
Reef fish functional traits evolve fastest at trophic extremes
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:

ABSTRACT Trophic ecology is thought to exert a profound influence on biodiversity, but the specifics of the process are rarely examined at large spatial and evolutionary scales. We
investigate how trophic position and diet breadth influence functional trait evolution in one of the most species-rich and complex vertebrate assemblages, coral reef fishes, within a
large-scale phylogenetic framework. We show that, in contrast with established theory, functional traits evolve fastest in trophic specialists with narrow diet breadths at both very low and
high trophic positions. Top trophic level specialists exhibit the most functional diversity, while omnivorous taxa with intermediate trophic positions and wide diet breadth have the least
functional diversity. Our results reveal the importance of trophic position in shaping evolutionary dynamics while simultaneously highlighting the incredible trophic and functional diversity
present in coral reef fish assemblages. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through
your institution ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PHYLOGENETIC
CONSERVATISM DRIVES NUTRIENT DYNAMICS OF CORAL REEF FISHES Article Open access 14 September 2021 THE EVOLUTION OF FAST-GROWING CORAL REEF FISHES Article 17 May 2023 TEMPERATURE, SPECIES
IDENTITY AND MORPHOLOGICAL TRAITS PREDICT CARBONATE EXCRETION AND MINERALOGY IN TROPICAL REEF FISHES Article Open access 22 February 2023 DATA AVAILABILITY Data and scripts used in this
study are stored in the Dryad Digital Repository (https://doi.org/10.5061/dryad.7t3d30c), which is open access. REFERENCES * Vermeij, G. J. The Mesozoic marine revolution: evidence from
snails, predators and grazers. _Paleobiology_ 3, 245–258 (1977). Article Google Scholar * Vamosi, S. M. The presence of other fish species affects speciation in threespine sticklebacks.
_Evol. Ecol. Res._ 5, 717–730 (2003). Google Scholar * Hector, A. et al. Plant diversity and productivity experiments in European grasslands. _Science_ 286, 1123–1127 (1999). Article CAS
PubMed Google Scholar * Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community
productivity. _PLoS ONE_ 4, e5695 (2009). Article PubMed PubMed Central CAS Google Scholar * Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and
ecosystems. _Nature_ 443, 989–992 (2006). Article CAS PubMed Google Scholar * Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology._Annu.
Rev. Ecol. Syst._ 33, 475–505 (2002). Article Google Scholar * Cavender‐Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology.
_Ecol. Lett._ 12, 693–715 (2009). Article PubMed Google Scholar * Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. _Ecol. Lett._
10, 522–538 (2007). Article PubMed Google Scholar * McGee, M. D. et al. Replicated divergence in cichlid radiations mirrors a major vertebrate innovation._Proc. Biol. Sci._ 283, 20151413
(2016). PubMed PubMed Central Google Scholar * Frederich, B., Olivier, D., Litsios, G., Alfaro, M. E. & Parmentier, E. Trait decoupling promotes evolutionary diversification of the
trophic and acoustic system of damselfishes._Proc. R. Soc. B_ 281, 20141047 (2014). Article PubMed PubMed Central Google Scholar * De Graaf, M., Machiels, M. A. M., Wudneh, T. &
Sibbing, F. A. Declining stocks of Lake Tana’s endemic _Barbus_ species flock (Pisces, Cyprinidae): natural variation or human impact? _Biol. Conserv._ 116, 277–287 (2004). Article Google
Scholar * Fedosov, A., Tiunov, A., Kiyashko, S. & Kantor, Y. I. Trophic diversification in the evolution of predatory marine gastropods of the family Terebridae as inferred from stable
isotope data. _Mar. Ecol. Prog. Ser._ 497, 143–156 (2014). Article Google Scholar * Martin, C. H. & Wainwright, P. C. Trophic novelty is linked to exceptional rates of morphological
diversification in two adaptive radiations of _Cyprinodon_ pupfish. _Evolution_ 65, 2197–2212 (2011). Article PubMed Google Scholar * Cooper, W. J. & Westneat, M. W. Form and function
of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches. _BMC Evol. Biol._ 9, 24 (2009). Article PubMed PubMed Central Google Scholar * Davis, A. et
al. Herbivory promotes dental disparification and macroevolutionary dynamics in grunters (Teleostei: Terapontidae), a freshwater adaptive radiation._Am. Nat._ 187, 320–333 (2016). Article
PubMed Google Scholar * Estes, S. & Arnold, S. J. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. _Am. Nat._ 169,
227–244 (2007). Article PubMed Google Scholar * Collar, D. C., O’Meara, B. C., Wainwright, P. C. & Near, T. J. Piscivory limits diversification of feeding morphology in centrarchid
fishes. _Evolution_ 63, 1557–1573 (2009). Article PubMed Google Scholar * Smith, A. J., Nelson-Maney, N., Parsons, K. J., Cooper, W. J. & Albertson, R. C. Body shape evolution in
sunfishes: divergent paths to accelerated rates of speciation in the centrarchidae. _Evol. Biol._ 42, 283–295 (2015). Article Google Scholar * Svanbäck, R., Quevedo, M., Olsson, J. &
Eklöv, P. Individuals in food webs: the relationships between trophic position, omnivory and among-individual diet variation. _Oecologia_ 178, 103–114 (2015). Article PubMed PubMed Central
Google Scholar * Van Valen, L. Morphological variation and width of ecological niche. _Am. Nat._ 99, 377–390 (1965). Article Google Scholar * Bolnick, D. I. et al. The ecology of
individuals: incidence and implications of individual specialization. _Am. Nat._ 161, 1–28 (2003). Article PubMed Google Scholar * Araújo, M. S., Bolnick, D. I. & Layman, C. A. The
ecological causes of individual specialisation. _Ecol. Lett._ 14, 948–958 (2011). Article PubMed Google Scholar * Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative
support for the niche variation hypothesis that more generalized populations also are more heterogeneous. _Proc. Natl Acad. Sci. USA_ 104, 10075–10079 (2007). Article CAS PubMed PubMed
Central Google Scholar * Hsu, Y. C., Shaner, P. J., Chang, C. I., Ke, L. & Kao, S. J. Trophic niche width increases with bill‐size variation in a generalist passerine: a test of niche
variation hypothesis. _J. Anim. Ecol._ 83, 450–459 (2014). Article PubMed Google Scholar * Findley, J. S. & Black, H. Morphological and dietary structuring of a Zambian insectivorous
bat community. _Ecology_ 64, 625–630 (1983). Article Google Scholar * Galeotti, P. & Rubolini, D. The niche variation hypothesis and the evolution of colour polymorphism in birds: a
comparative study of owls, nightjars and raptors. _Biol. J. Linn. Soc._ 82, 237–248 (2003). Article Google Scholar * Hay, M. E. & Fenical, W. Marine plant–herbivore interactions: the
ecology of chemical defense. _Annu. Rev. Ecol. Syst._ 19, 111–145 (1988). Article Google Scholar * Paré, P. W. & Tumlinson, J. H. Plant volatiles as a defense against insect
herbivores. _Plant Physiol._ 121, 325–332 (1999). Article PubMed PubMed Central Google Scholar * Agrawal, A. A. Macroevolution of plant defense strategies. _Trends Ecol. Evol._ 22,
103–109 (2007). Article PubMed Google Scholar * Barton, K. E. & Koricheva, J. The ontogeny of plant defense and herbivory: characterizing general patterns using meta‐analysis. _Am.
Nat._ 175, 481–493 (2010). Article PubMed Google Scholar * Price, S., Friedman, S. & Wainwright, P. How predation shaped fish: the impact of fin spines on body form evolution across
teleosts._Proc. R. Soc. B_ 282, 20151428 (2015). Article PubMed CAS PubMed Central Google Scholar * Lundvall, D., Svanbäck, R., Persson, L. & Byström, P. Size-dependent predation in
piscivores: interactions between predator foraging and prey avoidance abilities. _Can. J. Fish. Aquat. Sci._ 56, 1285–1292 (1999). Article Google Scholar * Mihalitsis, M. & Bellwood,
D. R. A morphological and functional basis for maximum prey size in piscivorous fishes. _PLoS ONE_ 12, e0184679 (2017). Article PubMed PubMed Central CAS Google Scholar * Wainwright, P.
C., McGee, M. D., Longo, S. J. & Hernandez, L. P. Origins, innovations, and diversification of suction feeding in vertebrates. _Integr. Comp. Biol._ 55, 134–145 (2015). Article PubMed
Google Scholar * Alfaro, M. E., Santini, F. & Brock, C. D. Do reefs drive diversification in marine teleosts? Evidence from the pufferfish and their allies (order Tetraodontiformes).
_Evolution_ 61, 2104–2126 (2007). Article PubMed Google Scholar * Cowman, P. F., Bellwood, D. R. & van Herwerden, L. Dating the evolutionary origins of wrasse lineages (Labridae) and
the rise of trophic novelty on coral reefs. _Mol. Phylogenet. Evol._ 52, 621–631 (2009). Article CAS PubMed Google Scholar * Price, S. A., Holzman, R., Near, T. J. & Wainwright, P.
C. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. _Ecol. Lett._ 14, 462–469 (2011). Article CAS PubMed Google Scholar * Price, S.
A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. _Evolution_ 67, 417–428 (2013).
Article PubMed Google Scholar * Santini, F. et al. Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). _J. Evol. Biol._ 26,
1003–1018 (2013). Article CAS PubMed Google Scholar * Floeter, S. R., Bender, M. G., Siqueira, A. C. & Cowman, P. F. Phylogenetic perspectives on reef fish functional traits. _Biol.
Rev._ 93, 131–151 (2018). Article PubMed Google Scholar * Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M.Confronting the coral reef crisis. _Nature_ 429, 827–833 (2004).
Article CAS PubMed Google Scholar * Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. _Nature_ 501, 539–542 (2013).
Article CAS PubMed Google Scholar * Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. _Science_ 321, 560–563
(2008). Article CAS PubMed Google Scholar * Claverie, T. & Wainwright, P. C. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. _PLoS ONE_ 9,
e112732 (2014). Article PubMed PubMed Central CAS Google Scholar * Mehta, R. S., Ward, A. B., Alfaro, M. E. & Wainwright, P. C. Elongation of the body in eels. _Integr. Comp. Biol._
50, 1091–1105 (2010). Article PubMed Google Scholar * Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous
extinction. _Proc. R. Soc. B_ 277, 1675–1683 (2010). Article PubMed PubMed Central Google Scholar * Bellwood, D. R. & Wainwright, P. C. in _Coral Reef Fishes: Dynamics and Diversity
in a Complex Ecosystem_ (ed. Sale, P. F.) Ch. 1 (Academic Press, San Diego, 2002). * Herrel, A., Vanhooydonck, B. & Van Damme, R. Omnivory in lacertid lizards: adaptive evolution or
constraint? _J. Evol. Biol._ 17, 974–984 (2004). Article CAS PubMed Google Scholar * Renaud, S., Chevret, P. & Michaux, J. Morphological vs. molecular evolution: ecology and
phylogeny both shape the mandible of rodents. _Zool. Scr._ 36, 525–535 (2007). Article Google Scholar * Huey, R. B. & Hertz, P. E. Is a jack-of-all-temperatures a master of none?
_Evolution_ 38, 441–444 (1984). PubMed Google Scholar * Smith, A. J., Nelson-Maney, N., Parsons, K. J., James Cooper, W. & Craig Albertson, R. Body shape evolution in sunfishes:
divergent paths to accelerated rates of speciation in the Centrarchidae. _Evol. Biol._ 42, 283–295 (2015). Article Google Scholar * Holliday, J. A. & Steppan, S. J. Evolution of
hypercarnivory: the effect of specialization on morphological and taxonomic diversity. _Paleobiology_ 30, 108–128 (2004). Article Google Scholar * Holzman, R., Collar, D. C., Mehta, R. S.
& Wainwright, P. C. An integrative modeling approach to elucidate suction-feeding performance. _J. Exp. Biol._ 215, 1–13 (2012). Article PubMed Google Scholar * Wainwright, P. C.
& Richard, B. A. Predicting patterns of prey use from morphology of fishes. _Environ. Biol. Fishes_ 44, 97–113 (1995). Article Google Scholar * Holzman, R., Day, S. W., Mehta, R. S.
& Wainwright, P. C. Jaw protrusion enhances forces exerted on prey by suction feeding fishes. _J. R. Soc. Interface_ 5, 1445–1457 (2008). Article PubMed PubMed Central Google Scholar
* Hoyle, J. A. & Keast, A. The effect of prey morphology and size on handling time in a piscivore, the largemouth bass (_Micropterus salmoides_). _Can. J. Zool._ 65, 1972–1977 (1987).
Article Google Scholar * Carroll, A. M., Wainwright, P. C., Huskey, S. H., Collar, D. C. & Turingan, R. G. Morphology predicts suction feeding performance in centrarchid fishes. _J.
Exp. Biol._ 207, 3873–3881 (2004). Article PubMed Google Scholar * Collar, D. C. & Wainwright, P. C. Discordance between morphological and mechanical diversity in the feeding
mechanism of centrarchid fishes. _Evolution_ 60, 2575–2584 (2006). Article PubMed Google Scholar * Lighthill, M. Hydromechanics of aquatic animal propulsion. _Annu. Rev. Fluid. Mech._ 1,
413–446 (1969). Article Google Scholar * Webb, P. W. Body form, locomotion and foraging in aquatic vertebrates. _Am. Zool._ 24, 107–120 (1984). Article Google Scholar * Brodersen, J.,
Post, D. M. & Seehausen, O.Upward adaptive radiation cascades: predator diversification induced by prey diversification._Trends Ecol. Evol._ 33, 59–70 (2017). Article PubMed Google
Scholar * Brown, J. S. & Vincent, T. L. Organization of predator–prey communities as an evolutionary game. _Evolution_ 46, 1269–1283 (1992). PubMed Google Scholar * Forbes, A. A.,
Powell, T. H., Stelinski, L. L., Smith, J. J. & Feder, J. L. Sequential sympatric speciation across trophic levels. _Science_ 323, 776–779 (2009). Article CAS PubMed Google Scholar *
Hood, G. R. et al. Sequential divergence and the multiplicative origin of community diversity. _Proc. Natl Acad. Sci. USA_ 112, E5980–E5989 (2015). CAS PubMed PubMed Central Google
Scholar * Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. _Glob. Ecol. Biogeogr._ 20, 231–240 (2011). Article Google Scholar *
Layman, C. A., Winemiller, K. O., Arrington, D. A. & Jepsen, D. B. Body size and trophic position in a diverse tropical food web. _Ecology_ 86, 2530–2535 (2005). Article Google Scholar
* Ansell, A., Gibson, R., Barnes, M. & Press, U. The ecological implications of small body size among coral-reef fishes. _Oceanogr. Mar. Biol._ 36, 373–411 (1998). Google Scholar *
Alfaro, M. E., Bolnick, D. I. & Wainwright, P. C. Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. _Am. Nat._ 165, E140–E154 (2005).
Article PubMed Google Scholar * Wainwright, P. C., Alfaro, M. E., Bolnick, D. I. & Hulsey, C. D. Many-to-one mapping of form to function: a general principle in organismal design?
_Integr. Comp. Biol._ 45, 256–262 (2005). Article PubMed Google Scholar * Froese, R. _Life-History Strategies of Recent Fishes: A Meta-Analysis._ PhD thesis, Christian-Albrecht
Universität (2005). * Bellwood, D. R., Hoey, A. S., Bellwood, O. & Goatley, C. H. Evolution of long-toothed fishes and the changing nature of fish–benthos interactions on coral reefs.
_Nat. Commun._ 5, 3144 (2014). Article PubMed CAS Google Scholar * Jones, R. S. Ecological relationships in Hawaiian and Johnston Island Acanthuridae (surgeonfishes). _Micronesica_ 4,
309–361 (1968). Google Scholar * Konow, N., Price, S., Abom, R., Bellwood, D. & Wainwright, P. Decoupled diversification dynamics of feeding morphology following a major functional
innovation in marine butterflyfishes. _Proc. R. Soc. B_ 284, 20170906 (2017). Article PubMed PubMed Central Google Scholar * German, D. P., Sung, A., Jhaveri, P. & Agnihotri, R. More
than one way to be an herbivore: convergent evolution of herbivory using different digestive strategies in prickleback fishes (Stichaeidae). _Zoology_ 118, 161–170 (2015). Article PubMed
Google Scholar * Gibb, A. C., Staab, K., Moran, C. & Ferry, L. A. The teleost intramandibular joint: a mechanism that allows fish to obtain prey unavailable to suction feeders. _Integr.
Comp. Biol._ 55, 85–96 (2015). Article PubMed Google Scholar * Konow, N., Bellwood, D. R., Wainwright, P. C. & Kerr, A. M. Evolution of novel jaw joints promote trophic diversity in
coral reef fishes. _Biol. J. Linn. Soc._ 93, 545–555 (2008). Article Google Scholar * Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological
roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. _Biol. J. Linn. Soc._ 120, 729–751 (2017). Google Scholar * Bellwood, D.
R., Goatley, C. H. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. _Biol. Rev._ 92, 878–901 (2017). Article PubMed Google Scholar *
Bellwood, D. R., Goatley, C. H., Brandl, S. J. & Bellwood, O. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. _Proc. R. Soc. B_ 281, 20133046
(2014). Article CAS PubMed PubMed Central Google Scholar * Lobato, F. L. et al. Diet and diversification in the evolution of coral reef fishes. _PLoS ONE_ 9, e102094 (2014). Article
PubMed PubMed Central CAS Google Scholar * Harmelin-Vivien, M. L. in _Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem_ (ed. Sale, P. F.) Ch. 12 (Academic Press, San
Diego, 2002). * Puk, L. D., Ferse, S. C. & Wild, C. Patterns and trends in coral reef macroalgae browsing: a review of browsing herbivorous fishes of the Indo-Pacific. _Rev. Fish Biol.
Fish._ 26, 53–70 (2016). Article Google Scholar * Branch, G., Harris, J., Parkins, C., Bustamante, R. & Eekhout, S. in _Plant–Animal Interactions in the Marine Benthos_ (eds John, D.
M., Hawkins, S. J. & Price, J. H.) Ch. 18 (Clarendon Press, Oxford, 1992). * Bejarano, S. et al. The shape of success in a turbulent world: wave exposure filtering of coral reef
herbivory. _Funct. Ecol._ 31, 1312–1324 (2017). Article Google Scholar * Hixon, M. in _The Ecology of Fishes on Coral Reefs_ (ed. Sale, P. F.) Ch. 17 (Academic Press, San Diego, 1991). *
Hobson, E. S. Feeding patterns among tropical reef fishes. _Am. Sci._ 63, 382–392 (1975). Google Scholar * Hobson, E. S. in _Predator–Prey Systems in Fisheries Management_ (ed. Clepper, H.)
231–242 (Sport Fishing Institute, Washington DC, 1979). * Kaufman, L. Feeding behavior and functional coloration of the Atlantic trumpetfish, _Aulostomus maculatus_. _Copeia_ 1976, 377–378
(1976). Article Google Scholar * Aronson, R. B. Foraging behavior of the west Atlantic trumpetfish, _Aulostomus maculatus_: use of large, herbivorous reef fishes as camouflage. _Bull. Mar.
Sci._ 33, 166–171 (1983). Google Scholar * Pietsch, T. W. & Grobecker, D. B. The compleat angler: aggressive mimicry in an antennariid anglerfish. _Science_ 201, 369–370 (1978).
Article CAS PubMed Google Scholar * Rhodes, K. L. & Tupper, M. H. A preliminary market-based analysis of the Pohnpei, Micronesia, grouper (Serranidae: Epinephelinae) fishery reveals
unsustainable fishing practices. _Coral Reefs_ 26, 335–344 (2007). Article Google Scholar * Hawkins, J. P. & Roberts, C. M. Effects of artisanal fishing on Caribbean coral reefs.
_Conserv. Biol._ 18, 215–226 (2004). Article Google Scholar * Bellwood, D. R., Hoey, A. S. & Choat, J. H. Limited functional redundancy in high diversity systems: resilience and
ecosystem function on coral reefs. _Ecol. Lett._ 6, 281–285 (2003). Article Google Scholar * Roberts, C. M. Effects of fishing on the ecosystem structure of coral reefs. _Conserv. Biol._
9, 988–995 (1995). Article PubMed Google Scholar * Brönmark, C. & Miner, J. G. Predator-induced phenotypical change in body morphology in crucian carp. _Science_ 258, 1348–1350
(1992). Article PubMed Google Scholar * Sfakiotakis, M., Lane, D. M. & Davies, J. B. C. Review of fish swimming modes for aquatic locomotion. _IEEE J. Ocean. Eng._ 24, 237–252 (1999).
Article Google Scholar * Wainwright, P. C., Bellwood, D. R. & Westneat, M. W. Ecomorphology of locomotion in labrid fishes. _Environ. Biol. Fishes_ 65, 47–62 (2002). Article Google
Scholar * Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. _Evolution_ 51, 1341–1351 (1997). Article PubMed Google Scholar * Beaulieu, J. M., Jhwueng, D.
C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. _Evolution_ 66, 2369–2383 (2012). Article PubMed Google
Scholar * Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. _Syst. Biol._ 64, 127–136 (2015). Article PubMed
Google Scholar * Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. _J. Fish Biol._ 81, 2030–2039 (2012). Article
CAS PubMed Google Scholar * R Development Core Team _R: A Language and Environment for Statistical Computing_ (R Foundation for Statistical Computing, 2018). * Froese, R. & Pauly, D.
_FishBase2000: Concepts Designs and Data Sources_ (ICLARM, 2000). * Mancinelli, G., Vizzini, S., Mazzola, A., Maci, S. & Basset, A. Cross-validation of _δ_ 15N and FishBase estimates of
fish trophic position in a Mediterranean lagoon: the importance of the isotopic baseline. _Estuar. Coast. Shelf Sci._ 135, 77–85 (2013). Article CAS Google Scholar * Smith, S. A.,
Beaulieu, J. M. & Donoghue, M. J. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. _BMC Evol. Biol._ 9, 37 (2009). Article PubMed
PubMed Central CAS Google Scholar * Borstein, S. R. & O'Meara, B. C. R. _AnnotationBustR: Extract Subsequences from GenBank Annotations v. 1.2_ (2018). * Borstein, S. R. &
O’Meara, B. C. AnnotationBustR: an R package to extract subsequences from GenBank annotations._PeerJ_ 6, e5179 (2018). Article PubMed PubMed Central CAS Google Scholar * Stamatakis, A.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. _Bioinformatics_ 30, 1312–1313 (2014). Article CAS PubMed PubMed Central Google Scholar *
Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. _Bioinformatics_ 28, 2689–2690 (2012). Article CAS PubMed Google
Scholar * Rohlf, F. J. _tpsDIG 2.26_ (Stony Brook Univ., 2016). * Myrberg, A. & Fuiman, L. A. in _Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem_ (ed. Sale, P. F.)
123–148 (Academic Press, San Diego, 2002). * Schmitz, L. & Wainwright, P. C. Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes. _Coral Reefs_ 30, 415–428 (2011).
Article Google Scholar * Adams, D. C. & Otarola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. _Methods Ecol. Evol._ 4,
393–399 (2013). Article Google Scholar * Bellwood, D. What are reef fishes?—Comment on the report by D. R. Robertson: Do coral-reef fish faunas have a distinctive taxonomic structure?
(_Coral Reefs_ 17: 179–186). _Coral Reefs_ 17, 187–189 (1998). Article Google Scholar * Robertson, D. Do coral-reef fish faunas have a distinctive taxonomic structure? _Coral Reefs_ 17,
179–186 (1998). Article Google Scholar * Fordyce, J. A., Nice, C. C., Hamm, C. A. & Forister, M. L. Quantifying diet breadth through ordination of host association. _Ecology_ 97,
842–849 (2016). Article CAS PubMed Google Scholar * Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations.
_Bioinformatics_ 24, 129–131 (2008). Article CAS PubMed Google Scholar * Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity.
_Ecol. Lett._ 9, 683–693 (2006). Article PubMed Google Scholar * Oksanen, J. et al. _vegan: Community Ecology Package v. 2.2-1_ (2015). * Stier, A. C., Geange, S. W., Hanson, K. M. &
Bolker, B. M. Predator density and timing of arrival affect reef fish community assembly. _Ecology_ 94, 1057–1068 (2013). Article PubMed Google Scholar * Laliberté, E. & Legendre, P.
A distance‐based framework for measuring functional diversity from multiple traits. _Ecology_ 91, 299–305 (2010). Article PubMed Google Scholar * Garland, T. Jr, Dickerman, A. W., Janis,
C. M. & Jones, J. A. Phylogenetic analysis of covariance by computer simulation. _Syst. Biol._ 42, 265–292 (1993). Article Google Scholar Download references ACKNOWLEDGEMENTS We thank
B. Matthews for comments on the manuscript. Research was supported by NSF DEB-1701913 to S.R.B. and B.C.O., NSF DEB-1556953 to P.C.W., and the Department of Ecology and Evolutionary Biology
at the University of Tennessee (S.R.B.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA Samuel R.
Borstein, James A. Fordyce & Brian C. O’Meara * Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA Peter C. Wainwright * School of Biological Sciences,
Monash University, Melbourne, Victoria, Australia Matthew D. McGee Authors * Samuel R. Borstein View author publications You can also search for this author inPubMed Google Scholar * James
A. Fordyce View author publications You can also search for this author inPubMed Google Scholar * Brian C. O’Meara View author publications You can also search for this author inPubMed
Google Scholar * Peter C. Wainwright View author publications You can also search for this author inPubMed Google Scholar * Matthew D. McGee View author publications You can also search for
this author inPubMed Google Scholar CONTRIBUTIONS S.R.B. and M.D.M. designed the study. S.R.B. and J.A.F. performed the analyses. S.R.B., J.A.F. and M.D.M. wrote the manuscript with
substantial comments from B.C.O. and P.C.W. CORRESPONDING AUTHOR Correspondence to Samuel R. Borstein. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests.
ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION
SUPPLEMENTARY INFORMATION Supplementary Methods, Results, Tables 5–20 and Figures 1–6 REPORTING SUMMARY SUPPLEMENTARY DATA Time-calibrated phylogeny of 1,545 acanthomorph fish used to
perform phylogenetic comparative analyses SUPPLEMENTARY TABLE 1 Species standard, fork and total lengths; scale in pixels; photo author; photo source; calculated trophic level and trophic
grouping. See Supplementary Information for citations of image sources in the source column SUPPLEMENTARY TABLE 2 GenBank accessions for 15 genes used in phylogenetic reconstruction
SUPPLEMENTARY TABLE 3 Digitized landmark coordinates for 1,545 species of reef acanthomorphs SUPPLEMENTARY TABLE 4 Number of species per trophic level by family for 92 families of reef
acanthomorphs RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Borstein, S.R., Fordyce, J.A., O’Meara, B.C. _et al._ Reef fish functional traits evolve
fastest at trophic extremes. _Nat Ecol Evol_ 3, 191–199 (2019). https://doi.org/10.1038/s41559-018-0725-x Download citation * Received: 13 May 2018 * Accepted: 21 October 2018 * Published:
26 November 2018 * Issue Date: February 2019 * DOI: https://doi.org/10.1038/s41559-018-0725-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:
Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative