Reef fish functional traits evolve fastest at trophic extremes

Reef fish functional traits evolve fastest at trophic extremes


Play all audios:


ABSTRACT Trophic ecology is thought to exert a profound influence on biodiversity, but the specifics of the process are rarely examined at large spatial and evolutionary scales. We


investigate how trophic position and diet breadth influence functional trait evolution in one of the most species-rich and complex vertebrate assemblages, coral reef fishes, within a


large-scale phylogenetic framework. We show that, in contrast with established theory, functional traits evolve fastest in trophic specialists with narrow diet breadths at both very low and


high trophic positions. Top trophic level specialists exhibit the most functional diversity, while omnivorous taxa with intermediate trophic positions and wide diet breadth have the least


functional diversity. Our results reveal the importance of trophic position in shaping evolutionary dynamics while simultaneously highlighting the incredible trophic and functional diversity


present in coral reef fish assemblages. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through


your institution ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PHYLOGENETIC


CONSERVATISM DRIVES NUTRIENT DYNAMICS OF CORAL REEF FISHES Article Open access 14 September 2021 THE EVOLUTION OF FAST-GROWING CORAL REEF FISHES Article 17 May 2023 TEMPERATURE, SPECIES


IDENTITY AND MORPHOLOGICAL TRAITS PREDICT CARBONATE EXCRETION AND MINERALOGY IN TROPICAL REEF FISHES Article Open access 22 February 2023 DATA AVAILABILITY Data and scripts used in this


study are stored in the Dryad Digital Repository (https://doi.org/10.5061/dryad.7t3d30c), which is open access. REFERENCES * Vermeij, G. J. The Mesozoic marine revolution: evidence from


snails, predators and grazers. _Paleobiology_ 3, 245–258 (1977). Article  Google Scholar  * Vamosi, S. M. The presence of other fish species affects speciation in threespine sticklebacks.


_Evol. Ecol. Res._ 5, 717–730 (2003). Google Scholar  * Hector, A. et al. Plant diversity and productivity experiments in European grasslands. _Science_ 286, 1123–1127 (1999). Article  CAS 


PubMed  Google Scholar  * Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community


productivity. _PLoS ONE_ 4, e5695 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and


ecosystems. _Nature_ 443, 989–992 (2006). Article  CAS  PubMed  Google Scholar  * Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology._Annu.


Rev. Ecol. Syst._ 33, 475–505 (2002). Article  Google Scholar  * Cavender‐Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology.


_Ecol. Lett._ 12, 693–715 (2009). Article  PubMed  Google Scholar  * Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. _Ecol. Lett._


10, 522–538 (2007). Article  PubMed  Google Scholar  * McGee, M. D. et al. Replicated divergence in cichlid radiations mirrors a major vertebrate innovation._Proc. Biol. Sci._ 283, 20151413


(2016). PubMed  PubMed Central  Google Scholar  * Frederich, B., Olivier, D., Litsios, G., Alfaro, M. E. & Parmentier, E. Trait decoupling promotes evolutionary diversification of the


trophic and acoustic system of damselfishes._Proc. R. Soc. B_ 281, 20141047 (2014). Article  PubMed  PubMed Central  Google Scholar  * De Graaf, M., Machiels, M. A. M., Wudneh, T. &


Sibbing, F. A. Declining stocks of Lake Tana’s endemic _Barbus_ species flock (Pisces, Cyprinidae): natural variation or human impact? _Biol. Conserv._ 116, 277–287 (2004). Article  Google


Scholar  * Fedosov, A., Tiunov, A., Kiyashko, S. & Kantor, Y. I. Trophic diversification in the evolution of predatory marine gastropods of the family Terebridae as inferred from stable


isotope data. _Mar. Ecol. Prog. Ser._ 497, 143–156 (2014). Article  Google Scholar  * Martin, C. H. & Wainwright, P. C. Trophic novelty is linked to exceptional rates of morphological


diversification in two adaptive radiations of _Cyprinodon_ pupfish. _Evolution_ 65, 2197–2212 (2011). Article  PubMed  Google Scholar  * Cooper, W. J. & Westneat, M. W. Form and function


of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches. _BMC Evol. Biol._ 9, 24 (2009). Article  PubMed  PubMed Central  Google Scholar  * Davis, A. et


al. Herbivory promotes dental disparification and macroevolutionary dynamics in grunters (Teleostei: Terapontidae), a freshwater adaptive radiation._Am. Nat._ 187, 320–333 (2016). Article 


PubMed  Google Scholar  * Estes, S. & Arnold, S. J. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. _Am. Nat._ 169,


227–244 (2007). Article  PubMed  Google Scholar  * Collar, D. C., O’Meara, B. C., Wainwright, P. C. & Near, T. J. Piscivory limits diversification of feeding morphology in centrarchid


fishes. _Evolution_ 63, 1557–1573 (2009). Article  PubMed  Google Scholar  * Smith, A. J., Nelson-Maney, N., Parsons, K. J., Cooper, W. J. & Albertson, R. C. Body shape evolution in


sunfishes: divergent paths to accelerated rates of speciation in the centrarchidae. _Evol. Biol._ 42, 283–295 (2015). Article  Google Scholar  * Svanbäck, R., Quevedo, M., Olsson, J. &


Eklöv, P. Individuals in food webs: the relationships between trophic position, omnivory and among-individual diet variation. _Oecologia_ 178, 103–114 (2015). Article  PubMed  PubMed Central


  Google Scholar  * Van Valen, L. Morphological variation and width of ecological niche. _Am. Nat._ 99, 377–390 (1965). Article  Google Scholar  * Bolnick, D. I. et al. The ecology of


individuals: incidence and implications of individual specialization. _Am. Nat._ 161, 1–28 (2003). Article  PubMed  Google Scholar  * Araújo, M. S., Bolnick, D. I. & Layman, C. A. The


ecological causes of individual specialisation. _Ecol. Lett._ 14, 948–958 (2011). Article  PubMed  Google Scholar  * Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative


support for the niche variation hypothesis that more generalized populations also are more heterogeneous. _Proc. Natl Acad. Sci. USA_ 104, 10075–10079 (2007). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Hsu, Y. C., Shaner, P. J., Chang, C. I., Ke, L. & Kao, S. J. Trophic niche width increases with bill‐size variation in a generalist passerine: a test of niche


variation hypothesis. _J. Anim. Ecol._ 83, 450–459 (2014). Article  PubMed  Google Scholar  * Findley, J. S. & Black, H. Morphological and dietary structuring of a Zambian insectivorous


bat community. _Ecology_ 64, 625–630 (1983). Article  Google Scholar  * Galeotti, P. & Rubolini, D. The niche variation hypothesis and the evolution of colour polymorphism in birds: a


comparative study of owls, nightjars and raptors. _Biol. J. Linn. Soc._ 82, 237–248 (2003). Article  Google Scholar  * Hay, M. E. & Fenical, W. Marine plant–herbivore interactions: the


ecology of chemical defense. _Annu. Rev. Ecol. Syst._ 19, 111–145 (1988). Article  Google Scholar  * Paré, P. W. & Tumlinson, J. H. Plant volatiles as a defense against insect


herbivores. _Plant Physiol._ 121, 325–332 (1999). Article  PubMed  PubMed Central  Google Scholar  * Agrawal, A. A. Macroevolution of plant defense strategies. _Trends Ecol. Evol._ 22,


103–109 (2007). Article  PubMed  Google Scholar  * Barton, K. E. & Koricheva, J. The ontogeny of plant defense and herbivory: characterizing general patterns using meta‐analysis. _Am.


Nat._ 175, 481–493 (2010). Article  PubMed  Google Scholar  * Price, S., Friedman, S. & Wainwright, P. How predation shaped fish: the impact of fin spines on body form evolution across


teleosts._Proc. R. Soc. B_ 282, 20151428 (2015). Article  PubMed  CAS  PubMed Central  Google Scholar  * Lundvall, D., Svanbäck, R., Persson, L. & Byström, P. Size-dependent predation in


piscivores: interactions between predator foraging and prey avoidance abilities. _Can. J. Fish. Aquat. Sci._ 56, 1285–1292 (1999). Article  Google Scholar  * Mihalitsis, M. & Bellwood,


D. R. A morphological and functional basis for maximum prey size in piscivorous fishes. _PLoS ONE_ 12, e0184679 (2017). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wainwright, P.


C., McGee, M. D., Longo, S. J. & Hernandez, L. P. Origins, innovations, and diversification of suction feeding in vertebrates. _Integr. Comp. Biol._ 55, 134–145 (2015). Article  PubMed


  Google Scholar  * Alfaro, M. E., Santini, F. & Brock, C. D. Do reefs drive diversification in marine teleosts? Evidence from the pufferfish and their allies (order Tetraodontiformes).


_Evolution_ 61, 2104–2126 (2007). Article  PubMed  Google Scholar  * Cowman, P. F., Bellwood, D. R. & van Herwerden, L. Dating the evolutionary origins of wrasse lineages (Labridae) and


the rise of trophic novelty on coral reefs. _Mol. Phylogenet. Evol._ 52, 621–631 (2009). Article  CAS  PubMed  Google Scholar  * Price, S. A., Holzman, R., Near, T. J. & Wainwright, P.


C. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. _Ecol. Lett._ 14, 462–469 (2011). Article  CAS  PubMed  Google Scholar  * Price, S.


A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. _Evolution_ 67, 417–428 (2013).


Article  PubMed  Google Scholar  * Santini, F. et al. Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). _J. Evol. Biol._ 26,


1003–1018 (2013). Article  CAS  PubMed  Google Scholar  * Floeter, S. R., Bender, M. G., Siqueira, A. C. & Cowman, P. F. Phylogenetic perspectives on reef fish functional traits. _Biol.


Rev._ 93, 131–151 (2018). Article  PubMed  Google Scholar  * Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M.Confronting the coral reef crisis. _Nature_ 429, 827–833 (2004).


Article  CAS  PubMed  Google Scholar  * Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. _Nature_ 501, 539–542 (2013).


Article  CAS  PubMed  Google Scholar  * Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. _Science_ 321, 560–563


(2008). Article  CAS  PubMed  Google Scholar  * Claverie, T. & Wainwright, P. C. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. _PLoS ONE_ 9,


e112732 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Mehta, R. S., Ward, A. B., Alfaro, M. E. & Wainwright, P. C. Elongation of the body in eels. _Integr. Comp. Biol._


50, 1091–1105 (2010). Article  PubMed  Google Scholar  * Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous


extinction. _Proc. R. Soc. B_ 277, 1675–1683 (2010). Article  PubMed  PubMed Central  Google Scholar  * Bellwood, D. R. & Wainwright, P. C. in _Coral Reef Fishes: Dynamics and Diversity


in a Complex Ecosystem_ (ed. Sale, P. F.) Ch. 1 (Academic Press, San Diego, 2002). * Herrel, A., Vanhooydonck, B. & Van Damme, R. Omnivory in lacertid lizards: adaptive evolution or


constraint? _J. Evol. Biol._ 17, 974–984 (2004). Article  CAS  PubMed  Google Scholar  * Renaud, S., Chevret, P. & Michaux, J. Morphological vs. molecular evolution: ecology and


phylogeny both shape the mandible of rodents. _Zool. Scr._ 36, 525–535 (2007). Article  Google Scholar  * Huey, R. B. & Hertz, P. E. Is a jack-of-all-temperatures a master of none?


_Evolution_ 38, 441–444 (1984). PubMed  Google Scholar  * Smith, A. J., Nelson-Maney, N., Parsons, K. J., James Cooper, W. & Craig Albertson, R. Body shape evolution in sunfishes:


divergent paths to accelerated rates of speciation in the Centrarchidae. _Evol. Biol._ 42, 283–295 (2015). Article  Google Scholar  * Holliday, J. A. & Steppan, S. J. Evolution of


hypercarnivory: the effect of specialization on morphological and taxonomic diversity. _Paleobiology_ 30, 108–128 (2004). Article  Google Scholar  * Holzman, R., Collar, D. C., Mehta, R. S.


& Wainwright, P. C. An integrative modeling approach to elucidate suction-feeding performance. _J. Exp. Biol._ 215, 1–13 (2012). Article  PubMed  Google Scholar  * Wainwright, P. C.


& Richard, B. A. Predicting patterns of prey use from morphology of fishes. _Environ. Biol. Fishes_ 44, 97–113 (1995). Article  Google Scholar  * Holzman, R., Day, S. W., Mehta, R. S.


& Wainwright, P. C. Jaw protrusion enhances forces exerted on prey by suction feeding fishes. _J. R. Soc. Interface_ 5, 1445–1457 (2008). Article  PubMed  PubMed Central  Google Scholar


  * Hoyle, J. A. & Keast, A. The effect of prey morphology and size on handling time in a piscivore, the largemouth bass (_Micropterus salmoides_). _Can. J. Zool._ 65, 1972–1977 (1987).


Article  Google Scholar  * Carroll, A. M., Wainwright, P. C., Huskey, S. H., Collar, D. C. & Turingan, R. G. Morphology predicts suction feeding performance in centrarchid fishes. _J.


Exp. Biol._ 207, 3873–3881 (2004). Article  PubMed  Google Scholar  * Collar, D. C. & Wainwright, P. C. Discordance between morphological and mechanical diversity in the feeding


mechanism of centrarchid fishes. _Evolution_ 60, 2575–2584 (2006). Article  PubMed  Google Scholar  * Lighthill, M. Hydromechanics of aquatic animal propulsion. _Annu. Rev. Fluid. Mech._ 1,


413–446 (1969). Article  Google Scholar  * Webb, P. W. Body form, locomotion and foraging in aquatic vertebrates. _Am. Zool._ 24, 107–120 (1984). Article  Google Scholar  * Brodersen, J.,


Post, D. M. & Seehausen, O.Upward adaptive radiation cascades: predator diversification induced by prey diversification._Trends Ecol. Evol._ 33, 59–70 (2017). Article  PubMed  Google


Scholar  * Brown, J. S. & Vincent, T. L. Organization of predator–prey communities as an evolutionary game. _Evolution_ 46, 1269–1283 (1992). PubMed  Google Scholar  * Forbes, A. A.,


Powell, T. H., Stelinski, L. L., Smith, J. J. & Feder, J. L. Sequential sympatric speciation across trophic levels. _Science_ 323, 776–779 (2009). Article  CAS  PubMed  Google Scholar  *


Hood, G. R. et al. Sequential divergence and the multiplicative origin of community diversity. _Proc. Natl Acad. Sci. USA_ 112, E5980–E5989 (2015). CAS  PubMed  PubMed Central  Google


Scholar  * Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. _Glob. Ecol. Biogeogr._ 20, 231–240 (2011). Article  Google Scholar  *


Layman, C. A., Winemiller, K. O., Arrington, D. A. & Jepsen, D. B. Body size and trophic position in a diverse tropical food web. _Ecology_ 86, 2530–2535 (2005). Article  Google Scholar


  * Ansell, A., Gibson, R., Barnes, M. & Press, U. The ecological implications of small body size among coral-reef fishes. _Oceanogr. Mar. Biol._ 36, 373–411 (1998). Google Scholar  *


Alfaro, M. E., Bolnick, D. I. & Wainwright, P. C. Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. _Am. Nat._ 165, E140–E154 (2005).


Article  PubMed  Google Scholar  * Wainwright, P. C., Alfaro, M. E., Bolnick, D. I. & Hulsey, C. D. Many-to-one mapping of form to function: a general principle in organismal design?


_Integr. Comp. Biol._ 45, 256–262 (2005). Article  PubMed  Google Scholar  * Froese, R. _Life-History Strategies of Recent Fishes: A Meta-Analysis._ PhD thesis, Christian-Albrecht


Universität (2005). * Bellwood, D. R., Hoey, A. S., Bellwood, O. & Goatley, C. H. Evolution of long-toothed fishes and the changing nature of fish–benthos interactions on coral reefs.


_Nat. Commun._ 5, 3144 (2014). Article  PubMed  CAS  Google Scholar  * Jones, R. S. Ecological relationships in Hawaiian and Johnston Island Acanthuridae (surgeonfishes). _Micronesica_ 4,


309–361 (1968). Google Scholar  * Konow, N., Price, S., Abom, R., Bellwood, D. & Wainwright, P. Decoupled diversification dynamics of feeding morphology following a major functional


innovation in marine butterflyfishes. _Proc. R. Soc. B_ 284, 20170906 (2017). Article  PubMed  PubMed Central  Google Scholar  * German, D. P., Sung, A., Jhaveri, P. & Agnihotri, R. More


than one way to be an herbivore: convergent evolution of herbivory using different digestive strategies in prickleback fishes (Stichaeidae). _Zoology_ 118, 161–170 (2015). Article  PubMed 


Google Scholar  * Gibb, A. C., Staab, K., Moran, C. & Ferry, L. A. The teleost intramandibular joint: a mechanism that allows fish to obtain prey unavailable to suction feeders. _Integr.


Comp. Biol._ 55, 85–96 (2015). Article  PubMed  Google Scholar  * Konow, N., Bellwood, D. R., Wainwright, P. C. & Kerr, A. M. Evolution of novel jaw joints promote trophic diversity in


coral reef fishes. _Biol. J. Linn. Soc._ 93, 545–555 (2008). Article  Google Scholar  * Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological


roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. _Biol. J. Linn. Soc._ 120, 729–751 (2017). Google Scholar  * Bellwood, D.


R., Goatley, C. H. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. _Biol. Rev._ 92, 878–901 (2017). Article  PubMed  Google Scholar  *


Bellwood, D. R., Goatley, C. H., Brandl, S. J. & Bellwood, O. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. _Proc. R. Soc. B_ 281, 20133046


(2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lobato, F. L. et al. Diet and diversification in the evolution of coral reef fishes. _PLoS ONE_ 9, e102094 (2014). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Harmelin-Vivien, M. L. in _Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem_ (ed. Sale, P. F.) Ch. 12 (Academic Press, San


Diego, 2002). * Puk, L. D., Ferse, S. C. & Wild, C. Patterns and trends in coral reef macroalgae browsing: a review of browsing herbivorous fishes of the Indo-Pacific. _Rev. Fish Biol.


Fish._ 26, 53–70 (2016). Article  Google Scholar  * Branch, G., Harris, J., Parkins, C., Bustamante, R. & Eekhout, S. in _Plant–Animal Interactions in the Marine Benthos_ (eds John, D.


M., Hawkins, S. J. & Price, J. H.) Ch. 18 (Clarendon Press, Oxford, 1992). * Bejarano, S. et al. The shape of success in a turbulent world: wave exposure filtering of coral reef


herbivory. _Funct. Ecol._ 31, 1312–1324 (2017). Article  Google Scholar  * Hixon, M. in _The Ecology of Fishes on Coral Reefs_ (ed. Sale, P. F.) Ch. 17 (Academic Press, San Diego, 1991). *


Hobson, E. S. Feeding patterns among tropical reef fishes. _Am. Sci._ 63, 382–392 (1975). Google Scholar  * Hobson, E. S. in _Predator–Prey Systems in Fisheries Management_ (ed. Clepper, H.)


231–242 (Sport Fishing Institute, Washington DC, 1979). * Kaufman, L. Feeding behavior and functional coloration of the Atlantic trumpetfish, _Aulostomus maculatus_. _Copeia_ 1976, 377–378


(1976). Article  Google Scholar  * Aronson, R. B. Foraging behavior of the west Atlantic trumpetfish, _Aulostomus maculatus_: use of large, herbivorous reef fishes as camouflage. _Bull. Mar.


Sci._ 33, 166–171 (1983). Google Scholar  * Pietsch, T. W. & Grobecker, D. B. The compleat angler: aggressive mimicry in an antennariid anglerfish. _Science_ 201, 369–370 (1978).


Article  CAS  PubMed  Google Scholar  * Rhodes, K. L. & Tupper, M. H. A preliminary market-based analysis of the Pohnpei, Micronesia, grouper (Serranidae: Epinephelinae) fishery reveals


unsustainable fishing practices. _Coral Reefs_ 26, 335–344 (2007). Article  Google Scholar  * Hawkins, J. P. & Roberts, C. M. Effects of artisanal fishing on Caribbean coral reefs.


_Conserv. Biol._ 18, 215–226 (2004). Article  Google Scholar  * Bellwood, D. R., Hoey, A. S. & Choat, J. H. Limited functional redundancy in high diversity systems: resilience and


ecosystem function on coral reefs. _Ecol. Lett._ 6, 281–285 (2003). Article  Google Scholar  * Roberts, C. M. Effects of fishing on the ecosystem structure of coral reefs. _Conserv. Biol._


9, 988–995 (1995). Article  PubMed  Google Scholar  * Brönmark, C. & Miner, J. G. Predator-induced phenotypical change in body morphology in crucian carp. _Science_ 258, 1348–1350


(1992). Article  PubMed  Google Scholar  * Sfakiotakis, M., Lane, D. M. & Davies, J. B. C. Review of fish swimming modes for aquatic locomotion. _IEEE J. Ocean. Eng._ 24, 237–252 (1999).


Article  Google Scholar  * Wainwright, P. C., Bellwood, D. R. & Westneat, M. W. Ecomorphology of locomotion in labrid fishes. _Environ. Biol. Fishes_ 65, 47–62 (2002). Article  Google


Scholar  * Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. _Evolution_ 51, 1341–1351 (1997). Article  PubMed  Google Scholar  * Beaulieu, J. M., Jhwueng, D.


C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. _Evolution_ 66, 2369–2383 (2012). Article  PubMed  Google


Scholar  * Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. _Syst. Biol._ 64, 127–136 (2015). Article  PubMed 


Google Scholar  * Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. _J. Fish Biol._ 81, 2030–2039 (2012). Article 


CAS  PubMed  Google Scholar  * R Development Core Team _R: A Language and Environment for Statistical Computing_ (R Foundation for Statistical Computing, 2018). * Froese, R. & Pauly, D.


_FishBase2000: Concepts Designs and Data Sources_ (ICLARM, 2000). * Mancinelli, G., Vizzini, S., Mazzola, A., Maci, S. & Basset, A. Cross-validation of _δ_ 15N and FishBase estimates of


fish trophic position in a Mediterranean lagoon: the importance of the isotopic baseline. _Estuar. Coast. Shelf Sci._ 135, 77–85 (2013). Article  CAS  Google Scholar  * Smith, S. A.,


Beaulieu, J. M. & Donoghue, M. J. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. _BMC Evol. Biol._ 9, 37 (2009). Article  PubMed


  PubMed Central  CAS  Google Scholar  * Borstein, S. R. & O'Meara, B. C. R. _AnnotationBustR: Extract Subsequences from GenBank Annotations v. 1.2_ (2018). * Borstein, S. R. &


O’Meara, B. C. AnnotationBustR: an R package to extract subsequences from GenBank annotations._PeerJ_ 6, e5179 (2018). Article  PubMed  PubMed Central  CAS  Google Scholar  * Stamatakis, A.


RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. _Bioinformatics_ 30, 1312–1313 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. _Bioinformatics_ 28, 2689–2690 (2012). Article  CAS  PubMed  Google


Scholar  * Rohlf, F. J. _tpsDIG 2.26_ (Stony Brook Univ., 2016). * Myrberg, A. & Fuiman, L. A. in _Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem_ (ed. Sale, P. F.)


123–148 (Academic Press, San Diego, 2002). * Schmitz, L. & Wainwright, P. C. Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes. _Coral Reefs_ 30, 415–428 (2011).


Article  Google Scholar  * Adams, D. C. & Otarola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. _Methods Ecol. Evol._ 4,


393–399 (2013). Article  Google Scholar  * Bellwood, D. What are reef fishes?—Comment on the report by D. R. Robertson: Do coral-reef fish faunas have a distinctive taxonomic structure?


(_Coral Reefs_ 17: 179–186). _Coral Reefs_ 17, 187–189 (1998). Article  Google Scholar  * Robertson, D. Do coral-reef fish faunas have a distinctive taxonomic structure? _Coral Reefs_ 17,


179–186 (1998). Article  Google Scholar  * Fordyce, J. A., Nice, C. C., Hamm, C. A. & Forister, M. L. Quantifying diet breadth through ordination of host association. _Ecology_ 97,


842–849 (2016). Article  CAS  PubMed  Google Scholar  * Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations.


_Bioinformatics_ 24, 129–131 (2008). Article  CAS  PubMed  Google Scholar  * Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity.


_Ecol. Lett._ 9, 683–693 (2006). Article  PubMed  Google Scholar  * Oksanen, J. et al. _vegan: Community Ecology Package v. 2.2-1_ (2015). * Stier, A. C., Geange, S. W., Hanson, K. M. &


Bolker, B. M. Predator density and timing of arrival affect reef fish community assembly. _Ecology_ 94, 1057–1068 (2013). Article  PubMed  Google Scholar  * Laliberté, E. & Legendre, P.


A distance‐based framework for measuring functional diversity from multiple traits. _Ecology_ 91, 299–305 (2010). Article  PubMed  Google Scholar  * Garland, T. Jr, Dickerman, A. W., Janis,


C. M. & Jones, J. A. Phylogenetic analysis of covariance by computer simulation. _Syst. Biol._ 42, 265–292 (1993). Article  Google Scholar  Download references ACKNOWLEDGEMENTS We thank


B. Matthews for comments on the manuscript. Research was supported by NSF DEB-1701913 to S.R.B. and B.C.O., NSF DEB-1556953 to P.C.W., and the Department of Ecology and Evolutionary Biology


at the University of Tennessee (S.R.B.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA Samuel R.


Borstein, James A. Fordyce & Brian C. O’Meara * Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA Peter C. Wainwright * School of Biological Sciences,


Monash University, Melbourne, Victoria, Australia Matthew D. McGee Authors * Samuel R. Borstein View author publications You can also search for this author inPubMed Google Scholar * James


A. Fordyce View author publications You can also search for this author inPubMed Google Scholar * Brian C. O’Meara View author publications You can also search for this author inPubMed 


Google Scholar * Peter C. Wainwright View author publications You can also search for this author inPubMed Google Scholar * Matthew D. McGee View author publications You can also search for


this author inPubMed Google Scholar CONTRIBUTIONS S.R.B. and M.D.M. designed the study. S.R.B. and J.A.F. performed the analyses. S.R.B., J.A.F. and M.D.M. wrote the manuscript with


substantial comments from B.C.O. and P.C.W. CORRESPONDING AUTHOR Correspondence to Samuel R. Borstein. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests.


ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION


SUPPLEMENTARY INFORMATION Supplementary Methods, Results, Tables 5–20 and Figures 1–6 REPORTING SUMMARY SUPPLEMENTARY DATA Time-calibrated phylogeny of 1,545 acanthomorph fish used to


perform phylogenetic comparative analyses SUPPLEMENTARY TABLE 1 Species standard, fork and total lengths; scale in pixels; photo author; photo source; calculated trophic level and trophic


grouping. See Supplementary Information for citations of image sources in the source column SUPPLEMENTARY TABLE 2 GenBank accessions for 15 genes used in phylogenetic reconstruction


SUPPLEMENTARY TABLE 3 Digitized landmark coordinates for 1,545 species of reef acanthomorphs SUPPLEMENTARY TABLE 4 Number of species per trophic level by family for 92 families of reef


acanthomorphs RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Borstein, S.R., Fordyce, J.A., O’Meara, B.C. _et al._ Reef fish functional traits evolve


fastest at trophic extremes. _Nat Ecol Evol_ 3, 191–199 (2019). https://doi.org/10.1038/s41559-018-0725-x Download citation * Received: 13 May 2018 * Accepted: 21 October 2018 * Published:


26 November 2018 * Issue Date: February 2019 * DOI: https://doi.org/10.1038/s41559-018-0725-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative