aims of this study, a strict biochemical or genetic definition may have facilitated more


detailed comparisons. (A strict genetic definition of true positive would arguably have had the benefit of less ambiguity. We included a _post hoc_ analysis with such a definition, in which


the main findings largely remains the same.) Also, the number of MD patients in the study was limited and many of the subdiagnoses were only represented by one patient each. The results


therefore need to be confirmed by further studies. Another reason such studies are warranted is that the circumstances of data collection and analysis in this pilot project did not allow for


strict blinding, something that would have to be readdressed in a follow-up investigation. Lastly, the inherent problem of tests with significant false-negative rates needs to be taken into


account (if future models do not improve sensitivity), making sure a negative result in platelet testing alone does not unintentionally refrain the diagnostician from pursuing further


investigations when needed. We do not expect blood cell respirometry to replace any part of the current diagnostic workup, but believe that the addition of this rapid test could potentially


reduce time to diagnosis for certain patients. When discussing the possible role of blood respirometry, it is important to consider not just the current clinical practices but also how they


are projected to evolve. As mentioned above, genetic methods such as next-generation sequencing, either in the form of large-scale gene panels, whole-exome sequencing or in some settings


whole-genome sequencing, are currently gaining traction (2, 26). Interestingly, as one recent review pointed out, improved genetic testing may actually place greater emphasis on less


invasive tests and methods to confirm pathogenicity (26). Blood cell respirometry may potentially be a part of the first-line screening arsenal, and as such it would not likely be replaced


by large-scale genetic testing any time soon. Additionally, respirometry being a functional analysis, we see it as a complement rather than a competitor to genetic tests. CONCLUSION We have


shown that pathologic platelet respirometry, as defined in this study, increased the likelihood of MD in a clinically relevant situation. Combining blood respirometry with blood lactate


further increased its diagnostic yield. As it is a fast method with low invasiveness and potentially high availability, these results encourage further study into the method’s possible role


as an adjunct diagnostic tool for MD. METHODS PATIENTS AND CONTROL SUBJECTS Patient samples were collected at the Skåne University Hospital (Lund, Sweden). Patients under the age of 18 years


presenting from July 2008 through December 2013, where MD was clinically considered as a differential diagnosis by the attending physician, were eligible for the study. Patients with


malignant disease were excluded. The pediatric control group comprised samples from patients undergoing anesthesia for minor elective surgery (inguinal hernia repair or phimosis surgery).


Control group samples were drawn before induction of anesthesia. Written informed consent was obtained from parents or guardians. The regional ethical review board of Lund, Sweden, approved


this study (59/2009 and 97/2009). All patients were given standard care and the study was conducted according to the Declaration of Helsinki. CLINICAL DATA AND ROUTINE DIAGNOSTIC ASSESSMENT


The standard care of patients included in the trial was not affected by the results of this study, as no patient was excluded from further clinical investigation based on a negative blood


cell respirometry. Clinical data were reported by clinicians and supplemented with review of medical records in Lund and at Sahlgrenska University Hospital, Gothenburg (where a majority of


the muscle biopsies and genetic analyses were performed). Muscle biopsies were analyzed according to established practices (including histology, spectrophotometry, and oximetry/respirometry,


normally all three) (7, 8). Genetic analyses included screening for suspected mutations with or without the addition of whole-exome sequencing. Patients were considered to have confirmed


disease when a specialist in pediatric neurology had documented the diagnosis of MD as confirmed in the patient journal, after compiling the results of the investigation. This definition


was, as with the inclusion criteria, chosen to most closely adhere to the clinical reality. Although in practice the Bernier criteria are generally used at the participating hospitals in


this study, there are neither national nor regional guidelines for diagnosing MD. A suspected case of MD not disproven during early investigation (due to, for instance, confirmation of an


alternative diagnosis or clinical recovery), was usually further evaluated with muscle biopsy, genetic testing, or both. The final diagnosis was preceded by discussion among several


specialists and was made independently of the experimental platelet model. Patients were defined as having “still suspected” MD if routine diagnostics could neither confirm nor rule out a


diagnosis. Patients where disease was “still suspected” were considered as not having MD in all calculations of diagnostic accury in platelets, unless specified otherwise. PLATELET


PREPARATION Depending on age and weight of the patient, 6–12 ml venous blood was drawn to EDTA vials. Blood samples were analyzed within 3–5 h as described previously (11, 17).


HIGH-RESOLUTION RESPIROMETRY Mitochondrial respiration was measured with an Oxygraph-2k (Oroboros Instruments, Innsbruck, Austria) following a previously described protocol (11, 17). The


platelet pellet was dissolved in a mitochondrial respiration medium (MiR05) containing sucrose 110 mM, HEPES 20 mM, taurine 20 mM, K-lactobionate 60 mM, MgCl2 3 mM, KH2PO4 10 mM, EGTA 0.5 


mM, bovine serum albumin 1 g/l, at pH 7.1 (ref. 18). The final cell concentration in the chamber was 19–200 × 106 cells per ml. Data were recorded with the DatLab Software 4.3 (Oroboros


Instruments, Innsbruck, Austria). EXPERIMENTAL PROTOCOL FOR PERMEABILIZED PLATELETS The analytic protocol is described in Figure 3. At the onset, the complexes of the respiratory system are


coupled to the process of OXPHOS, phosphorylating ADP to adenosine triphosphate (ATP) as oxygen is consumed. The respiratory state in which the respiratory system is active but artificially


uncoupled from OXPHOS is termed ETS (electron transport system). If neither OXPHOS nor artificial uncoupling drives the respiratory system, a certain amount of protons leaking over the inner


membrane may still drive the respiratory system to some extent, as the mitochondria pump the protons back to maintain the electrochemical potential over the inner mitochondrial membrane.


This state is called LEAK. First, Routine respiration was established. Subsequently, the detergent digitonin was added to permeabilize the plasma membrane and allow the mitochondria to


access exogenous (added) substrates. Malate (5 mM) and pyruvate (5 mM) were added simultaneously (respiratory state DMP). ADP (1 mM) was then added to induce OXPHOS with these substrates


(OXPHOS CIMP). Further, addition of glutamate (5 mM) provided additional electrons for complex I (CI), also via NADH (OXPHOS CIMPG). Convergent input of electrons through both CI and complex


II (CII) was achieved by the addition of succinate (10 mM), which is oxidized by CII. This achieves maximum OXPHOS capacity through CI and CII (OXPHOS CI+II). Next, proton leak over the


mitochondrial membrane was measured by adding the ATP synthase inhibitor oligomycin (1 μg/ml), blocking OXPHOS (LEAK CI+II). This was followed by titration of the uncoupler protonophore


carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone creating a chemically induced leak of protons over the inner mitochondrial membrane, thereby stimulating the ETS to maintain the


chemiosmotic proton gradient (ETS CI+CII). Subsequently, by adding CI inhibitor rotenone, the CII-dependent uncoupled respiration was measured (ETS CII). To adjust for nonmitochondrial


oxygen consumption by the cells, the complex III (CIII) inhibitor antimycin-A was added and this value was subtracted from each of the other parameters. Finally, tetramethylphenylenediamine


(0.5 mM) was added, driving complex IV (CIV) activity through the reduction of cytochrome _c_. To control oxygen consumed through the autoxidation of tetramethylphenylenediamine, CIV is


inhibited by azide (10 mM) and the remaining respiration is subtracted from the former value (CIV activity). From the measured parameters we constructed five ratios to cover different


aspects of mitochondrial dysfunction. We used ratios of respirometry measurements, as opposed to absolute values, thus circumventing the need to adjust for mitochondrial content in the


sample. This keeps the protocol simple, rapid, and more compatible with routine clinical use. A low OXPHOS CIMP/DMP ratio (in the absence of other findings indicating CII–V dysfunction) was


assumed to reflect dysfunction in CI or upstream (of CI) processes, such as pyruvate dehydrogenase deficiency, as only CI substrates are present in this state (13, 16). A low ETS


CI+CII/Routine ratio was assumed to reflect general dysfunction for all complexes except CV and a reduced reserve capacity of the respiratory system. The OXPHOS CI+II/ETS CI+II was assumed


to reflect CV dysfunction as respiration in the numerator but not in the denominator is limited by CV capacity. The ΔADP/ΔSuccinate ratio was defined to reflect either CI or CII dysfunction.


A high response to ADP (in the presence of CI substrates) in comparison with the sequential response to succinate would indicate CII dysfunction and raise the ratio. The opposite would


imply CI dysfunction. Finally, we assumed that a low OXPHOS CIMP/OXPHOS CIMPG ratio would indicate PDH deficiency. Transaminases in the malate-aspartate shuttle convert glutamate and


oxaloacetate to α-ketoglutarate and aspartate, replenishing the tricarboxylic acid cycle downstream of PDH. Increased oxygen consumption with the addition of glutamate could thus indicate a


limitation to mitochondrial respiration by PDH (19). STATISTICAL METHODS Respiratory parameters from a control group of 25 pediatric patients were used to establish reference intervals for


the respiratory ratios. The method for establishing reference intervals was adapted from the Clinical and Laboratory Standards Institute (CLSI) guidelines (20). Outliers were detected with


Tukey’s outlier labeling rule and two ratios had one outlier each removed (21). The five chosen ratios were tested for normal distribution with D’Agostinos test for skewness and the


Anscombe–Glynn test of kurtosis. All were found to have normal distribution except ETS CI+II/Routine. Logarithmic transformation (base 10) of that ratio produced normal distribution and was


used. The reference interval for each ratio was defined as the mean±1.96 standard deviations. With one-sided hypotheses for four ratios and a two-sided hypothesis for one, ratios were


treated as six separate (but not independent) tests with binary outcomes. Diagnostic evaluation was performed for each of the tests separately and for a combined model where positive test


result was defined as a positive result in one or more out of the six tests. The relation between test ratios and lactate value was examined with scatter plots. Diagnostic accuracy was


presented as sensitivity, specificity, positive and negative predictive value, and PLR and NLR. Likelihood ratios describe how much information a given test result adds compared with pretest


knowledge (22). High PLR indicates that the probability of disease rises after testing positive. A low NLR means a negative result lowers probability of disease. These ratios are


independent of disease prevalence. Statistical analyses were mainly performed with SPSS (IBM SPSS Statistics Software, version 23, IBM Corp., Armonk, NY) and GraphPad PRISM (GraphPad


Software, version 6.0d, GraphPad Software, Inc., La Jolla, CA). Tests of normality were performed using Free Statistics Software (Wessa, P. 2015, Office for Research Development and


Education, version 1.1.23-r7, URL http://www.wessa.net/) and confidence intervals for the diagnostic evaluation results were calculated with MedCalc (online version 15.11.4, MedCalc


Software, Ostend, Belgium). Statistical figures were constructed with GraphPad PRISM. REFERENCES * McFarland R, Taylor RW, Turnbull DM . A neurological perspective on mitochondrial disease.


_Lancet Neurol_ 2010;9:829–840. Article  CAS  PubMed  Google Scholar  * Parikh S, Goldstein A, Koenig MK _et al_. Diagnosis and management of mitochondrial disease: a consensus statement


from the Mitochondrial Medicine Society. _Genet Med_ 2015;17:689–701. Article  CAS  PubMed  Google Scholar  * Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR . Diagnostic


criteria for respiratory chain disorders in adults and children. _Neurology_ 2002;59:1406–1411. Article  CAS  PubMed  Google Scholar  * Wolf NI, Smeitink JA . Mitochondrial disorders: a


proposal for consensus diagnostic criteria in infants and children. _Neurology_ 2002;59:1402–1405. Article  PubMed  Google Scholar  * Haas RH, Parikh S, Falk MJ _et al_. Mitochondrial


disease: a practical approach for primary care physicians. _Pediatrics_ 2007;120:1326–1333. Article  PubMed  Google Scholar  * Yamada K, Toribe Y, Yanagihara K, Mano T, Akagi M, Suzuki Y .


Diagnostic accuracy of blood and CSF lactate in identifying children with mitochondrial diseases affecting the central nervous system. _Brain Dev_ 2012;34:92–97. Article  PubMed  Google


Scholar  * Haas RH, Parikh S, Falk MJ _et al_. The in-depth evaluation of suspected mitochondrial disease. _Mol Genet Metab_ 2008;94:16–37. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Tulinius MH, Holme E, Kristiansson B, Larsson NG, Oldfors A . Mitochondrial encephalomyopathies in childhood. I. Biochemical and morphologic investigations. _J Pediatr_


1991;119:242–250. Article  CAS  PubMed  Google Scholar  * Dinopoulos A, Smeitink J, ter Laak H . Unusual features of mitochondrial degeneration in skeletal muscle of patients with nuclear


complex I mutation. _Acta Neuropathol_ 2005;110:199–202. Article  PubMed  Google Scholar  * Mancuso M, Calsolaro V, Orsucci D _et al_. Mitochondria, cognitive impairment, and


Alzheimer's disease. _Int J Alzheimers Dis_ 2009: 2009. * Sjovall F, Morota S, Hansson MJ, Friberg H, Gnaiger E, Elmer E . Temporal increase of platelet mitochondrial respiration is


negatively associated with clinical outcome in patients with sepsis. _Crit Care_ 2010;14:R214. Article  PubMed  PubMed Central  Google Scholar  * Ehinger JK, Morota S, Hansson MJ, Paul G,


Elmer E . Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients. _J Neurol_ 2015;262:1493–1503. Article  CAS  PubMed  Google Scholar  * Kunz D, Luley C, Fritz


S _et al_. Oxygraphic evaluation of mitochondrial function in digitonin-permeabilized mononuclear cells and cultured skin fibroblasts of patients with chronic progressive external


ophthalmoplegia. _Biochem Mol Med_ 1995;54:105–111. Article  CAS  PubMed  Google Scholar  * Artuch R, Colome C, Playan A _et al_. Oxygen consumption measurement in lymphocytes for the


diagnosis of pediatric patients with oxidative phosphorylation diseases. _Clin Biochem_ 2000;33:481–485. Article  CAS  PubMed  Google Scholar  * Pecina P, Gnaiger E, Zeman J, Pronicka E,


Houstek J . Decreased affinity for oxygen of cytochrome-_c_ oxidase in Leigh syndrome caused by SURF1 mutations. _Am J Physiol Cell Physiol_ 2004;287:C1384–C1388. Article  CAS  PubMed 


Google Scholar  * Pecina P, Houšťková H, Mráček T _et al_. Noninvasive diagnostics of mitochondrial disorders in isolated lymphocytes with high resolution respirometry. _BBA Clin_


2014;2:62–71. Article  PubMed  PubMed Central  Google Scholar  * Sjovall F, Ehinger JK, Marelsson SE _et al_. Mitochondrial respiration in human viable platelets—methodology and influence of


gender, age and storage. _Mitochondrion_ 2013;13:7–14. Article  PubMed  Google Scholar  * Gnaiger E, Kuznetsov AV, Schneeberger S _et al_. Mitochondria in the cold In: Heldmaier G,


Klingenspor M eds. _Life in the Cold_. Heidelberg, Berlin, Germany and New York: Springer, 2000: 431–442. Book  Google Scholar  * Ehinger JK, Morota S, Hansson MJ, Paul G, Elmér E .


Mitochondrial respiratory function in peripheral blood cells from Huntington's disease patients. _Mov Disord Clin Pract_ 2016;3:472–482. Article  PubMed  PubMed Central  Google Scholar


  * Clinical and Laboratory Standards Institute (CLSI). _Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory: Approved Guideline_ 3rd ednCLSI Document C28-A3


Wayne, PA: Clinical and Laboratory Standards Institute, 2008. * Hoaglin DC, Iglewicz B . Fine-tuning some resistant rules for outlier labeling. _J Am Stat Assoc_ 1987;82:1147–1149. Article


  Google Scholar  * McGee S . Simplifying likelihood ratios. _J Gen Intern Med_ 2002;17:646–649. Article  PubMed  Google Scholar  * Lieber DS, Calvo SE, Shanahan K _et al_. Targeted exome


sequencing of suspected mitochondrial disorders. _Neurology_ 2013;80:1762–1770. Article  CAS  PubMed  PubMed Central  Google Scholar  * Hutchesson A, Preece MA, Gray G, Green A . Measurement


of lactate in cerebrospinal fluid in investigation of inherited metabolic disease. _Clin Chem_ 1997;43:158–161. CAS  PubMed  Google Scholar  * Chow SL, Rooney ZJ, Cleary MA, Clayton PT,


Leonard JV . The significance of elevated CSF lactate. _Arch Dis Child_ 2005;90:1188–1189. Article  CAS  PubMed  PubMed Central  Google Scholar  * Davison JE, Rahman S . Recognition,


investigation and management of mitochondrial disease. _Arch Dis Child_ 2017 (doi:10.1136/archdischild-2016-311370). Article  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We


thank Albana Shahini for technical support, Marie Palmquist and Ann-Cathrine Berg for patient identification and recruitment, and Michael Karlsson, Sarah Piel, and Imen Chamkha for


constructive input. We thank Erich Gnaiger for participating in protocol design for the Oroboros 02k Oxygraph. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Clinical Sciences,


Mitochondrial Medicine, Lund University, Lund, Sweden Emil Westerlund, Sigurður E Marelsson, Johannes K Ehinger, Fredrik Sjövall, Saori Morota, Eleonor Åsander Frostner, Magnus J Hansson 


& Eskil Elmér * Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden Anders Oldfors * Department of Pediatrics, The Queen Silvia Children’s


Hospital, University of Gothenburg, Gothenburg, Sweden Niklas Darin * Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden Johan Lundgren & Vineta Fellman


Authors * Emil Westerlund View author publications You can also search for this author inPubMed Google Scholar * Sigurður E Marelsson View author publications You can also search for this


author inPubMed Google Scholar * Johannes K Ehinger View author publications You can also search for this author inPubMed Google Scholar * Fredrik Sjövall View author publications You can


also search for this author inPubMed Google Scholar * Saori Morota View author publications You can also search for this author inPubMed Google Scholar * Eleonor Åsander Frostner View author


publications You can also search for this author inPubMed Google Scholar * Anders Oldfors View author publications You can also search for this author inPubMed Google Scholar * Niklas Darin


View author publications You can also search for this author inPubMed Google Scholar * Johan Lundgren View author publications You can also search for this author inPubMed Google Scholar *


Magnus J Hansson View author publications You can also search for this author inPubMed Google Scholar * Vineta Fellman View author publications You can also search for this author inPubMed 


Google Scholar * Eskil Elmér View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Emil Westerlund. ETHICS DECLARATIONS


COMPETING INTERESTS Drs Ehinger, Hansson, and Elmér and Åsander Frostner have equity interests in, and/or have received salary support from NeuroVive Pharmaceutical AB, a public company


developing pharmaceuticals in the field of mitochondrial medicine. The other authors declare no financial or commercial conflict of interest. ADDITIONAL INFORMATION STATEMENT OF FINANCIAL


SUPPORT This work was supported by the Swedish Research Council (Dr Elmér: 2011-3470 and Dr Fellman: 2011-3877), The Crafoord Foundation, Linnéa and Josef Carlsson’s Foundation, Swedish


government project and salary funding for clinically oriented medical research (ALF Grants), Skåne University Hospital funds, and regional research and development grants (Southern


healthcare region, Sweden). RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Westerlund, E., Marelsson, S., Ehinger, J. _et al._ Oxygen consumption in


platelets as an adjunct diagnostic method for pediatric mitochondrial disease. _Pediatr Res_ 83, 455–465 (2018). https://doi.org/10.1038/pr.2017.250 Download citation * Received: 03 May 2017


* Accepted: 19 September 2017 * Published: 15 November 2017 * Issue Date: February 2018 * DOI: https://doi.org/10.1038/pr.2017.250 SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative