Measuring cigarette smoking-induced cortical dopamine release: a [11c]flb-457 pet study

Measuring cigarette smoking-induced cortical dopamine release: a [11c]flb-457 pet study


Play all audios:


ABSTRACT Striatal dopamine (DA) is thought to have a fundamental role in the reinforcing effects of tobacco smoking and nicotine. Microdialysis studies indicate that nicotine also increases


DA in extrastriatal brain areas, but much less is known about its role in addiction. High-affinity D2/3 receptor radiotracers permit the measurement of cortical DA in humans using positron


emission tomography (PET). [11C]FLB-457 PET scans were conducted in 10 nicotine-dependent daily smokers after overnight abstinence and reinstatement of smoking. Voxel-wise


[11C]-FLB-457-binding potential (BPND) in the frontal lobe, insula, and limbic regions was estimated in the two conditions. Paired _t_-tests showed BPND values were reduced following smoking


(an indirect index of DA release). The overall peak _t_ was located in the cingulate gyrus, which was part of a larger medial cluster (BPND change −12.1±9.4%) and this survived false


discovery rate correction for multiple comparisons. Clusters were also identified in the left anterior cingulate cortex/medial frontal gyrus, bilateral prefrontal cortex (PFC), bilateral


amygdala, and the left insula. This is the first demonstration of tobacco smoking-induced cortical DA release in humans; it may be the result of both pharmacological (nicotine) and


non-pharmacological factors (tobacco cues). Abstinence increased craving but had minimal cognitive effects, thus limiting correlation analyses. However, given that the cingulate cortex, PFC,


insula, and amygdala are thought to have important roles in tobacco craving, cognition, and relapse, these associations warrant investigation in a larger sample. [11C]FLB-457 PET imaging


may represent a useful tool to investigate individual differences in tobacco addiction severity and treatment response. SIMILAR CONTENT BEING VIEWED BY OTHERS THE INFLUENCE OF CONDITIONED


STIMULI ON [11C]-(+)-PHNO PET BINDING IN TOBACCO SMOKERS AFTER A ONE WEEK ABSTINENCE Article Open access 03 June 2021 CHOLINERGIC TONE ABNORMALITIES AND RELATIONSHIPS WITH SMOKING SEVERITY


IN HUMAN CIGARETTE SMOKERS: EXPLORATORY POSITRON EMISSION TOMOGRAPHY STUDY USING [18F]VAT Article 31 March 2025 EXPLORING REGULATION AND FUNCTION OF DOPAMINE D3 RECEPTORS IN ALCOHOL USE


DISORDER. A PET [11C]-(+)-PHNO STUDY Article 04 August 2021 INTRODUCTION A commonality between addictive drugs, including tobacco and its primary psychoactive ingredient nicotine, is their


ability to elevate extracellular dopamine (DA) levels. Nicotinic acetylcholine receptors (nAChR) are widely expressed in the brain and are abundant in the mesolimbic, nigrostriatal, and


mesocortical systems (Marshall et al, 1997). Nicotine increases DA in limbic and striatal systems directly by activating nAChRs situated on cell bodies (Sesack and Grace, 2009) and terminals


(Schilstrom et al, 1998) of midbrain DAergic neurons projecting from the ventral tegmental area (VTA) and substantia nigra to the nucleus accumbens and dorsal striatum, respectively, and


indirectly by modulating glutamatergic and GABAergic inputs onto DAergic neurons (Mansvelder et al, 2003). Nicotine can also induce DA release in the prefrontal cortex (PFC) via stimulation


of nAChRs located on the cell bodies on DAergic neurons projecting from the VTA to the PFC (George et al, 2000) and via nAChRs in the PFC (Livingstone et al, 2009). However, studies using


_in vivo_ microdialysis to directly compare the regional effects of nicotine on DA dialysate report greater release in the striatum and nucleus accumbens compared with the PFC. For example,


relative to the PFC, nicotine-induced DA release is 2 and 10 times greater in the striatum and nucleus accumbens of rodents and 1.3 times greater in the striatum of non-human primates


(Domino and Tsukada, 2009; Marshall et al, 1997). The ability of nicotine to increase DA release in the (limbic) striatum is thought to underlie its reinforcing and euphoric effects (Di


Chiara, 2000), a view that finds partial support from neuroimaging studies showing that tobacco-induced DA release is associated with decreased craving (Brody et al, 2004; Le Foll et al,


2014), and withdrawal symptoms (Le Foll et al, 2014), elevated mood (Barrett et al, 2004), and motivation to smoke (ie, puff volume) (Le Foll et al, 2014). The role of cortical DA in tobacco


addiction is less well understood but may relate to nicotine’s pro-cognitive effects. In this regard, it has been proposed that cognitive dysfunction associated with nicotine withdrawal


(Levin et al, 2006), although variable and not reported in all populations (Sacco et al, 2005; Wing et al, 2013b), contributes to the addictive nature of tobacco smoking (Ashare et al, 2014;


Heishman et al, 2010) and may be related cortical DA dysfunction. Brain-imaging studies (functional magnetic resonance imaging (fMRI), fludeoxyglucose, and oxygen-15 positron emission


tomography (PET)) partly support this by showing that tobacco smoking increases brain activity in DA projection areas including the hippocampus, amygdala, insula, anterior cingulate cortex


(ACC), orbitofrontal and dorsolateral PFC (dlPFC) (Azizian et al, 2010; Brody et al, 2002; Janes et al, 2010a; Janes et al, 2010b; Janes et al, 2013; Zubieta et al, 2005). These changes have


been associated with improved cognitive performance (but also cue-reactivity, craving, and relapse susceptibility). Although informative, such studies do not address the question of


cortical DA’s involvement, if any, in tobacco addiction and there are no _in vivo_ PET studies investigating whether nicotine or tobacco leads to detectable changes in DA levels in the


cortex. The development of the high-affinity D2/3 receptor radiotracers [18F]-Fallypride (Mukherjee et al, 1995) and [11C]-FLB-457 (Halldin et al, 1995) has allowed investigation of DA


dynamics in cortical areas of living humans. This method is based on the principle that challenges that increase synaptic DA decrease radiotracer binding (compared with baseline).


[11C]-FLB-457 appears to show greater sensitivity to DA changes in low-receptor-density cortical regions than [18F]-Fallypride (Narendran et al, 2009) and shows good test–retest


reproducibility (Narendran et al, 2013). [11C]-FLB-457 has been used in humans to index DA release induced by oral amphetamine, with effects measurable in four out of the eight cortical


regions examined: the ACC, medial temporal lobe, dlPFC, medial PFC (mPFC) and parietal cortex (PC) (Narendran et al, 2009). Moreover, combined PET-microdialysis studies in non-human primates


have confirmed that the amphetamine-induced reductions in [11C]-FLB-457 binding correlate with direct measurement of DA release (Narendran et al, 2014). In this study we used [11C]-FLB-457


to index extrastriatal DA release induced by tobacco smoking. As this was the first study to attempt to measure cortical DA release induced by tobacco or nicotine, we implemented a design


that we thought would evoke the maximal DA release. Thus, we examined the effects of the act of smoking tobacco following a period of (overnight) abstinence in tobacco-dependent daily


smokers, therefore encompassing pharmacological (ie, nicotine) and non-pharmacological factors (ie, tobacco cues). Analyses were restricted to the prefrontal, limbic, and insular regions,


which are involved in cognitive control, interoceptive awareness, and emotion. These regions of interest (ROIs) were selected based on functional brain-imaging studies of tobacco smoking


(Brody et al, 2002; Janes et al, 2010a; Janes et al, 2010b; Janes et al, 2013) and [11C]-FLB-457 studies showing BPND changes are measurable in these ROIs after a DA-elevating challenge


(Narendran et al, 2009). The exploratory aim of the study was to investigate correlations between DA release and smoking behavior (assessed by smoking topography), tobacco craving,


withdrawal, and cognitive function. MATERIALS AND METHODS PARTICIPANTS All procedures were approved by the Centre for Addiction and Mental Health Research Ethics Board, and complied with


ethical standards of the 1975 Helsinki Declaration (5th revision, 2000). Subjects were recruited from the local community in Toronto, Canada, using internet advertisements, and provided


written informed consent. Subjects were paid $350 for study completion, including $50 for successful overnight abstinence, a paradigm that has resulted in >90% success in achieving


overnight abstinence in similar populations of smokers (Sacco et al, 2005; Wing et al, 2013b). All subjects met the following criteria: smoking ⩾10 cigarettes per day (CPD) assessed by


self-reported 7-day timeline follow-back measures (Sobell et al, 1988), expired breath carbon monoxide (CO) ⩾10ppm, plasma cotinine levels ⩾150 ng/ml, Fagerstrom Test of Nicotine Dependence


score ⩾4 (Heatherton et al, 1991), ⩾80 on the Shipley-2 estimate of Full Scale IQ (Zachary et al, 1985), and a negative urine pregnancy test and 7-panel toxicology screen for drugs of abuse


(Medtox; Wilmington, NC). Subjects were screened using the Structured Clinical Interview for DSM-IV Axis I Disorders (First et al, 1996) and demonstrated no Axis I diagnosis with the


exception of past major depression or drug and alcohol abuse if in remission for at least 1 year. Pack-years provided measures of lifetime tobacco exposure (the number of years smoked


multiplied by the average number of packs of 20 CPD) (Wood et al, 2005). Mood symptoms were assessed using the Beck Depression Inventory (Beck et al, 1996). Exclusion criteria included major


medical problems and PET or MRI contraindications (eg, metal implants, pregnancy/lactation, and exposure to radiation above permissible dose). STUDY DESIGN Eligible subjects were invited


for a baseline visit including a cognitive training session to minimize practice effects in the subsequent testing sessions (Figure 1). Subjects were asked to remain abstinent from 2100 h on


the day before the PET scanning, which was biochemically verified by an expired CO level <10 ppm on arrival at the laboratory at 0830 h; values above this led to scan cancellation.


Subjects then remained abstinent and under supervision until 1300 h (16 h). Abstinence was later confirmed by analysis of plasma nicotine levels (see next section). Subjects were also asked


not to use alcohol 24 h before the scan and not to drink caffeinated drinks on the day of the scan. A further urine sample was collected to rule out pregnancy and drug use immediately before


the scan. Subjects underwent two virtually identical sessions on the testing visit: (1) at 0830–1230 h under smoking abstinence conditions and (2) at 1330–1730 h following reinstatement of


smoking. Each session started with assessments of tobacco craving and withdrawal, followed by a [11C] FLB-457 PET scan (4 h between the am and pm injections) and then a neuropsychological


testing battery. Subjects smoked their own brand cigarettes _ad libitum_ immediately before the second PET scan; the average time between starting smoking and tracer injection was 31.8±7.5 


min. Subjects were instructed to smoke as many cigarettes as they liked, to ensure they were fully satiated before PET scanning. On a separate visit, subjects underwent a proton density


weighted 3T MRI scan for spatial realignment and normalization of PET images and localization of ROIs (General Electric, 3T MR750; slice thickness, 2 mm; interleaved; number of slices, 84;


repetition time, 6000 ms; echo time, 8 ms; number of excitations, 2; acquisition matrix, 256 × 192; FOV, 22 × 16.5 cm). PLASMA NICOTINE AND COTININE DETERMINATION A blood sample was obtained


immediately after tracer injection in both the abstinent and smoking conditions, to determine nicotine and cotinine concentration (ng/ml). The methods used were developed in-house based on


Bernert et al (1997). Serum samples were deproteinized and extracted at an alkaline pH with a solvent mixture using extraction devices containing diatomaceous earth. The extracts were


further analyzed by liquid chromatography using mass spectroscopy detection. Deuterated analytes were used as internal standards and the calibration range is from 1 to 500 ng/ml. Between-day


precision coefficients of variation at concentrations of 221 ng/ml cotinine and 23 ng/ml nicotine were <5% and 12%, respectively. SMOKING TOPOGRAPHY Smoking topography measures cigarette


smoking behavior, specifically the intensity of smoking indexed by number of puffs, puff volume, puff duration, and interpuff interval. A Clinical Research Support System Pocket device


(Borgwaldt KC, Richmond, VA) was used to assess smoking topography during the pre-scan smoking reinstatement session. Subjects were familiarized to the device during a baseline training


session. CRAVING AND COGNITIVE MEASURES Craving and withdrawal were assessed respectively by the self-report Tiffany Questionnaire for Smoking Urges (TQSU) (Tiffany and Drobes, 1991) and the


Minnesota Nicotine Withdrawal Scale (MNWS) (Hughes and Hatsukami, 1986). The 1-h neuropsychological test battery assessed a range of cognitive domains that have been shown to be sensitive


to nicotine and related to cortical DA levels: sustained attention (Conner’s Continuous Performance Test), visuospatial working memory (Spatial Delayed Response Test), verbal working memory


(Digit Span–Backward), Processing Speed (Trail Making Test-A) and executive function (Wisconsin Card Sorting Task; Trail Making Test-B). PET SCAN PARAMETERS PET scans were performed using a


high-resolution PET camera system (CPS-HRRT, Siemens Medical Imaging, Knoxville, TN, USA), which measures radioactivity in 207 brain sections with a slice thickness of 1.2 mm each and an


in-plane resolution of ∼2.8 mm full-width at half maximum (FWHM). A custom fitted thermoplastic mask was used to reduce head movement (TruScan Imaging, Annapolis, USA). Attenuation


correction was done via a transmission scan, which used a 137Cs (T2=30.2 yr, E_γ_=622KeV) single-photon point source. Emission data were acquired in list mode for 90 min beginning after a (2


 min) bolus injection (followed by a flush with 2 ml saline) of [11C]FLB-457 (mean±SD, dose: 9.57±0.85 mCi; specific activity: 3227±1256 mCi/μmol; mass injected: 1.25±0.45 μg). Emission data


were reconstructed by 2D filtered back projection to yield dynamic images with 15 1-min frames and 15 5-min frames. PET SCAN ANALYSIS [11C] FLB-457 BPND was calculated voxel-wise across the


whole brain using the basis function implementation of simplified reference tissue model (SRTM) (Gunn et al, 1997; Lammertsma and Hume, 1996). Despite some studies reporting detectable


D2/3-receptor-specific [11C]-FLB-457 binding in the cerebellum (Asselin et al, 2007; Delforge et al, 1999), the tissue time activity curve (TAC) of the cerebellar cortex (excluding vermis)


was used as the reference region, because it has been deemed suitable for the calculation of [11C]-FLB-457 BPND in several studies (Ito et al, 2001; Narendran et al, 2011a; Olsson et al,


2004; Vilkman et al, 2000). This approach yielded maps of [11C]-FLB-457 BPND for the abstinent and smoking conditions, which were registered to each individual’s MRI, transformed into


standardized stereotaxic space (the ICBM 305 template), and spatially smoothed with a 6-mm FWHM kernel. These images were then entered into a group analysis and statistically investigated at


every voxel using paired _t_-tests in SPM 8 (Wellcome Trust Centre for Neuroimaging, London, UK). To minimize multiple comparisons and given our _a priori_ regional hypotheses, voxels


investigated for significant effects were limited to gray matter in the frontal lobe, insula, and limbic regions, using a mask generated by the WFU PickAtlas function in SPM8 (Maldjian et


al, 2003). Within this mask, only voxels with a BPND value greater than 0.1 were considered. [11C]-FLB-457 BPND maps were assessed for the contrast of interest (abstinence>smoking) at an


uncorrected threshold of _p_<0.05 with a minimum 50-voxel cluster extent. This approach was chosen, as it provides a good balance between Type I and Type II error, and previous work has


shown that a lenient threshold and cluster extent can produce similar results to false discovery rate (FDR) correction in fMRI studies (Lieberman and Cunningham, 2009). Individual BPND


values for the abstinence and smoking conditions were then extracted from clusters surviving this threshold and used to calculate percent change in BPND between conditions. This analysis was


followed up by investigating changes in [11C]-FLB-457 BPND in anatomically defined whole ROIs (see Rusjan et al (2006) for methods). STATISTICAL ANALYSIS Statistical analyses were conducted


in in SPSS (v.15.0; Chicago, IL); significance was set at _p_<0.05. Smoking and cognitive outcome measures were analyzed using paired _t_-tests to compare values in the abstinent and


smoking conditions. The percentage changes in BPND extracted from the voxel-wise analyses were used in Pearson correlation analyses, to explore associations with smoking topography measures


and smoking-related changes in craving, withdrawal, and cognitive function. Control analyses involved _t_-tests to evaluate possible differences in PET scan parameters between the conditions


(ie, dose injected, mass injected, specific activity injected, and the cerebellar TAC) and correlation analyses to determine whether there was any relationship between mass injected and


[11C]-FLB-457 BPND. RESULTS SUBJECT CHARACTERISTICS Eleven subjects met the eligibility criteria and were enrolled, and one subject withdrew during the first scan due to claustrophobia,


resulting in a final sample of _N_=10. The demographic characteristics and PET scan parameters for the sample are presented in Table 1. There were no statistically significant differences


between the PET scan parameters for the abstinent and smoking scans: amount injected 9.65±0.89 mCi _vs_ 9.48±0.84 mCi (_p_=0.66), specific activity at time of injection 3354±1451 mCi/μmol


_vs_ 2901±994 mCi/μmol, and injected mass 1.16±0.49 μg _vs_ 1.33±0.42 μg (_p_=0.40). Subjects smoked an average of 1.9±0.6 cigarettes before the afternoon PET scan (range 1–3 cigarettes).


PET [11C] FLB-457 BINDING RESULTS We observed significant reductions in [11C]-FLB-457 BPND following smoking (an indirect measure of DA release) in a set of regions that comprises a large


medial cluster (cingulate gyrus, ACC, medial frontal gyrus (Med. FG), superior frontal gyrus, and precuneus), the left (L) ACC/Med. FG, the right (R) PFC/middle frontal gyrus (MFG), an L PFC


cluster (precentral gyrus and MFG), the L MFG/precentral gyrus, bilateral amygdala/uncus, and the left insula (see Table 2 and Figure 2a). The overall peak _t_-value was located in the


cingulate gyrus of the medial cluster and this survived FDR correction for multiple comparisons. In addition, an analysis thresholded at _p_<0.01 FDR for multiple comparisons yield only


one cluster of significance, the cingulate gyrus (see * in Table 2). The reverse contrast (abstinence<smoking) did not yield any significant clusters. Individual BPND values were


extracted from these clusters and are presented for illustrative purposes (see Figure 2b). These values were used to calculate percentage changes in BPND (mean±SD) in smoking _vs_ abstinence


conditions: medial cluster, which included the cingulate cortex (−12.1±9.4%), L ACC/Med. FG (−11.0±11.7%), bilateral PFC clusters (R: −11.5±12.8%; L: −9.8±11.0%), bilateral amygdala/uncus


(R: −13.8±14.7%; L: −12.0±13.1%), and the left insula (−6.2±7.0%). The results of the anatomically defined whole ROIs analysis is shown in Supplementary Figure 1. In brief, pairwise


comparisons (one-tailed uncorrected) revealed trend-level significant decreases in [11C]-FLB-457 BPND in the mPFC (−7.1%; _p_=0.08), ACC (−7.6%; _p_=0.06), and amygdala (−9.8%; _p_=0.06) but


not the dlPFC or insula. Regions examined in amphetamine [11C]-FLB-457 PET studies were also tested (Narendran et al, 2009; Narendran et al, 2013); similar to these studies no effect was


found in the temporal or occipital cortex, but in contrast no change in BPND was found in the PC. SMOKING-RELATED MEASURES The relationship between baseline smoking behavior and percentage


change in [11C] FLB-457 BPND (abstinence _vs_ smoking) was investigated. A younger age of smoking onset was associated with a greater reduction in BPND in the right amygdala (_r_=0.731,


_p_=0.016) and higher levels of daily smoking were associated with greater BPND reduction at the trend level in the medial cluster, which included the cingulate gyrus (_r_=−0.584, _p_=0.08)


and the R PFC/MFG cluster (_r_=−0.612, _p_=0.06). Tobacco craving (TQSU Factor 1 and 2 scores) and withdrawal (MNWS total score) were significantly higher in the abstinent _vs_ reinstatement


session (see Table 1) but the percentage change did not correlate with the percentage change in [11C] FLB-457 BPND. Time between smoking and PET scanning and changes in plasma nicotine


levels after smoking reinstatement also did not correlate with changes BPND. However, the average puff volume in the smoking reinstatement session did correlate with changes in BPND (valid


smoking topography data was collected in 8 out of the 10 subjects). Greater puff volumes were correlated with greater BPND reductions in the medial cluster, which included the cingulate


gyrus (_r_=−0.835, _p_=0.012, see Supplementary Figure 2), L ACC/Med. FG (_r_=−0.961, _p_<0.001) and R PFC/MFG cluster (_r_=−0.807, _p_=0.015). COGNITIVE MEASURES Although performance in


most cognitive domains was higher in the smoking _vs_ abstinence conditions, this difference only reached statistical significance for the CPT variability index (a measure of ‘within


respondent’ response-speed consistency across the 18 test segments in relation to the individual’s overall reaction time SE) (_t_(18)=2.39, _p_=0.03)). After correcting for multiple


comparisons, there were no significant correlations between the percentage change in cognitive performance and reductions in [11C] FLB-457 BPND following reinstatement of cigarette smoking.


DISCUSSION Nicotine, the primary psychoactive ingredient in tobacco, has been shown to induce cortical DA release in animal microdialysis studies, but to our knowledge this is the first


demonstration in humans of cortical DA release following tobacco smoking. [11C]-FLB-457 BPND values were reduced following smoking (an indirect index of DA release). The overall peak _t_ in


voxel-wise analyses was located in the cingulate gyrus, which was part of a large medial cluster (percentage change in BPND −12.1±9.4%) and this survived FDR correction for multiple


comparisons (_p_<0.01). There was also evidence for release in the left ACC/Med. FG, right and left PFC, bilateral amygdala/uncus, and the left insula, but these results did not survive


corrections for multiple comparisons. The results of the voxel-wise analysis were also in the most part supported by an anatomically defined ROI analysis. Microdialysis studies suggest that


amphetamine elicits substantially greater DA release than nicotine and [11C]raclopride, and [11C]-(+)-PHNO displacement in humans tends to be greater following amphetamine _vs_ nicotine,


albeit to a much lesser extent (∼2-fold) than observed by microdialysis (Boileau et al, 2014; Brody et al, 2009; Gallezot et al, 2014; Le Foll et al, 2014; Shotbolt et al, 2012). However,


the smoking-induced changes in extra-striatal [11C]FLB-457 binding identified in this study were of similar magnitude to those following an oral amphetamine challenge (∼7–13%) (Narendran et


al, 2009; Narendran et al, 2013). Combined microdialysis and _in vivo_ binding studies are informative in this regard. Such studies have found that although extrasynaptic DA release induced


by both methamphetamine and nicotine correlates with reductions in [3H]raclopride binding, decreases in radioligand binding per unit increase of DA were greater for nicotine than


methamphetamine (Kim and Han, 2009). In rats, methamphetamine (5 mg/kg) and nicotine (3.5 mg/kg) led to substantially different changes in dialysate levels (increases of 826% after


amphetamine _vs_ 51% after nicotine) but elicited similar effects on [3H]raclopride binding (∼30% decrease) (Kim and Han, 2009). These findings may be due to the fact that changes in


radioligand binding after a drug challenge presumably reflect changes within the synapse where fluctuations in DA are rapid and of significant magnitude, while microdialysis measures


extrasynaptic DA concentrations (discussed in Laruelle (2000)). Thus, the difference in the extrasynaptic DA-[3H]raclopride binding relationship following nicotine and methamphetamine


administration is likely the result of their different properties at DA and noradrenaline transporters (DAT and NET), which are primarily responsible for controlling extracellular DA levels


in the striatum and the cortex respectively (Kim and Han, 2009). In a recent combined microdialysis PET imaging study in non-human primates, a 1% reduction in BPND following amphetamine


challenge reflected a 57% increase in cortical DA (Narendran et al, 2014). However, it is not possible to extrapolate this finding to our BPND changes following tobacco smoking, because, as


described above, microdialysis measurements of extrasynaptic DA concentration are not a good reflection of intrasynaptic radiotracer displacement across drug classes. Another observation


from the current study is that magnitude of tobacco’s effects in cortical regions appear to be within the same range as those in the striatum, despite the lower DA innervation of cortical


regions. Narendran et al (2014) demonstrated that this is likely a sensitivity issue whereby lower baseline DA levels in the cortex _versus_ the striatum results in greater [11C]-FLB-457


‘displacability.’ Different dynamics of DA release in the cortex (prolonged) and in the striatum (fast) may also explain the similar magnitude of BPND changes found between these regions


(Garris and Wightman, 1994). Combined PET/microdialysis studies after smoking/nicotine challenge would help address these issues. The regions identified in this study (ie, cingulate gyrus,


ACC, Med. FG, PFC, amygdala, and insula) are consistently associated with tobacco cue-presentation and subjective craving in functional brain-imaging studies (Brody et al, 2002; Janes et al,


2010b; Janes et al, 2013; Zubieta et al, 2005), as well as some of tobacco’s pro-cognitive effects (Azizian et al, 2010). Greater [11C]-FLB-457 BPND displacement following smoking was


correlated with higher puff volumes in the smoking reinstatement session, which may have resulted in higher nicotine intake and/or be a reflection of greater addiction severity. The rise in


plasma nicotine levels was not correlated with BPND changes, which may be due to the time of measurement (∼30 min post smoking) and the modest rise in nicotine levels observed at this time


point (∼13 ng/ml). There were also weak correlations with baseline smoking behavior. Tobacco-induced changes in [11C]-FLB-457 BPND were not correlated with the reduction in craving following


resumption of smoking. However, this may have been the result of the relatively small sample size (_n_=10), and thus the role of cortical DA in tobacco craving remains unclear. The role of


cortical DA in cognitive function, particularly working memory and executive function, is relatively well characterized (eg, Aalto et al (2005), Castner and Goldman-Rakic (2004), and Ko et


al (2009)). It is hypothesized that nicotine-induced increases in cortical DA levels contribute to its pro-cognitive effects, and conversely low cortical DA underlies the cognitive


dysfunction seen in withdrawal. In this sample there were only minimal effects of tobacco abstinence on cognition which, limited correlation analyses. Nevertheless, these findings support


previous studies reporting minimal effects of tobacco abstinence on cognition in healthy non-psychiatric populations (Sacco et al, 2005; Wing et al, 2013b). Certain subgroups of smokers,


however, appear to show more consistent/robust withdrawal-related cognitive dysfunction such as patients with schizophrenia, a disorder associated with cortical hypodopaminergia (for review,


see Wing et al (2012)), or those carrying the catechol-_O_-methyltransferase (COMT) Val158Met polymorphism Val-allele, which is associated with low cortical DA (Loughead et al, 2009; Wing


et al, 2013a). Thus, a susceptibility to tobacco’s cognitive effects may be the result of a cortical hypodopaminergic state, which is corrected by tobacco; [11C]-FLB-457 may be an


appropriate tool to test this hypothesis. This study has several limitations. First, due to institutional policy requiring subjects to smoke in a designated negative pressure smoking room,


there was an average of 32 min between the resumption of smoking and the injection of tracer, and therefore 2 h to the end of PET scanning. Nevertheless, microdialysis studies of


nicotine-induced DA release suggest 30 min post exposure is ideal to detect changes in DA, which can last up to 2 h (Domino and Tsukada, 2009) and PET imaging in non-human primates report


the reduction in BPND observed following nicotine infusion dissipates after 2.5 h (Marenco et al, 2004). Moreover, this design was very similar to a previous study in which [11C]-PHNO was


used to successfully detect striatal DA release following smoking, thus suggesting this is an appropriate assessment window (Le Foll et al, 2014). Second, the order of the smoking conditions


was non-randomized, which may have led to an effect of time of day or novelty. Although DA has been shown to have a circadian rhythms (light–dark cycles; eg, Paulson and Robinson (1994)),


it is not known whether the 4 h time difference between the scans affected the finding. The effect of novelty or increased anxiety during the first scan could have increased DA levels


(Nagano-Saito et al, 2013); however, this would have limited our chances of seeing an effect and is therefore unlikely to explain the finding. This design was therefore chosen to limit


dropout and reduce variability associated with testing on separate days. A third potential limitation of this study is the use of the cerebellum as a reference region and possible carryover


mass across scans due to remaining radiotracer. Although some investigators use similar methods, there is evidence for specific binding in this region (Narendran et al, 2011a) and others use


an arterial input function to model [11C]-FLB-457 BPND; this remains a subject of debate in the field. Nevertheless, [11C]-FLB-457 has been shown to have acceptable test–retest variability


(⩽15%) and low carryover mass effects if scans are done more than 195 min apart (Narendran et al, 2014; Narendran et al, 2011b; Sudo et al, 2001). Although the average [11C]-FLB-457 mass


injected in our study was slightly higher than that in the aforementioned studies, it did not differ between the two conditions and did not correlate with the [11C]-FLB-457 BPND results. We


chose to use a voxel-wise _vs_ a ROI approach, as it is without anatomical constraints and therefore facilitates the capture of terminal DA fields in cortical areas that are known to have a


complex anatomical organization (Williams and Goldman-Rakic, 1998) and may not be well represented by whole anatomically defined ROIs. For the cingulate cortex, the template used in the ROI


approach was restricted to the ACC (based on Abi-Dargham et al (2002)), while the voxel-wise template included the whole cingulate cortex. The significant cluster identified in the


voxel-wise analyses lied in the ACC, as well as other regions of the cingulate, and as a result the post-smoking reduction in BPND was more robust in the voxel-wise analysis, which included


the whole cingulate (see Figure 2b and Supplementary Figure 1), thus demonstrating the value of such an approach. A limitation of this approach, however, is that when compared with whole


ROI-extracted values, cluster extracted values tended to be lower (see Figure 2b and Supplementary Figure 1). Despite low-binding values, average TACs extracted from significant clusters


reliably fitted with SRTM (covariance of the fit<10%) and, importantly, the results were supported by the follow-up investigation in anatomically defined ROIs (see Supplementary Figure


1). The sample size of the current study (_n_=10) was sufficient to detect smoking effects on [11C]-FLB-457 BPND. Future studies should use a larger sample size to better explore the


relationship between cortical DA and the behavioral effects of tobacco smoking, particularly on cognitive function. A larger sample would also allow investigation of potential factors


influencing inter-individual variability such as gender and gene variants including COMT Val158Met (Loughead et al, 2009; Wing et al, 2013a). We chose to study a non-psychiatric population


of smokers in this initial study but an important next step will be to implement this methodology in smokers selected for their vulnerability to nicotine’s cognitive effects, such as


patients with schizophrenia. In addition, this study was designed to examine the effects of the act of tobacco smoking rather than nicotine per se on cortical DA release. This approach was


chosen to attempt to elicit the maximum DA release by encompassing pharmacological (eg, nicotine) and non-pharmacological factors (eg, conditioned cues associated with smoking). Furthermore,


we believe it is of important clinical relevance to study cortical DA under abstinence and smoking conditions, and thus its potential role in maintaining smoking behavior. This was


therefore an appropriate starting point for a proof-of concept study. However, in future it will be important to dissociate the effects of tobacco cues _vs_ the pharmacological effects of


tobacco and also the effects of individual components of tobacco smoke, eg, by studying the effects of denicotinized cigarettes and nicotine replacement therapies. It will also be of


interest to determine the effects of nicotine on cortical DA in non-smoking nicotine-naive subjects, which may provide insights its role in the initiation of smoking. In conclusion, this


study demonstrates for the first time that increases in DA levels produced by tobacco smoking can be detected in cortical brain regions in humans using [11C]-FLB-457 PET imaging. Changes in


[11C]-FLB-457 BPND were most robust in a larger medial cluster, which included the cingulate gyrus, with some evidence for effects in the left ACC/Med. FG, bilateral PFC, bilateral amygdala,


and the left insula. Activation of these brain regions have been associated with tobacco craving, cognition, and relapse in fMRI studies, and thus warrant further investigation in larger


and more diverse samples. [11C]-FLB-457 PET imaging may prove to be a useful tool to investigate individual differences in tobacco addiction severity and relapse vulnerability in relation to


cortical DA function. FUNDING AND DISCLOSURE Dr George reports that in the past 12 months he has been a consultant to Pfizer on smoking cessation medications, and recipient of grant support


for multi-center and investigator-initiated studies from Pfizer, as well as a member of a Data Monitoring Committee (DMC) for Novartis. This research was supported by the Canada Foundation


for Innovation Research Hospital Fund (CFI-RHF 16014, to T.P.G.) and the Canada Foundation for Innovation Leader Opportunity Fund (CFI-LOF 19229, to T.P.G.), CIHR Operating Grant MOP115145


(to T.P.G.), and the Chair in Addiction Psychiatry from the University of Toronto (to T.P.G.). The funding agencies had no role in the design of the study or the analysis and interpretation


of the findings. Drs Wing, Payer, Houle and Boileau have nothing to disclose. REFERENCES * Aalto S, Bruck A, Laine M, Nagren K, Rinne JO (2005). Frontal and temporal dopamine release during


working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. _J Neurosci_ 25: 2471–2477. CAS 


PubMed  PubMed Central  Google Scholar  * Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y _et al_ (2002). Prefrontal dopamine D1 receptors and working memory in


schizophrenia. _J Neurosci_ 22: 3708–3719. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ashare RL, Falcone M, Lerman C (2014). Cognitive function during nicotine withdrawal:


Implications for nicotine dependence treatment. _Neuropharmacology_ 76 (Pt B): 581–591. Article  CAS  PubMed  Google Scholar  * Asselin MC, Montgomery AJ, Grasby PM, Hume SP (2007).


Quantification of PET studies with the very high-affinity dopamine D2/D3 receptor ligand [11C]FLB 457: re-evaluation of the validity of using a cerebellar reference region. _J Cereb Blood


Flow Metab_ 27: 378–392. Article  CAS  PubMed  Google Scholar  * Azizian A, Nestor LJ, Payer D, Monterosso JR, Brody AL, London ED (2010). Smoking reduces conflict-related anterior cingulate


activity in abstinent cigarette smokers performing a Stroop task. _Neuropsychopharmacology_ 35: 775–782. Article  PubMed  Google Scholar  * Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A


(2004). The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. _Synapse_ 54:


65–71. Article  CAS  PubMed  Google Scholar  * Beck AT, Steer RA, Ball R, Ranieri W (1996). Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. _J Pers Assess_


67: 588–597. Article  CAS  PubMed  Google Scholar  * Bernert JT Jr ., Turner WE, Pirkle JL, Sosnoff CS, Akins JR, Waldrep MK _et al_ (1997). Development and validation of sensitive method


for determination of serum cotinine in smokers and nonsmokers by liquid chromatography/atmospheric pressure ionization tandem mass spectrometry. _Clin Chem_ 43: 2281–2291. CAS  PubMed 


Google Scholar  * Boileau I, Payer D, Chugani B, Lobo DS, Houle S, Wilson AA _et al_ (2014). _In vivo_ evidence for greater amphetamine-induced dopamine release in pathological gambling: a


positron emission tomography study with [(11)C]-(+)-PHNO. _Mol Psychiatry_ 19: 1305–1313. Article  CAS  PubMed  Google Scholar  * Brody AL, Mandelkern MA, London ED, Childress AR, Lee GS,


Bota RG _et al_ (2002). Brain metabolic changes during cigarette craving. _Arc Gen Psychiatry_ 59: 1162–1172. Article  Google Scholar  * Brody AL, Mandelkern MA, Olmstead RE, Allen-Martinez


Z, Scheibal D, Abrams AL _et al_ (2009). Ventral striatal dopamine release in response to smoking a regular vs a denicotinized cigarette. _Neuropsychopharmacology_ 34: 282–289. Article  CAS


  PubMed  Google Scholar  * Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P _et al_ (2004). Smoking-induced ventral striatum dopamine release. _Am J Psychiatry_ 161:


1211–1218. Article  PubMed  Google Scholar  * Castner SA, Goldman-Rakic PS (2004). Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation.


_J Neurosci_ 24: 1446–1450. Article  CAS  PubMed  PubMed Central  Google Scholar  * Delforge J, Bottlaender M, Loc'h C, Guenther I, Fuseau C, Bendriem B _et al_ (1999). Quantitation of


extrastriatal D2 receptors using a very high-affinity ligand (FLB 457) and the multi-injection approach. _J Cereb Blood Flow Metab_ 19: 533–546. Article  CAS  PubMed  Google Scholar  * Di


Chiara G (2000). Role of dopamine in the behavioural actions of nicotine related to addiction. _Eur J Pharmacology_ 393: 295–314. Article  CAS  Google Scholar  * Domino EF, Tsukada H (2009).


Nicotine sensitization of monkey striatal dopamine release. _Eur J Pharmacology_ 607: 91–95. Article  CAS  Google Scholar  * First MB, Spitzer RL, Gibbon M, Williams JBW (1996). Structured


Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV). Washington, D.C.: American Psychiatric Press, Inc. * Gallezot JD, Kloczynski T, Weinzimmer D, Labaree D, Zheng


MQ, Lim K _et al_ (2014). Imaging nicotine- and amphetamine-induced dopamine release in rhesus monkeys with [(11)C]PHNO vs [(11)C]raclopride PET. _Neuropsychopharmacology_ 39: 866–874.


Article  CAS  PubMed  Google Scholar  * Garris PA, Wightman RM (1994). Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an _in vivo_


voltammetric study. _J Neuroscience_ 14: 442–450. Article  CAS  Google Scholar  * George TP, Verrico CD, Picciotto MR, Roth RH (2000). Nicotinic modulation of mesoprefrontal dopamine


neurons: pharmacologic and neuroanatomic characterization. _J Pharmacol Exper Ther_ 295: 58–66. CAS  Google Scholar  * Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997). Parametric


imaging of ligand-receptor binding in PET using a simplified reference region model. _NeuroImage_ 6: 279–287. Article  CAS  PubMed  Google Scholar  * Halldin C, Farde L, Hogberg T, Mohell N,


Hall H, Suhara T _et al_ (1995). Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. _J Nuclear Med_ 36: 1275–1281. CAS  Google Scholar  * Heatherton TF, Kozlowski LT,


Frecker RC, Fagerström KO (1991). The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. _Br J Addict_ 86: 1119–1127. Article  CAS  PubMed 


Google Scholar  * Heishman SJ, Kleykamp BA, Singleton EG (2010). Meta-analysis of the acute effects of nicotine and smoking on human performance. _Psychopharmacology (Berl)_ 210: 453–469.


Article  CAS  Google Scholar  * Hughes JR, Hatsukami D (1986). Signs and symptoms of tobacco withdrawal. _Arch Gen Psychiatry_ 43: 289–294. Article  CAS  PubMed  Google Scholar  * Ito H,


Sudo Y, Suhara T, Okubo Y, Halldin C, Farde L (2001). Error analysis for quantification of [(11)C]FLB 457 binding to extrastriatal D(2) dopamine receptors in the human brain. _NeuroImage_


13: 531–539. Article  CAS  PubMed  Google Scholar  * Janes AC, Pizzagalli DA, Richardt S, de BFB, Chuzi S, Pachas G _et al_ (2010a). Brain reactivity to smoking cues prior to smoking


cessation predicts ability to maintain tobacco abstinence. _Biol Psychiatry_ 67: 722–729. Article  PubMed  PubMed Central  Google Scholar  * Janes AC, Pizzagalli DA, Richardt S, Frederick


Bde B, Holmes AJ, Sousa J _et al_ (2010b). Neural substrates of attentional bias for smoking-related cues: an FMRI study. _Neuropsychopharmacology_ 35: 2339–2345. Article  PubMed  PubMed


Central  Google Scholar  * Janes AC, Ross RS, Farmer S, Frederick BB, Nickerson LD, Lukas SE _et al_ (2013). Memory retrieval of smoking-related images induce greater insula activation as


revealed by an fMRI-based delayed matching to sample task. _Addict Biol_ doi:10.1111/adb.12112; e-pub ahead of print. * Kim SE, Han SM (2009). Nicotine- and methamphetamine-induced dopamine


release evaluated with in-vivo binding of radiolabelled raclopride to dopamine D2 receptors: comparison with in-vivo microdialysis data. _Int J Neuropsychopharmacol_ 12: 833–841. Article 


CAS  PubMed  Google Scholar  * Ko JH, Ptito A, Monchi O, Cho SS, Van Eimeren T, Pellecchia G _et al_ (2009). Increased dopamine release in the right anterior cingulate cortex during the


performance of a sorting task: a [11C]FLB 457 PET study. _NeuroImage_ 46: 516–521. Article  PubMed  Google Scholar  * Lammertsma AA, Hume SP (1996). Simplified reference tissue model for PET


receptor studies. _NeuroImage_ 4 (3 Pt 1): 153–158. Article  CAS  PubMed  Google Scholar  * Laruelle M (2000). Imaging synaptic neurotransmission with _in vivo_ binding competition


techniques: a critical review. _J Cereb Blood Flow Metab_ 20: 423–451. Article  CAS  PubMed  Google Scholar  * Le Foll B, Guranda M, Wilson AA, Houle S, Rusjan PM, Wing VC _et al_ (2014).


Elevation of dopamine induced by cigarette smoking: novel insights from a [(11)C]-(+)-PHNO PET study in humans. _Neuropsychopharmacology_ 39: 415–424. Article  CAS  PubMed  Google Scholar  *


Levin ED, McClernon FJ, Rezvani AH (2006). Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization.


_Psychopharmacology (Berl)_ 184: 523–539. Article  CAS  Google Scholar  * Lieberman MD, Cunningham WA (2009). Type I and type II error concerns in fMRI research: re-balancing the scale. _Soc


Cogn Affect Neurosci_ 4: 423–428. Article  PubMed  PubMed Central  Google Scholar  * Livingstone PD, Srinivasan J, Kew JNC, Dawson LA, Gotti C, Moretti M _et al_ (2009). alpha7 and


non-alpha7 nicotinic acetylcholine receptors modulate dopamine release _in vitro_ and _in vivo_ in the rat prefrontal cortex. _Eur J Neurosci_ 29: 539–550. Article  PubMed  Google Scholar  *


Loughead J, Wileyto EP, Valdez JN, Sanborn P, Tang K, Strasser AA _et al_ (2009). Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. _Mol


Psychiatry_ 14: 820–826. Article  CAS  PubMed  Google Scholar  * Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003). An automated method for neuroanatomic and cytoarchitectonic


atlas-based interrogation of fMRI data sets. _NeuroImage_ 19: 1233–1239. Article  PubMed  Google Scholar  * Mansvelder HD, De Rover M, McGehee DS, Brussaard AB (2003). Cholinergic modulation


of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. _Eur J Pharmacol_ 480: 117–123. Article  CAS  PubMed  Google Scholar  * Marenco S, Carson RE, Berman KF,


Herscovitch P, Weinberger DR (2004). Nicotine-induced dopamine release in primates measured with [11C]raclopride PET. _Neuropsychopharmacology_ 29: 259–268. Article  CAS  PubMed  Google


Scholar  * Marshall DL, Redfern PH, Wonnacott S (1997). Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by _in vivo_ microdialysis: comparison of


naive and chronic nicotine-treated rats. _J Neurochem_ 68: 1511–1519. Article  CAS  PubMed  Google Scholar  * Mukherjee J, Yang ZY, Das MK, Brown T (1995). Fluorinated benzamide


neuroleptics—III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2, 3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. _Nuclear Med Biol_ 22:


283–296. Article  CAS  Google Scholar  * Nagano-Saito A, Dagher A, Booij L, Gravel P, Welfeld K, Casey KF _et al_ (2013). Stress-induced dopamine release in human medial prefrontal


cortex—18F-fallypride/PET study in healthy volunteers. _Synapse_ 67: 821–830. Article  CAS  PubMed  Google Scholar  * Narendran R, Frankle WG, Mason NS, Rabiner EA, Gunn RN, Searle GE _et


al_ (2009). Positron emission tomography imaging of amphetamine-induced dopamine release in the human cortex: a comparative evaluation of the high affinity dopamine D2/3 radiotracers


[11C]FLB 457 and [11C]fallypride. _Synapse_ 63: 447–461. Article  CAS  PubMed  Google Scholar  * Narendran R, Himes M, Mason NS (2013). Reproducibility of post-amphetamine [11C]FLB 457


binding to cortical D2/3 receptors. _PloS One_ 8: e76905. Article  CAS  PubMed  PubMed Central  Google Scholar  * Narendran R, Jedema HP, Lopresti BJ, Mason NS, Gurnsey K, Ruszkiewicz J _et


al_ (2014). Imaging dopamine transmission in the frontal cortex: a simultaneous microdialysis and [(11)C]FLB 457 PET study. _Mol Psychiatry_ 19: 399. Article  Google Scholar  * Narendran R,


Mason NS, Chen CM, Himes M, Keating P, May MA _et al_ (2011a). Evaluation of dopamine D(2)/(3) specific binding in the cerebellum for the positron emission tomography radiotracer


[(1)(1)C]FLB 457: implications for measuring cortical dopamine release. _Synapse_ 65: 991–997. Article  CAS  PubMed  PubMed Central  Google Scholar  * Narendran R, Mason NS, May MA, Chen CM,


Kendro S, Ridler K _et al_ (2011b). Positron emission tomography imaging of dopamine D(2)/(3) receptors in the human cortex with [(1)(1)C]FLB 457: reproducibility studies. _Synapse_ 65:


35–40. Article  CAS  PubMed  PubMed Central  Google Scholar  * Olsson H, Halldin C, Farde L (2004). Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human


brain using PET. _NeuroImage_ 22: 794–803. Article  PubMed  Google Scholar  * Paulson PE, Robinson TE (1994). Relationship between circadian changes in spontaneous motor activity and dorsal


versus ventral striatal dopamine neurotransmission assessed with on-line microdialysis. _Behav Neurosci_ 108: 624–635. Article  CAS  PubMed  Google Scholar  * Rusjan P, Mamo D, Ginovart N,


Hussey D, Vitcu I, Yasuno F _et al_ (2006). An automated method for the extraction of regional data from PET images. _Psychiatry Res_ 147: 79–89. Article  PubMed  Google Scholar  * Sacco KA,


Termine A, Seyal A, Dudas MM, Vessicchio JC, Krishnan-Sarin S _et al_ (2005). Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: involvement


of nicotinic receptor mechanisms. _Arch Gen Psychiatry_ 62: 649–659. Article  PubMed  Google Scholar  * Schilstrom B, Nomikos GG, Nisell M, Hertel P, Svensson TH (1998). N-methyl-D-aspartate


receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. _Neuroscience_ 82: 781–789. Article  CAS  PubMed 


Google Scholar  * Sesack SR, Grace AA (2009). Cortico-basal ganglia reward network: microcircuitry. _Neuropsychopharmacology_ 35: 27–47. Article  PubMed Central  Google Scholar  * Shotbolt


P, Tziortzi AC, Searle GE, Colasanti A, van der Aart J, Abanades S _et al_ (2012). Within-subject comparison of [(11)C]-(+)-PHNO and [(11)C]raclopride sensitivity to acute amphetamine


challenge in healthy humans. _J Cereb Blood Flow Metab_ 32: 127–136. Article  CAS  PubMed  Google Scholar  * Sobell LC, Sobell MB, Leo GI, Cancilla A (1988). Reliability of a timeline


method: assessing normal drinkers' reports of recent drinking and a comparative evaluation across several populations. _Br J Addict_ 83: 394–402. Article  Google Scholar  * Sudo Y,


Suhara T, Inoue M, Ito H, Suzuki K, Saijo T _et al_ (2001). Reproducibility of [11 C]FLB 457 binding in extrastriatal regions. _Nuclear Med Commun_ 22: 1215–1221. Article  CAS  Google


Scholar  * Tiffany ST, Drobes DJ (1991). The development and initial validation of a questionnaire on smoking urges. _Br J Addict_ 86: 1467–1476. Article  CAS  PubMed  Google Scholar  *


Vilkman H, Kajander J, Nagren K, Oikonen V, Syvalahti E, Hietala J (2000). Measurement of extrastriatal D2-like receptor binding with [11C]FLB 457—a test-retest analysis. _Eur J Nuclear Med_


27: 1666–1673. Article  CAS  Google Scholar  * Williams SM, Goldman-Rakic PS (1998). Widespread origin of the primate mesofrontal dopamine system. _Cereb Cortex_ 8: 321–345. Article  CAS 


PubMed  Google Scholar  * Wing VC, Tang YL, Sacco KA, Cubells JF, George TP (2013a). Effect of COMT Val(158)Met genotype on nicotine withdrawal-related cognitive dysfunction in smokers with


and without schizophrenia. _Schizophr Res_ 150: 602–603. Article  PubMed  PubMed Central  Google Scholar  * Wing VC, Wass CE, Bacher I, Rabin RA, George TP (2013b). Varenicline modulates


spatial working memory deficits in smokers with schizophrenia. _Schizophr Res_ 149: 190–191. Article  PubMed  Google Scholar  * Wing VC, Wass CE, Soh DW, George TP (2012). A review of


neurobiological vulnerability factors and treatment implications for comorbid tobacco dependence in schizophrenia. _Ann N Y Acad Sci_ 248: 89–106. Article  Google Scholar  * Wood DM, Mould


MG, Ong SB, Baker EH (2005). "Pack year" smoking histories: what about patients who use loose tobacco? _Tob Control_ 14: 141–142. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Zachary RA, Paulson MJ, Gorsuch Y (1985). Estimating WAIS IQ from the Shipley Institute of Living Scale using continuously ad-justed age norms. _J Clin Psychol_ 41: 820–831.


Article  CAS  PubMed  Google Scholar  * Zubieta JK, Heitzeg MM, Xu Y, Koeppe RA, Ni L, Guthrie S _et al_ (2005). Regional cerebral blood flow responses to smoking in tobacco smokers after


overnight abstinence. _Am J Psychiatry_ 162: 567–577. Article  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank the staff of the CAMH Research Imaging Centre for their


support with the imaging procedures; Marleen Pronker, Stela Penalva, and Ilona Gorbovskaya for assistance in maintaining the study database; Dr Ariel Graff for psychiatric and medical


support during the study; and Dr Cristiana Stefan (Director, Clinical Laboratories and Diagnostic Services, Centre for Addiction and Mental Health, Toronto) for assistance with nicotine and


cotinine analyses. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Schizophrenia Division, Complex Mental Illness Program, and Campbell Family Mental Health Research Institute, Centre for


Addiction and Mental Health (CAMH), Toronto, ON, Canada Victoria C Wing & Tony P George * Research Imaging Centre (RIC), Campbell Family Mental Health Research Institute, Centre for


Addiction and Mental Health, Toronto, ON, Canada Doris E Payer, Sylvain Houle & Isabelle Boileau * Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto,


Toronto, ON, Canada Doris E Payer, Tony P George & Isabelle Boileau Authors * Victoria C Wing View author publications You can also search for this author inPubMed Google Scholar * Doris


E Payer View author publications You can also search for this author inPubMed Google Scholar * Sylvain Houle View author publications You can also search for this author inPubMed Google


Scholar * Tony P George View author publications You can also search for this author inPubMed Google Scholar * Isabelle Boileau View author publications You can also search for this author


inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Victoria C Wing. ADDITIONAL INFORMATION Supplementary Information accompanies the paper on the Neuropsychopharmacology website


SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE S1 (JPG 2197 KB) SUPPLEMENTARY FIGURE S2 (JPG 25 KB) SUPPLEMENTARY FIGURE LEGENDS (DOC 33 KB) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1


POWERPOINT SLIDE FOR FIG. 2 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Wing, V., Payer, D., Houle, S. _et al._ Measuring Cigarette Smoking-Induced


Cortical Dopamine Release: A [11C]FLB-457 PET Study. _Neuropsychopharmacol_ 40, 1417–1427 (2015). https://doi.org/10.1038/npp.2014.327 Download citation * Received: 17 May 2014 * Revised: 04


December 2014 * Accepted: 04 December 2014 * Published: 15 December 2014 * Issue Date: May 2015 * DOI: https://doi.org/10.1038/npp.2014.327 SHARE THIS ARTICLE Anyone you share the following


link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature


SharedIt content-sharing initiative