A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids

A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids


Play all audios:


ABSTRACT The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content


(base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested


experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively


charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis


of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our


results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source


of novel functional molecules. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal


Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS A MATING MECHANISM TO GENERATE DIVERSITY FOR THE DARWINIAN SELECTION OF DNA-ENCODED SYNTHETIC MOLECULES Article 06 December 2021 SYNTHETIC DNA


APPLICATIONS IN INFORMATION TECHNOLOGY Article Open access 17 January 2022 DIRECTED EVOLUTION AND SELECTION OF BIOSTABLE L-DNA APTAMERS WITH A MIRROR-IMAGE DNA POLYMERASE Article Open access


06 June 2022 DATA AVAILABILITY The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files. The


molecular modelling data and related settings for computations that support the findings of this study are available in the Zenodo database (https://zenodo.org/) with the following record


2579703 (https://doi.org/10.5281/zenodo.2579703). REFERENCES * Westheimer, F. H. Why nature chose phosphates. _Science_ 235, 1173–1178 (1987). Article  CAS  Google Scholar  * Benner, S. A.


Understanding nucleic acids using synthetic chemistry. _Acc. Chem. Res._ 37, 784–797 (2004). Article  CAS  Google Scholar  * Benner, S. A. & Hutter, D. Phosphates, DNA, and the search


for nonterrean life: a second generation model for genetic molecules. _Bioorg. Chem._ 30, 62–80 (2002). Article  CAS  Google Scholar  * Malyshev, D. A. & Romesberg, F. E. The expanded


genetic alphabet. _Angew. Chem. Int. Ed._ 54, 11930–11944 (2015). Article  CAS  Google Scholar  * Pinheiro, V. B. & Holliger, P. The XNA world: progress towards replication and evolution


of synthetic genetic polymers. _Curr. Opin. Chem. Biol._ 16, 245–252 (2012). Article  CAS  Google Scholar  * Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and


evolution. _Science_ 336, 341–344 (2012). Article  CAS  Google Scholar  * Taylor, A. I. et al. Catalysts from synthetic genetic polymers. _Nature_ 518, 427–430 (2015). Article  CAS  Google


Scholar  * Malyshev, D. A. et al. A semi-synthetic organism with an expanded genetic alphabet. _Nature_ 509, 385–388 (2014). Article  CAS  Google Scholar  * Liu, C. et al. Phosphonomethyl


oligonucleotides as backbone-modified artificial genetic polymers. _J. Am. Chem. Soc._ 140, 6690–6699 (2018). Article  CAS  Google Scholar  * Zhang, S. L., Blain, J. C., Zielinska, D.,


Gryaznov, S. M. & Szostak, J. W. Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer. _Proc. Natl Acad. Sci. USA_ 110, 17732–17737 (2013). Article  CAS 


Google Scholar  * Ghadessy, F. J. et al. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. _Nat. Biotechnol._ 22, 755–759 (2004). Article  CAS  Google


Scholar  * Shaw, B. R. et al. Reading, writing, and modulating genetic information with boranophosphate mimics of nucleotides, DNA, and RNA. _Ann. NY Acad. Sci._ 1002, 12–29 (2003). Article


  CAS  Google Scholar  * King, D. J., Ventura, D. A., Brasier, A. R. & Gorenstein, D. G. Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. _Biochemistry_ 37,


16489–16493 (1998). Article  CAS  Google Scholar  * Meng, M. & Ducho, C. Oligonucleotide analogues with cationic backbone linkages. _Beilstein J. Org. Chem._ 14, 1293–1308 (2018).


Article  Google Scholar  * Nielsen, P. E. DNA analogues with nonphosphodiester backbones. _Annu. Rev. Biophys. Biomol. Struct._ 24, 167–183 (1995). Article  CAS  Google Scholar  * Steinbeck,


C. & Richert, C. The role of ionic backbones in RNA structure: an unusually stable non-Watson–Crick duplex of a nonionic analog in an apolar medium. _J. Am. Chem. Soc._ 120, 11576–11580


(1998). Article  CAS  Google Scholar  * Micklefield, J. Backbone modification of nucleic acids: synthesis, structure and therapeutic applications. _Curr. Med. Chem_. 8, 1157–1179 (2001).


Article  CAS  Google Scholar  * Summerton, J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. _Biochim. Biophys. Acta_ 1489, 141–158 (1999). Article  CAS


  Google Scholar  * Nielsen, P. E. & Egholm, M. An introduction to peptide nucleic acid. _Curr. Issues Mol. Biol._ 1, 89–104 (1999). CAS  PubMed  Google Scholar  * Dineva, M. A.,


Chakurov, S., Bratovanova, E. K., Devedjiev, I. & Petkov, D. D. Complete template-directed enzymatic synthesis of a potential antisense DNA containing 42 methylphosphonodiester bonds.


_Bioorgan. Med. Chem._ 1, 411–414 (1993). Article  CAS  Google Scholar  * Higuchi, H., Endo, T. & Kaji, A. Enzymic synthesis of oligonucleotides containing methylphosphonate


internucleotide linkages. _Biochemistry_ 29, 8747–8753 (1990). Article  CAS  Google Scholar  * Brudno, Y., Birnbaum, M. E., Kleiner, R. E. & Liu, D. R. An in vitro translation, selection


and amplification system for peptide nucleic acids. _Nat. Chem. Biol._ 6, 148–155 (2010). Article  CAS  Google Scholar  * Murakami, A., Blake, K. R. & Miller, P. S. Characterization of


sequence-specific oligodeoxyribonucleoside methylphosphonates and their interaction with rabbit globin mRNA. _Biochemistry_ 24, 4041–4046 (1985). Article  CAS  Google Scholar  * Arzumanov,


A. A. & Dyatkina, N. B. An alternative route for preparation of α-methylphosphonyl-β,γ-diphosphates of thymidine derivatives. _Nucleos. Nucleot._ 13, 1031–1037 (1994). Article  CAS 


Google Scholar  * Burgers, P. M. J. & Eckstein, F. Stereochemistry of internucleotide bond formation by polynucleotide phosphorylase from _Micrococcus luteus_. _Biochemistry_ 18, 450–454


(1979). Article  CAS  Google Scholar  * Xia, S. & Konigsberg, W. H. Mispairs with Watson–Crick base-pair geometry observed in ternary complexes of an RB69 DNA polymerase variant.


_Protein Sci._ 23, 508–513 (2014). Article  CAS  Google Scholar  * Genna, V., Gaspari, R., Dal Peraro, M. & De Vivo, M. Cooperative motion of a key positively charged residue and metal


ions for DNA replication catalyzed by human DNA polymerase-η. _Nucleic Acids Res._ 44, 2827–2836 (2016). Article  Google Scholar  * Genna, V., Donati, E. & De Vivo, M. The catalytic


mechanism of DNA and RNA polymerases. _ACS Catal._ 8, 11103–11118 (2018). Article  CAS  Google Scholar  * Genna, V., Carloni, P. & De Vivo, M. A strategically located Arg/Lys residue


promotes correct base paring during nucleic acid biosynthesis in polymerases. _J. Am. Chem. Soc._ 140, 3312–3321 (2018). Article  CAS  Google Scholar  * Genna, V., Colombo, M., De Vivo, M.


& Marcia, M. Second-shell basic residues expand the two-metal-ion architecture of DNA and RNA processing enzymes. _Structure_ 26, 40–50.e2 (2018). Article  CAS  Google Scholar  * Cozens,


C., Pinheiro, V. B., Vaisman, A., Woodgate, R. & Holliger, P. A short adaptive path from DNA to RNA polymerases. _Proc. Natl Acad. Sci. USA_ 109, 8067–8072 (2012). Article  CAS  Google


Scholar  * Wynne, S. A., Pinheiro, V. B., Holliger, P. & Leslie, A. G. Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising


highly Cy-dye labelled DNA. _PLoS ONE_ 8, e70892 (2013). Article  CAS  Google Scholar  * Bergen, K., Betz, K., Welte, W., Diederichs, K. & Marx, A. Structures of KOD and 9°N DNA


polymerases complexed with primer template duplex. _ChemBioChem_ 14, 1058–1062 (2013). Article  CAS  Google Scholar  * Genna, V., Vidossich, P., Ippoliti, E., Carloni, P. & De Vivo, M. A


self-activated mechanism for nucleic acid polymerization catalyzed by DNA/RNA polymerases. _J. Am. Chem. Soc._ 138, 14592–14598 (2016). Article  CAS  Google Scholar  * Nakamura, T., Zhao,


Y., Yamagata, Y., Hua, Y. J. & Yang, W. Watching DNA polymerase η make a phosphodiester bond. _Nature_ 487, 196–201 (2012). Article  CAS  Google Scholar  * Pinheiro, V. B., Loakes, D.


& Holliger, P. Synthetic polymers and their potential as genetic materials. _BioEssays_ 35, 113–122 (2013). Article  CAS  Google Scholar  * Dunn, M. R. & Chaput, J. C. Reverse


transcription of threose nucleic acid by a naturally occurring DNA polymerase. _ChemBioChem_ 17, 1804–1808 (2016). Article  CAS  Google Scholar  * Thiviyanathan, V. et al. Structure of


hybrid backbone methylphosphonate DNA heteroduplexes: effect of _R_ and I stereochemistry. _Biochemistry_ 41, 827–238 (2002). Article  CAS  Google Scholar  * Vyazovkina, E. V. et al.


Synthesis of specific diastereomers of a DNA methylphosphonate heptamer, d(CpCpApApApCpA), and stability of base pairing with the normal DNA octamer d(TpGpTpTpTpGpGpC). _Nucleic Acids Res._


22, 2404–2409 (1994). Article  CAS  Google Scholar  * Tsai, C. H., Chen, J. & Szostak, J. W. Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation


between product and template. _Proc. Natl Acad. Sci. USA_ 104, 14598–14603 (2007). Article  CAS  Google Scholar  * Burmeister, P. E. et al. Direct in vitro selection of a 2′-_O_-methyl


aptamer to VEGF. _Chem. Biol._ 12, 25–33 (2005). Article  CAS  Google Scholar  * Alves Ferreira-Bravo, I., Cozens, C., Holliger, P. & DeStefano, J. J. Selection of


2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. _Nucleic Acids Res._ 43, 9587–9599 (2015). PubMed  PubMed Central  Google


Scholar  * Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. _Nat. Chem._ 4, 183–187 (2012). Article 


CAS  Google Scholar  * Rangel, A. E., Chen, Z., Ayele, T. M. & Heemstra, J. M. In vitro selection of an XNA aptamer capable of small-molecule recognition. _Nucleic Acids Res_. 46,


8057–8068 (2018). Article  CAS  Google Scholar  * Lee, E. J., Lim, H. K., Cho, Y. S. & Hah, S. S. Peptide nucleic acids are an additional class of aptamers. _RSC Adv._ 3, 5828–5831


(2013). Article  CAS  Google Scholar  * Ichida, J. K. et al. An in vitro selection system for TNA. _J. Am. Chem. Soc._ 127, 2802–2803 (2005). Article  CAS  Google Scholar  * Bing, T., Yang,


X. J., Mei, H. C., Cao, Z. H. & Shangguan, D. H. Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. _Bioorg. Med. Chem._ 18,


1798–1805 (2010). Article  CAS  Google Scholar  * Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin.


_Science_ 243, 85–88 (1989). Article  CAS  Google Scholar  * Freitag, S., LeTrong, I., Klumb, L., Stayton, P. S. & Stenkamp, R. E. Structural studies of the streptavidin binding loop.


_Protein Sci_. 6, 1157–1166 (1997). Article  CAS  Google Scholar  * Houlihan, G., Arangundy-Franklin, S. & Holliger, P. Engineering and application of polymerases for synthetic genetics.


_Curr. Opin. Biotechnol._ 48, 168–179 (2017). Article  CAS  Google Scholar  * Krishna, H. & Caruthers, M. H. Alkynyl phosphonate DNA: a versatile ‘click’able backbone for DNA-based


biological applications. _J. Am. Chem. Soc._ 134, 11618–11631 (2012). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by Trinity College Cambridge


(S.A.,-F.), by the Medical Research Council (S.A.-F. A.I.T., S.P.-C., P.H., program no. MC_U105178804), by the Biotechnology and Biological Sciences Research Council (B.T.P., BBSRC grant no


BB/N01023x/1), by the NICHD/ NIH Intramural Research Program (A.V. and R.W.) and by a European Molecular Biology Organization (EMBO) Long-Term Fellowship (V.G., ALTF 103-2018). AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK Sebastian Arangundy-Franklin, Alexander I.


Taylor, Benjamin T. Porebski, Sew Peak-Chew & Philipp Holliger * Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona,


Spain Vito Genna & Modesto Orozco * Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA Alexandra Vaisman & Roger Woodgate * Department of Biochemistry and


Biomedicine, University of Barcelona, Barcelona, Spain Modesto Orozco Authors * Sebastian Arangundy-Franklin View author publications You can also search for this author inPubMed Google


Scholar * Alexander I. Taylor View author publications You can also search for this author inPubMed Google Scholar * Benjamin T. Porebski View author publications You can also search for


this author inPubMed Google Scholar * Vito Genna View author publications You can also search for this author inPubMed Google Scholar * Sew Peak-Chew View author publications You can also


search for this author inPubMed Google Scholar * Alexandra Vaisman View author publications You can also search for this author inPubMed Google Scholar * Roger Woodgate View author


publications You can also search for this author inPubMed Google Scholar * Modesto Orozco View author publications You can also search for this author inPubMed Google Scholar * Philipp


Holliger View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.A.-F. and P.H. conceived and designed the experiments. S.A.-F. performed all the


experiments except the SPR measurements (A.T. and B.T.P.), MS (S.P.-C.) and steady-state kinetics (A.V. and R.W.) and Modelling and MD simulations (V.G. and M.O.). All the authors discussed


the results, and jointly wrote the manuscript. CORRESPONDING AUTHOR Correspondence to Philipp Holliger. ETHICS DECLARATIONS CONFLICT OF INTEREST The authors declare no competing interests.


ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION


SUPPLEMENTARY INFORMATION Supplementary Methods, Supplementary figures, Supplementary tables and Supplementary references. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE


CITE THIS ARTICLE Arangundy-Franklin, S., Taylor, A.I., Porebski, B.T. _et al._ A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids.


_Nat. Chem._ 11, 533–542 (2019). https://doi.org/10.1038/s41557-019-0255-4 Download citation * Received: 09 March 2018 * Accepted: 15 March 2019 * Published: 22 April 2019 * Issue Date: June


2019 * DOI: https://doi.org/10.1038/s41557-019-0255-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative