High-sensitivity magnetometry with a single atom in a superposition of two circular rydberg states

High-sensitivity magnetometry with a single atom in a superposition of two circular rydberg states


Play all audios:


ABSTRACT Superpositions of states with macroscopically different properties, named ‘cats’ after Schrödinger’s Gedanken experiment, are extraordinarily sensitive probes of their environment.


They can be used to investigate the decoherence mechanism and the quantum-to-classical transition1,2,3,4,5, as well as to realize quantum-enabled sensors6 with promising applications. We


report here the creation of a ‘circular cat’, namely an atom in a superposition of two circular Rydberg states with huge opposite magnetic momenta. It is an exquisite probe of the magnetic


field, able to perform a single-shot detection of a 13 nT field in only 20 μs. This single-atom cat is as sensitive as a set of 1,800 ordinary atoms, demonstrating the usefulness of Rydberg


state engineering for quantum-enabled technologies. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more


Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MINUTE-SCALE SCHRÖDINGER-CAT STATE OF SPIN-5/2 ATOMS Article 01 November 2024 HIGH FREQUENCY MAGNETOMETRY WITH AN ENSEMBLE OF


SPIN QUBITS IN HEXAGONAL BORON NITRIDE Article Open access 06 January 2024 QUANTUM-ENHANCED SENSING ON OPTICAL TRANSITIONS THROUGH FINITE-RANGE INTERACTIONS Article 30 August 2023 DATA


AVAILABILITY The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. REFERENCES * Greiner, M.,


Mandel, O., Hänsch, T. W. & Bloch, I. Collapse and revival of the matter wave field of a Bose–Einstein condensate. _Nature_ 519, 51–54 (2002). Article  ADS  Google Scholar  * Raimond,


J.-M. & Haroche, S. _Exploring the Quantum_ (Oxford Univ. Press, New York, 2006). * Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their


decoherence. _Nature_ 455, 510–514 (2008). Article  ADS  Google Scholar  * Wang, C. et al. A Schrödinger cat living in two boxes. _Science_ 352, 1087–1091 (2016). Article  ADS  MathSciNet 


Google Scholar  * Johnson, K. G., Wong-Campos, J. D., Neyenhuis, B., Mizrahi, J. & MonroeUltrafast, C. Creation of large Schrödinger cat states of an atom. _Nat. Commun._ 8, 697 (2017).


Article  ADS  Google Scholar  * Facon, A. et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. _Nature_ 535, 262–265 (2016). Article  ADS  Google Scholar  *


Ripka, P. Review of fluxgate sensors. _Sens. Actuat. A_ 33, 129–141 (1992). Article  Google Scholar  * Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V.


Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. _Rev. Mod. Phys._ 65, 413–497 (1993). Article  ADS  Google Scholar  *


Sander, T. H. et al. Magnetoencephalography with a chip-scale atomic magnetometer. _Biomed. Opt. Express_ 3, 981–990 (2012). Article  Google Scholar  * Le Sage, D. et al. Optical magnetic


imaging of living cells. _Nature_ 496, 486–489 (2013). Article  ADS  Google Scholar  * Jensen, K. et al. Non-invasive detection of animal nerve impulses with an atomic magnetometer operating


near quantum limited sensitivity. _Sci. Rep._ 6, 29638 (2016). Article  ADS  Google Scholar  * Swithenby, S. J. SQUIDs and their applications in the measurement of weak magnetic fields. _J.


Phys. E_ 13, 801–813 (1980). Article  ADS  Google Scholar  * Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. _Nature_


422, 596–599 (2003). Article  ADS  Google Scholar  * Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. _Phys. Rev. Lett._ 104, 133601 (2010). Article  ADS 


Google Scholar  * Bal, M., Deng, C., Orgiazzi, J.-L., Ong, F. R. & Lupascu, A. Ultrasensitive magnetic field detection using a single artificial atom. _Nat. Commun._ 3, 1324 (2012).


Article  Google Scholar  * Wildermuth, S. et al. Bose–Einstein condensates: microscopic magnetic-field imaging. _Nature_ 435, 440 (2005). Article  ADS  Google Scholar  * Vengalattore, M. et


al. High-resolution magnetometry with a spinor Bose–Einstein condensate. _Phys. Rev. Lett._ 98, 200801 (2007). Article  ADS  Google Scholar  * Ockeloen, C. F., Schmied, R., Riedel, M. F.


& Treutlein, P. Quantum metrology with a scanning probe atom interferometer. _Phys. Rev. Lett._ 111, 143001 (2013). Article  ADS  Google Scholar  * Müssel, W., Strobel, H., Linnemann,


D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose–Einstein condensates. _Phys. Rev. Lett._ 113, 103004 (2014). Article  ADS  Google


Scholar  * Ruster, T. et al. Entanglement-based DC magnetometry with separated ions. _Phys. Rev. X_ 7, 031050 (2017). Google Scholar  * Taylor, J. M. et al. High-sensitivity diamond


magnetometer with nanoscale resolution. _Nat. Phys._ 4, 810–816 (2008). Article  Google Scholar  * Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient


conditions. _Nature_ 455, 648–651 (2008). Article  ADS  Google Scholar  * Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. _Nature_ 455, 644–647


(2008). Article  ADS  Google Scholar  * Maiwald, R. et al. Stylus ion trap for enhanced access and sensing. _Nat. Phys._ 5, 551–554 (2009). Article  Google Scholar  * Baumgart, I., Cai,


J.-M., Retzker, A., Plenio, M. B. & Wunderlich, Ch Ultrasensitive magnetometer using a single atom. _Phys. Rev. Lett._ 116, 240801 (2016). Article  ADS  Google Scholar  * Chalopin, T. et


al. Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom. _Nat. Commun._ 9, 4955 (2018). * Signoles, A. et al. Coherent transfer between low-angular-momentum


and circular Rydberg states. _Phys. Rev. Lett._ 118, 253603 (2017). Article  ADS  Google Scholar  * Patsch, S. et al. Fast and accurate circularization of a Rydberg atom. _Phys. Rev. A_ 97,


053418 (2018). Article  ADS  Google Scholar  * Nguyen, T. L. et al. Towards quantum simulation with circular Rydberg atoms. _Phys. Rev. X_ 8, 011032 (2018). Google Scholar  * Hanneke, D.,


Fogwell Hoogerheide, S. & Gabrielse, G. Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment. _Phys. Rev. A_ 83, 052122 (2011). Article  ADS 


Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank Ch. Koch and S. Patsch for useful discussions. The authors acknowledge financial support from the European Union under


the Research and Innovation action project ‘RYSQ’ (640378) and from the Agence Nationale de la Recherche under project ‘SNOCAR’ (167754). AUTHOR INFORMATION Author notes * These authors


contributed equally: E. K. Dietsche, A. Larrouy. AUTHORS AND AFFILIATIONS * Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, Paris, France E. K.


Dietsche, A. Larrouy, S. Haroche, J. M. Raimond, M. Brune & S. Gleyzes Authors * E. K. Dietsche View author publications You can also search for this author inPubMed Google Scholar * A.


Larrouy View author publications You can also search for this author inPubMed Google Scholar * S. Haroche View author publications You can also search for this author inPubMed Google


Scholar * J. M. Raimond View author publications You can also search for this author inPubMed Google Scholar * M. Brune View author publications You can also search for this author inPubMed 


Google Scholar * S. Gleyzes View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS E.K.D., A.L., J.M.R., S.H., M.B. and S.G. contributed to the


experimental set-up. E.K.D. and A.L. collected the data and analysed the results. S.G. supervised the experiment. All authors discussed the results and the manuscript. CORRESPONDING AUTHOR


Correspondence to S. Gleyzes. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral


with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figures 1–8 RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Dietsche, E.K., Larrouy, A., Haroche, S. _et al._ High-sensitivity magnetometry with a single atom in a superposition of two


circular Rydberg states. _Nat. Phys._ 15, 326–329 (2019). https://doi.org/10.1038/s41567-018-0405-4 Download citation * Received: 25 July 2018 * Accepted: 10 December 2018 * Published: 21


January 2019 * Issue Date: April 2019 * DOI: https://doi.org/10.1038/s41567-018-0405-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative