Molecular bottlebrush prodrugs as mono- and triplex combination therapies for multiple myeloma

Molecular bottlebrush prodrugs as mono- and triplex combination therapies for multiple myeloma


Play all audios:


ABSTRACT Cancer therapies often have narrow therapeutic indexes and involve potentially suboptimal combinations due to the dissimilar physical properties of drug molecules. Nanomedicine


platforms could address these challenges, but it remains unclear whether synergistic free-drug ratios translate to nanocarriers and whether nanocarriers with multiple drugs outperform


mixtures of single-drug nanocarriers at the same dose. Here we report a bottlebrush prodrug (BPD) platform designed to answer these questions in the context of multiple myeloma therapy. We


show that proteasome inhibitor (bortezomib)-based BPD monotherapy slows tumour progression in vivo and that mixtures of bortezomib, pomalidomide and dexamethasone BPDs exhibit in vitro


synergistic, additive or antagonistic patterns distinct from their corresponding free-drug counterparts. BPDs carrying a statistical mixture of three drugs in a synergistic ratio outperform


the free-drug combination at the same ratio as well as a mixture of single-drug BPDs in the same ratio. Our results address unanswered questions in the field of nanomedicine, offering design


principles for combination nanomedicines and strategies for improving current front-line monotherapies and combination therapies for multiple myeloma. Access through your institution Buy or


subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get


Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only


$21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ANALYSIS OF MULTI-DRUG CANCER


NANOMEDICINE Article Open access 15 May 2025 BCMA-TARGETED BORTEZOMIB NANOTHERAPY IMPROVES THERAPEUTIC EFFICACY, OVERCOMES RESISTANCE, AND MODULATES THE IMMUNE MICROENVIRONMENT IN MULTIPLE


MYELOMA Article Open access 11 December 2023 IN VITRO AND EX VIVO ANTI-MYELOMA EFFECTS OF NANOCOMPOSITE AS4S4/ZNS/FE3O4 Article Open access 26 October 2022 DATA AVAILABILITY All data


supporting the findings of this study are available within the Article and its Supplementary Information and can also be obtained from the corresponding authors upon reasonable request.


CHANGE HISTORY * _ 11 JUNE 2024 Editor’s Note: The Editorial team is currently investigating questions raised about the fluorescence images in Figs 3 and 5 presented in the Article. We will


update readers once we have further information and all parties have been given an opportunity to respond in full. _ * _ 13 MARCH 2023 A Correction to this paper has been published:


https://doi.org/10.1038/s41565-023-01345-y _ * _ 10 AUGUST 2023 A Correction to this paper has been published: https://doi.org/10.1038/s41565-023-01499-9 _ REFERENCES * Tibbitt, M. W.,


Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. _J. Am. Chem. Soc._138, 704–717 (2016). Article  CAS  PubMed  Google Scholar  * Shi, J., Kantoff, P. W., Wooster, R.


& Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. _Nat. Rev. Cancer_17, 20–37 (2017). Article  CAS  PubMed  Google Scholar  * Shi, J., Xiao, Z., Kamaly, N.


& Farokhzad, O. C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. _Acc. Chem. Res._44, 1123–1134 (2011). Article  CAS  PubMed  Google


Scholar  * Kakkar, A., Traverso, G., Farokhzad, O. C., Weissleider, R. & Langer, R. Evolution of macromolecular complexity in drug delivery systems. _Nat. Rev. Chem._1, 0063 (2017).


Article  CAS  Google Scholar  * Ma, L., Kohli, M. & Smith, A. Nanoparticles for combination drug therapy. _ACS Nano_7, 9518–9525 (2013). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Mignani, S., Bryszewska, M., Klajnert-Maculewicz, B., Zablocka, M. & Majoral, J.-P. Advances in combination therapies based on nanoparticles for efficacious cancer treatment:


an analytical report. _Biomacromolecules_16, 1–27 (2015). Article  CAS  PubMed  Google Scholar  * Zhang, R. X., Wong, H. L., Xue, H. Y., Eoh, J. Y. & Wu, X. Y. Nanomedicine of


synergistic drug combinations for cancer therapy—strategies and perspectives. _J. Control. Release_240, 489–503 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hu, Q., Sun,


W., Wang, C. & Gu, Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. _Adv. Drug Deliv. Rev._98, 19–34 (2016). Article  CAS  PubMed  Google Scholar  *


Shim, G., Kim, M.-G., Kim, D., Park, J. Y. & Oh, Y.-K. Nanoformulation-based sequential combination cancer therapy. _Adv. Drug Deliv. Rev._115, 57–81 (2017). Article  CAS  PubMed  Google


Scholar  * Jia, J. et al. Mechanisms of drug combinations: interaction and network perspectives. _Nat. Rev. Drug Discov._8, 111–128 (2009). Article  CAS  PubMed  Google Scholar  * Tardi, P.


et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. _Leuk. Res._33, 129–139 (2009). Article  CAS  PubMed  Google Scholar  *


Batist, G. et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. _Clin. Cancer Res._15, 692–700 (2009). Article  CAS  PubMed 


Google Scholar  * Lehar, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. _Nat. Biotechnol._27, 659–666 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Kolishetti, N. et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. _Proc. Natl Acad. Sci. USA_107,


17939–17944 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Deng, Z. J. et al. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for


potential triple-negative breast cancer treatment. _ACS Nano_7, 9571–9584 (2013). Article  CAS  PubMed  Google Scholar  * Aryal, S., Hu, C.-M. J. & Zhang, L. Polymeric nanoparticles with


precise ratiometric control over drug loading for combination therapy. _Mol. Pharmaceutics_8, 1401–1407 (2011). Article  CAS  Google Scholar  * Lammers, T. et al. Simultaneous delivery of


doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. _Biomaterials_30, 3466–3475 (2009). Article  CAS  PubMed  Google Scholar  * Wang, H. et al. Precise


engineering of prodrug cocktails into single polymeric nanoparticles for combination cancer therapy: extended and sequentially controllable drug release. _ACS Appl. Mater. Interfaces_9,


10567–10576 (2017). Article  CAS  PubMed  Google Scholar  * Zhang, L. et al. Enhancing solid tumor therapy with sequential delivery of dexamethasone and docetaxel engineered in a single


carrier to overcome stromal resistance to drug delivery. _J. Control. Release_294, 1–16 (2019). Article  CAS  PubMed  Google Scholar  * Cai, L. et al. Telodendrimer nanocarrier for


co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. _Biomaterials_37, 456–468 (2015). Article  CAS  PubMed  Google Scholar  *


Howlader, N. et al. SEER Cancer Statistics Review, 1975–2013, National Cancer Institute, Bethesda, MD, based on November 2015 SEER data submission, posted to the SEER website (2016);


https://seer.cancer.gov/archive/csr/1975_2013/ * Attal, M. et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. _N. Engl. J. Med._376, 1311–1320 (2017).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Nooka, A. K. et al. Consolidation and maintenance therapy with lenalidomide, bortezomib and dexamethasone (RVD) in high-risk myeloma


patients. _Leukemia_28, 690–693 (2014). Article  CAS  PubMed  Google Scholar  * Richardson, P. G. et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory


multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. _Lancet Oncol_. 20, 781–794 (2019). * Chanan-Khan, A. A. et al. Pomalidomide: the


new immunomodulatory agent for the treatment of multiple myeloma. _Blood Cancer J._3, e143 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dimopoulos, M. et al. Pomalidomide,


bortezomib, and dexamethasone for multiple myeloma previously treated with lenalidomide (OPTIMISMM): outcomes by prior treatment at first relapse. _Leukemia_35, 1722–1731 (2021). Article 


CAS  PubMed  Google Scholar  * Swami, A. et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. _Proc. Natl Acad. Sci. USA_111, 10287–10292 (2014). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Ashley, J. D. et al. Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo. _J. Med.


Chem._57, 5282–5292 (2014). Article  CAS  PubMed  Google Scholar  * Xu, W. et al. Acid-labile boronate-bridged dextran–bortezomib conjugate with up-regulated hypoxic tumor suppression.


_Chem. Commun._51, 6812–6815 (2015). Article  CAS  Google Scholar  * Lu, X. et al. Bortezomib dendrimer prodrug‐based nanoparticle system. _Adv. Funct. Mater._29, 1807941 (2019). Article 


Google Scholar  * Zhu, J. et al. Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis


therapy. _Nanoscale_10, 18387–18397 (2018). Article  CAS  PubMed  Google Scholar  * Detappe, A., Bustoros, M., Mouhieddine, T. H. & Ghoroghchian, P. P. Advancements in nanomedicine for


multiple myeloma. _Trends Mol. Med._24, 560–574 (2018). Article  CAS  PubMed  Google Scholar  * Mu, C.-F. et al. Targeted drug delivery for tumor therapy inside the bone marrow.


_Biomaterials_155, 191–202 (2018). Article  CAS  PubMed  Google Scholar  * Zhong, W., Zhang, X., Zhao, M., Wu, J. & Lin, D. Advancements in nanotechnology for the diagnosis and treatment


of multiple myeloma. _Biomater. Sci._8, 4692–4711 (2020). Article  CAS  PubMed  Google Scholar  * Ashley, J. D. et al. Dual carfilzomib and doxorubicin–loaded liposomal nanoparticles for


synergistic efficacy in multiple myeloma. _Mol. Cancer Ther._15, 1452–1459 (2016). Article  CAS  PubMed  Google Scholar  * Soodgupta, D. et al. Small molecule MYC inhibitor conjugated to


integrin-targeted nanoparticles extends survival in a mouse model of disseminated multiple myeloma. _Mol. Cancer Ther._14, 1286–1294 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Deshantri, A. K. et al. Complete tumor regression by liposomal bortezomib in a humanized mouse model of multiple myeloma. _Hemasphere_4, e463 (2020). Article  PubMed  PubMed


Central  Google Scholar  * Deshantri, A. K. et al. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. _J. Control. Release_296,


232–240 (2019). Article  CAS  PubMed  Google Scholar  * Nguyen, H. V.-T. et al. Scalable synthesis of multivalent macromonomers for ROMP. _ACS Macro Lett._7, 472–476 (2018). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Liu, J. et al. ‘Brush-first’ method for the parallel synthesis of photocleavable, nitroxide-labeled PEG star polymers. _J. Am. Chem. Soc._134,


16337–16344 (2012). Article  CAS  PubMed  Google Scholar  * Sowers, M. A. et al. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. _Nat. Commun._5,


5460 (2014). Article  PubMed  Google Scholar  * Stubelius, A., Lee, S. & Almutairi, A. The chemistry of boronic acids in nanomaterials for drug delivery. _Acc. Chem. Res._52, 3108–3119


(2019). Article  CAS  PubMed  Google Scholar  * Antonio, J. P. M., Russo, R., Carvalho, C. P., Cal, P. M. S. D. & Gois, P. M. P. Boronic acids as building blocks for the construction of


therapeutically useful bioconjugates. _Chem. Soc. Rev._48, 3513–3536 (2019). Article  CAS  PubMed  Google Scholar  * Brooks, W. L. A. & Sumerlin, B. S. Synthesis and applications of


boronic acid-containing polymers: from materials to medicine. _Chem. Rev._116, 1375–1397 (2016). Article  CAS  PubMed  Google Scholar  * Graham, B. J., Windsor, I. W., Gold, B. & Raines,


R. T. Boronic acid with high oxidative stability and utility in biological contexts. _Proc. Natl Acad. Sci. USA_118, e2013691118 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Millennium Pharmaceuticals, Inc. Approval Package for Application Number 21-602/S-015 (Velcade). _Center for Drug Evaluation and Research_ (2008). * Merz, M. et al. Subcutaneous versus


intravenous bortezomib in two different induction therapies for newly diagnosed multiple myeloma: an interim analysis from the prospective GMMG-MM5 trial. _Haematologica_100, 964–969 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Fink, E. C. et al. CrbnI391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. _Blood_132,


1535–1544 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hemeryck, A. et al. Tissue distribution and depletion kinetics of bortezomib and bortezomib-related radioactivity in


male rats after single and repeated intravenous injection of 14C-bortezomib. _Cancer Chemother. Pharmacol._60, 777–787 (2007). Article  CAS  PubMed  Google Scholar  * Sanchorawala, V. et


al. A phase 1/2 study of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. _Blood_130, 597–605 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Summers, H. D. et al. Statistical analysis of nanoparticle dosing in a dynamic cellular system. _Nat. Nanotechnol._6, 170–174 (2011). Article  CAS  PubMed  Google Scholar  * Rees, P., Wills,


J. W., Brown, M. R., Barnes, C. M. & Summers, H. D. The origin of heterogeneous nanoparticle uptake by cells. _Nat. Commun._10, 2341 (2019). Article  PubMed  PubMed Central  Google


Scholar  * Lancet, J. E. et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary


acute myeloid leukemia. _J. Clin. Oncol._36, 2684–2692 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mitchell, M. J. et al. Engineering precision nanoparticles for drug


delivery. _Nat. Rev. Drug Discov._20, 101–124 (2021). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank the NIH-NCI (1R01CA220468-01 (J.A.J., P.P.G.) and


R01CA205954 (I.M.G.)), the Leukemia and Lymphoma Society and the National Science Foundation (Graduate Research Fellowship (H.V.-T.N.)) for supporting this research. This work was further


supported in part by the Koch Institute Core Grant P30-CA14051 from the NCI. A.D. acknowledges support from the International Myeloma Foundation, the Fondation Française pour la Recherche


contre le Myélome et les Gammapathies (FFRMG) and Inserm Cancer. A.D., J.A.J. and I.M.G. acknowledge support from the Stand Up to Cancer Dream Team Multiple Myeloma grant. P.P.G.


acknowledges the generous support of the Charles W. and Jennifer C. Johnson Clinical Investigator Fund as well as the Kathryn Fox Samway Foundation. AUTHOR INFORMATION Author notes * These


authors contributed equally: Alexandre Detappe, Hung V.-T. Nguyen. AUTHORS AND AFFILIATIONS * Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA Alexandre Detappe,


 Hung V.-T. Nguyen, Michael P. Agius, Clelia Mathieu, Nang K. Su, Irene M. Ghobrial & P. Peter Ghoroghchian * Harvard Medical School, Boston, MA, USA Alexandre Detappe, Hung V.-T.


Nguyen, Michael P. Agius, Clelia Mathieu, Nang K. Su, Irene M. Ghobrial & P. Peter Ghoroghchian * Institut de Cancérologie Strasbourg Europe, Strasbourg, France Alexandre Detappe *


Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA Hung V.-T. Nguyen, Yivan Jiang, Wencong Wang, Samantha L. Kristufek & Jeremiah A. Johnson * Window


Therapeutics, Boston, MA, USA Hung V.-T. Nguyen & Yivan Jiang * Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David J. Lundberg & 


Sachin Bhagchandani * Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA Jeremiah A. Johnson * Broad Institute of MIT and Harvard,


Cambridge, MA, USA Jeremiah A. Johnson Authors * Alexandre Detappe View author publications You can also search for this author inPubMed Google Scholar * Hung V.-T. Nguyen View author


publications You can also search for this author inPubMed Google Scholar * Yivan Jiang View author publications You can also search for this author inPubMed Google Scholar * Michael P. Agius


View author publications You can also search for this author inPubMed Google Scholar * Wencong Wang View author publications You can also search for this author inPubMed Google Scholar *


Clelia Mathieu View author publications You can also search for this author inPubMed Google Scholar * Nang K. Su View author publications You can also search for this author inPubMed Google


Scholar * Samantha L. Kristufek View author publications You can also search for this author inPubMed Google Scholar * David J. Lundberg View author publications You can also search for this


author inPubMed Google Scholar * Sachin Bhagchandani View author publications You can also search for this author inPubMed Google Scholar * Irene M. Ghobrial View author publications You


can also search for this author inPubMed Google Scholar * P. Peter Ghoroghchian View author publications You can also search for this author inPubMed Google Scholar * Jeremiah A. Johnson


View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS J.A.J., P.P.G., I.M.G., A.D. and H.V.-T.N. conceived the project idea. H.V.-T.N., Y.J.,


W.W. and S.L.K. synthesized and characterized the materials. A.D., M.P.A. and C.M. performed the biological experiments. D.J.L. performed the computational simulations. S.B. conducted the


cryogenic electron microscopy studies. All authors helped in analysing the results. J.A.J., P.P.G., I.M.G., A.D. and H.V.-T.N. wrote the paper. All authors read and edited the manuscript.


CORRESPONDING AUTHORS Correspondence to Irene M. Ghobrial, P. Peter Ghoroghchian or Jeremiah A. Johnson. ETHICS DECLARATIONS COMPETING INTERESTS A.D., H.V.-T.N., Y.J., I.M.G., P.P.G. and


J.A.J. are named inventors on a patent application (US patent application no. 16/825,269) jointly filed by the Massachusetts Institute of Technology and the Dana-Farber Cancer Institute on


the Btz macromolecular PIs described in this work. H.V.-T.N., Y.J. and J.A.J. are co-founders and shareholders of Window Therapeutics, which seeks to translate this technology to clinical


cancer therapies. The other authors declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Nanotechnology_ thanks Jo Caers, Twan Lammers and the other, anonymous,


reviewer(s) for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published


maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–37, Tables 1 and 2, materials/general methods/instrumentation and synthesis


procedures. REPORTING SUMMARY RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement


with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and


applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Detappe, A., Nguyen, H.VT., Jiang, Y. _et al._ Molecular bottlebrush prodrugs as mono- and triplex combination


therapies for multiple myeloma. _Nat. Nanotechnol._ 18, 184–192 (2023). https://doi.org/10.1038/s41565-022-01310-1 Download citation * Received: 26 February 2021 * Accepted: 06 December 2022


* Published: 26 January 2023 * Issue Date: February 2023 * DOI: https://doi.org/10.1038/s41565-022-01310-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read


this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative