Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state nmr samples

Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state nmr samples


Play all audios:


ABSTRACT Solid-state NMR spectroscopy has been used successfully for characterizing the structure and dynamics of membrane proteins as well as their interactions with other proteins in lipid


bilayers. Such an environment is often necessary for achieving native-like structures. Sample preparation is the key to this success. Here we present a detailed description of a robust


protocol that results in high-quality membrane protein samples for both magic-angle spinning and oriented-sample solid-state NMR. The procedure is demonstrated using two proteins: CrgA (two


transmembrane helices) and Rv1861 (three transmembrane helices), both from _Mycobacterium tuberculosis_. The success of this procedure relies on two points. First, for samples for both types


of NMR experiment, the reconstitution of the protein from a detergent environment to an environment in which it is incorporated into liposomes results in 'complete' removal of


detergent. Second, for the oriented samples, proper dehydration followed by rehydration of the proteoliposomes is essential. By using this protocol, proteoliposome samples for magic-angle


spinning NMR and uniformly aligned samples (orientational mosaicity of <1°) for oriented-sample NMR can be obtained within 10 d. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per


year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A ‘BUILD AND


RETRIEVE’ METHODOLOGY TO SIMULTANEOUSLY SOLVE CRYO-EM STRUCTURES OF MEMBRANE PROTEINS Article 06 January 2021 THE IMPORTANCE OF THE MEMBRANE FOR BIOPHYSICAL MEASUREMENTS Article 16 November


2020 STABILIZATION AND STRUCTURE DETERMINATION OF INTEGRAL MEMBRANE PROTEINS BY TERMINI RESTRAINING Article 17 January 2022 REFERENCES * Page, R.C., Li, C., Hu, J., Gao, F.P. & Cross,


T.A. Lipid bilayers: an essential environment for the understanding of membrane proteins. _Magn. Reson. Chem._ 45, S2–S11 (2007). Article  CAS  Google Scholar  * Dong, H., Sharma, M., Zhou,


H.X. & Cross, T.A. Glycines: role in α-helical membrane protein structures and a potential indicator of native conformation. _Biochemistry_ 51, 4779–4789 (2012). Article  CAS  Google


Scholar  * Zhou, H.X. & Cross, T.A. Influences of membrane mimetic environments on membrane protein structures. _Annu. Rev. Biophys._ 42, 361–392 (2013). Article  CAS  Google Scholar  *


Anfinsen, C.B. Principles that govern the folding of protein chains. _Science_ 181, 223–230 (1973). Article  CAS  Google Scholar  * Korepanova, A. et al. Cloning and expression of multiple


integral membrane proteins from _Mycobacterium tuberculosis_ in _Escherichia coli_. _Protein Sci._ 14, 148–158 (2005). Article  CAS  Google Scholar  * Caffrey, M. Crystallizing membrane


proteins for structure determination: use of lipidic mesophases. _Annu. Rev. Biophys._ 38, 29–51 (2009). Article  CAS  Google Scholar  * Separovic, F., Killian, J.A., Cotten, M., Busath,


D.D. & Cross, T.A. Modeling the membrane environment for membrane proteins. _Biophys. J._ 100, 2073–2074 (2011). Article  CAS  Google Scholar  * Li, D. et al. Crystal structure of the


integral membrane diacylglycerol kinase. _Nature_ 497, 521–524 (2013). Article  CAS  Google Scholar  * Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T. & Bax, A. Micelle-induced


curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. _J. Am. Chem. Soc._ 124, 2450–2451 (2002). Article  CAS  Google


Scholar  * Van Horn, W.D. et al. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. _Science_ 324, 1726–1729 (2009). Article  CAS  Google Scholar  *


Griffin, R.G. Dipolar recoupling in MAS spectra of biological solids. _Nat. Struct. Biol._ 5, 508–512 (1998). Article  CAS  Google Scholar  * Tang, W., Knox, R.W. & Nevzorov, A.A. A


spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles. _J. Biomol. NMR_ 54, 307–316 (2012). Article  CAS  Google Scholar  * Ketchem, R.R.,


Hu, W., Tian, F. & Cross, T.A. Structure and dynamics from solid state NMR spectroscopy. _Structure_ 2, 699–701 (1994). Article  CAS  Google Scholar  * Sharma, M. et al. Insight into the


mechanism of the influenza A proton channel from a structure in a lipid bilayer. _Science_ 330, 509–512 (2010). Article  CAS  Google Scholar  * Mote, K.R. et al. Multidimensional oriented


solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers. _Journal of Biomolecular NMR_ 51,


339–346 (2011). Article  CAS  Google Scholar  * Nevzorov, A.A. & Opella, S.J. Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples. _J. Magn. Reson._


185, 59–70 (2007). Article  CAS  Google Scholar  * Can, T.V. et al. Magic angle spinning and oriented sample solid-state NMR structural restraints combine for influenza A M2 protein


functional insights. _J. Am. Chem. Soc._ 134, 9022–9025 (2012). Article  CAS  Google Scholar  * Murray, D.T., Das, N. & Cross, T.A. Solid-state NMR strategy for characterizing native


membrane protein structures. _Accounts Chem. Res._ 46, 2172–2181 (2013). Article  CAS  Google Scholar  * Plocinski, P. et al. _Mycobacterium tuberculosis_ CwsA interacts with CrgA and Wag31,


and the CrgA-CwsA complex is involved in peptidoglycan synthesis and cell shape determination. _J. Bacteriol._ 194, 6398–6409 (2012). Article  CAS  Google Scholar  * Plocinski, P. et al.


Characterization of CrgA, a new partner of the _Mycobacterium tuberculosis_ peptidoglycan polymerization complexes. _J. Bacteriol._ 193, 3246–3256 (2011). Article  CAS  Google Scholar  * Li,


C. et al. Uniformly aligned full-length membrane proteins in liquid crystalline bilayers for structural characterization. _J. Am. Chem. Soc._ 129, 5304–5305 (2007). Article  CAS  Google


Scholar  * Su, P.C., Si, W., Baker, D.L. & Berger, B.W. High-yield membrane protein expression from _E. coli_ using an engineered outer membrane protein F fusion. _Protein Sci._ 22,


434–443 (2013). Article  CAS  Google Scholar  * Grisshammer, R. Understanding recombinant expression of membrane proteins. _Curr. Opin. Biotechnol._ 17, 337–340 (2006). Article  CAS  Google


Scholar  * Zoonens, M. & Miroux, B. Expression of membrane proteins at the _Escherichia coli_ membrane for structural studies. _Methods Mol. Biol._ 601, 49–66 (2010). Article  CAS 


Google Scholar  * Hu, J., Qin, H., Gao, F.P. & Cross, T.A. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification.


_Protein Expr. Purif._ 80, 34–40 (2011). Article  CAS  Google Scholar  * Mouillac, B. & Baneres, J.L. Mammalian membrane receptors expression as inclusion bodies in _Escherichia coli_.


_Methods Mol. Biol._ 601, 39–48 (2010). Article  CAS  Google Scholar  * Qin, H. et al. Construction of a series of vectors for high throughput cloning and expression screening of membrane


proteins from _Mycobacterium tuberculosis_. _BMC Biotechnol._ 8, 51 (2008). Article  Google Scholar  * Kiefer, H. et al. Expression of an olfactory receptor in _Escherichia coli_:


purification, reconstitution, and ligand binding. _Biochemistry_ 35, 16077–16084 (1996). Article  CAS  Google Scholar  * Aslanidis, C. & de Jong, P.J. Ligation-independent cloning of PCR


products (LIC-PCR). _Nucleic Acids Res._ 18, 6069–6074 (1990). Article  CAS  Google Scholar  * Korepanova, A. et al. Expression of membrane proteins from _Mycobacterium tuberculosis_ in


_Escherichia coli_ as fusions with maltose binding protein. _Protein Expr. Purif._ 53, 24–30 (2007). Article  CAS  Google Scholar  * Seddon, A.M., Curnow, P. & Booth, P.J. Membrane


proteins, lipids and detergents: not just a soap opera. _Biochim. Biophys. Acta_ 1666, 105–117 (2004). Article  CAS  Google Scholar  * Rigaud, J.L., Pitard, B. & Levy, D. Reconstitution


of membrane proteins into liposomes: application to energy-transducing membrane proteins. _Biochim. Biophys. Acta_ 1231, 223–246 (1995). Article  Google Scholar  * Rigaud, J.L. & Levy,


D. Reconstitution of membrane proteins into liposomes. _Methods Enzymol._ 372, 65–86 (2003). Article  CAS  Google Scholar  * Signorell, G.A., Kaufmann, T.C., Kukulski, W., Engel, A. &


Remigy, H.W. Controlled 2D crystallization of membrane proteins using methyl-beta-cyclodextrin. _J. Struct. Biol._ 157, 321–328 (2007). Article  CAS  Google Scholar  * DeGrip, W.J.,


VanOostrum, J. & Bovee-Geurts, P.H.M. Selective detergent-extraction from mixed detergent/lipid/protein micelles, using cyclodextrin inclusion compounds: a novel generic approach for the


preparation of proteoliposomes. _Biochem. J._ 330, 667–674 (1998). Article  CAS  Google Scholar  * Rigaud, J.L., Levy, D., Mosser, G. & Lambert, O. Detergent removal by non-polar


polystyrene beads—applications to membrane protein reconstitution and two-dimensional crystallization. _Eur. Biophy. J. Biophys. Lett._ 27, 305–319 (1998). Article  CAS  Google Scholar  *


Rigaud, J.L., Mosser, G., Lacapere, J.J., Olofsson, A., Levy, D. & Ranck, J.L. Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. _J. Struct.


Biol._ 118, 226–235 (1997). Article  CAS  Google Scholar  * Kimura, T. et al. Recombinant cannabinoid type 2 receptor in liposome model activates G protein in response to anionic lipid


constituents. _J. Biol. Chem._ 287, 4076–4087 (2012). Article  CAS  Google Scholar  * Park, S.H. et al. Optimization of purification and refolding of the human chemokine receptor CXCR1


improves the stability of proteoliposomes for structure determination. _Biochim. Biophys. Acta_ 1818, 584–591 (2012). Article  CAS  Google Scholar  * van den Brink-van der Laan, E., Killian,


J.A. & de Kruijff, B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. _Biochim. Biophys. Acta_ 1666, 275–288 (2004).


Article  CAS  Google Scholar  * Miao, Y.M. et al. M2 proton channel structural validation from full-length protein samples in synthetic bilayers and _E. coli_ membranes. _Angew. Chem. Int.


Ed. Engl._ 51, 8383–8386 (2012). Article  CAS  Google Scholar  * Cady, S., Wang, T. & Hong, M. Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the


influenza virus M2 protein. _J. Am. Chem. Soc._ 133, 11572–11579 (2011). Article  CAS  Google Scholar  * Bhate, M.P., Wylie, B.J., Tian, L. & McDermott, A.E. Conformational dynamics in


the selectivity filter of KcsA in response to potassium ion concentration. _J. Mol. Biol._ 401, 155–166 (2010). Article  CAS  Google Scholar  * Peterson, E. et al. Functional reconstitution


of influenza A M2(22-62). _Biochim. Biophys. Acta_ 1808, 516–521 (2011). Article  CAS  Google Scholar  * Nagy, J.K. & Sanders, C.R. Destabilizing mutations promote membrane protein


misfolding. _Biochemistry_ 43, 19–25 (2004). Article  CAS  Google Scholar  * Wallace, B.A., Lees, J.G., Orry, A.J., Lobley, A. & Janes, R.W. Analyses of circular dichroism spectra of


membrane proteins. _Protein Sci._ 12, 875–884 (2003). Article  CAS  Google Scholar  * Andreas, L.B., Eddy, M.T., Pielak, R.M., Chou, J. & Griffin, R.G. Magic angle spinning NMR


investigation of influenza A M2(18-60): support for an allosteric mechanism of inhibition. _J. Am. Chem Soc._ 132, 10958–10960 (2010). Article  CAS  Google Scholar  * Ketchem, R.R., Hu, W.


& Cross, T.A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. _Science_ 261, 1457–1460 (1993). Article  CAS  Google Scholar  * De Angelis, A.A. &


Opella, S.J. Bicelle samples for solid-state NMR of membrane proteins. _Nat. Protoc._ 2, 2332–2338 (2007). Article  CAS  Google Scholar  * Cevc, G. & Marsh, D. _Phospholipid Bilayers:


Physical Principles and Models_ Vol. 5 (John Wiley & Sons, 1987). * Baldus, M. Solid-state nuclear magnetic resonance. In _Comprehensive Biophysics Vol. 1_ (ed. Engleman, E.) 160–181


(Academic Press, 2012). * Lakatos, A., Mors, K. & Glaubitz, C. How to investigate interactions between membrane proteins and ligands by solid-state NMR. _Methods Mol. Biol._ 914, 65–86


(2012). CAS  PubMed  Google Scholar  * Wu, C.H., Ramamoorthy, A. & Opella, S.J. High resolution heteronuclear dipolar solid-state NMR spectroscopy. _J. Magn. Reson. A_ 109, 270–272


(1994). Article  Google Scholar  * Wang, J. et al. Imaging membrane protein helical wheels. _J. Magn. Reson._ 144, 162–167 (2000). Article  CAS  Google Scholar  * Marassi, F.M. & Opella,


S.J.A solid-state NMR index of helical membrane protein structure and topology. _J. Magn. Reson._ 144, 150–155 (2000). Article  CAS  Google Scholar  * Murray, D.T., Lu, Y.T., Cross, T.A.


& Quine, J.R. Geometry of kinked protein helices from NMR data. _J. Magn. Reson._ 210, 82–89 (2011). Article  CAS  Google Scholar  * Opella, S.J. et al. Structures of the M2


channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. _Nat. Struct. Biol._ 6, 374–379 (1999). Article  CAS  Google Scholar  * Park, S.H., De Angelis,


A.A., Nevzorov, A.A., Wu, C.H. & Opella, S.J. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. _Biophys. J._ 91, 3032–3042


(2006). Article  CAS  Google Scholar  * Verardi, R., Shi, L., Traaseth, N.J., Walsh, N. & Veglia, G. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution


and solid-state NMR method. _Proc. Natl. Acad. Sci. USA_ 108, 9101–9106 (2011). Article  CAS  Google Scholar  * Zech, S.G., Wand, A.J. & McDermott, A.E. Protein structure determination


by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. _J. Am. Chem. Soc._ 127, 8618–8626 (2005). Article  CAS  Google Scholar  * McDermott, A. Structure


and dynamics of membrane proteins by magic angle spinning solid-state NMR. _Annu. Rev. Biophys._ 38, 385–403 (2009). Article  CAS  Google Scholar  * Castellani, F. et al. Structure of a


protein determined by solid-state magic-angle-spinning NMR spectroscopy. _Nature_ 420, 98–102 (2002). Article  CAS  Google Scholar  * Park, S.H. et al. Structure of the chemokine receptor


CXCR1 in phospholipid bilayers. _Nature_ 491, 779–783 (2012). Article  CAS  Google Scholar  * Das, B.B. et al. Structure determination of a membrane protein in proteoliposomes. _J. Am. Chem.


Soc._ 134, 2047–2056 (2012). Article  CAS  Google Scholar  * Park, S.H., Das, B.B., De Angelis, A.A., Scrima, M. & Opella, S.J. Mechanically, magnetically, and 'rotationally


aligned' membrane proteins in phospholipid bilayers give equivalent angular constraints for NMR structure determination. _J. Phys. Chem. B_ 114, 13995–14003 (2010). Article  CAS  Google


Scholar  * Opella, S.J. Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy. _Accounts Chem.


Res._ 46, 2145–2153 (2013). Article  CAS  Google Scholar  * Cady, S.D. et al. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. _Nature_ 463,


689–692 (2010). Article  CAS  Google Scholar  * Massotte, D. G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies.


_Biochim. Biophys. Acta_ 1610, 77–89 (2003). Article  CAS  Google Scholar  * McCusker, E.C., Bane, S.E., O'Malley, M.A. & Robinson, A.S. Heterologous GPCR expression: a bottleneck


to obtaining crystal structures. _Biotechnol. Prog._ 23, 540–547 (2007). Article  CAS  Google Scholar  * Shi, L. & Ladizhansky, V. Magic-angle spinning solid-state NMR experiments for


structural characterization of proteins. _Methods Mol. Biol._ 895, 153–165 (2012). Article  CAS  Google Scholar  * Gor'kov, P.L. et al. Using low-E resonators to reduce RF heating in


biological samples for static solid-state NMR up to 900 MHz. _J. Magn. Reson._ 185, 77–93 (2007). Article  CAS  Google Scholar  * Quine, J.R. et al. Intensity and mosaic spread analysis from


PISEMA tensors in solid-state NMR. _J. Magn. Reson._ 179, 190–198 (2006). Article  CAS  Google Scholar  * Page, R.C. et al. Comprehensive evaluation of solution nuclear magnetic resonance


spectroscopy sample preparation for helical integral membrane proteins. _J. Struct. Funct. Genomics_ 7, 51–64 (2006). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We


thank M.W. Davidson at NHMFL and C. Escobar at FSU, IMB, NHMFL for helping with photography. We also thank P.L. Gor'kov for his design of the OS sample holder and the sample transfer


base. This work was supported in part by the US National Institutes of Health (grants AI 074805, AI 073891 and AI 023007) and the US National Science Foundation (through Cooperative


Agreement 0654118 between the Division of Materials Research and the State of Florida). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Institute of Molecular Biophysics (IMB), Florida State


University (FSU), Tallahassee, Florida, USA Nabanita Das, Dylan T Murray & Timothy A Cross * National High Magnetic Field Laboratory (NMHFL), FSU, Tallahassee, Florida, USA Nabanita Das,


 Dylan T Murray & Timothy A Cross * Department of Chemistry and Biochemistry, FSU, Tallahassee, Florida, USA Timothy A Cross Authors * Nabanita Das View author publications You can also


search for this author inPubMed Google Scholar * Dylan T Murray View author publications You can also search for this author inPubMed Google Scholar * Timothy A Cross View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS N.D. and D.T.M. performed all the experiments such as membrane protein expression, purification,


solid-state NMR sample preparation and new method development. N.D. prepared all the figures. N.D. and T.A.C. wrote the manuscript, D.T.M. provided essential comments. All three authors


coordinated to complete this manuscript. CORRESPONDING AUTHOR Correspondence to Timothy A Cross. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.


INTEGRATED SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1 12% (WT/VOL) SDS-PAGE OF CRGA AND RV1861 MEMBRANE PROTEIN EXPRESSION AND PURIFICATION STEPS. M: Molecular weight marker, L: Whole


cell lysate containing inclusion body and membrane fractions, FT: Flow through from nickel column, Washes: two to three consecutive washing steps, Elutions: Protein elution from nickel


column. Molecular weights of the proteins are shown by red color arrows. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1 12% (wt/vol) SDS-PAGE of CrgA and Rv1861 membrane protein expression


and purification steps. (PDF 3068 kb) SUPPLEMENTARY METHODS CrgA and Rv1861 membrane protein expression and purification; Reconstitution and OS sample preparation of 15N uniform labeled


gramicidin A protein in DMPC lipid bilayers. (PDF 208 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Das, N., Murray, D. & Cross, T. Lipid


bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. _Nat Protoc_ 8, 2256–2270 (2013). https://doi.org/10.1038/nprot.2013.129 Download


citation * Published: 24 October 2013 * Issue Date: November 2013 * DOI: https://doi.org/10.1038/nprot.2013.129 SHARE THIS ARTICLE Anyone you share the following link with will be able to


read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative