Fertility preservation strategies for male patients with cancer

Fertility preservation strategies for male patients with cancer


Play all audios:


ABSTRACT With the increasing number of patients surviving cancer, there is increasing interest in long-term quality of life, especially with respect to cancer-related infertility. Although


infertility most commonly occurs as the result of treatment with gonadotoxic agents, it can also manifest before treatment has commenced. Current fertility preservation strategies for the


postpubertal male patient with cancer focus on sperm cryopreservation before therapy. Sperm acquisition techniques should be discussed with the patient as early as possible, by either an


oncologist or a specialist in male reproduction. For patients rendered infertile by cancer treatment who did not cryopreserve sperm beforehand, there are no techniques currently available to


restore fertility. For the prepubertal male patient, cryopreservation of sperm is impossible. However, emerging research—primarily in animal models—into promising fertility preservation and


restoration strategies might provide a clinical solution in the future. Advances in the protection and cryopreservation of spermatogonial stem cells (SSCs) might translate into clinical


options for fertility preservation before treatment. Restoring fertility after treatment might also be possible via SSC autotransplantation or _in vitro_ maturation of SSCs. Before any of


these techniques become clinically viable, a number of scientific, logistical and ethical issues will need to be resolved. KEY POINTS * Infertility related to cancer is a major issue for


many cancer survivors and should be discussed as early as possible during treatment planning * Impairment of fertility related to cancer can manifest before, during or after treatment *


Existing fertility preservation strategies for men focus on acquiring sperm for cryopreservation before therapy; patients rendered infertile by cancer treatments who did not cryopreserve


sperm beforehand are unable to father a biological child * Promising advances in spermatogonial stem cell research might lead to future fertility preservation and restoration options for


male patients with cancer * A number of scientific, logistical and ethical barriers might need to be overcome before investigational fertility preservation strategies can be used clinically,


especially for prepubertal patients * Development of, and adherence to, clinical care pathways, education of oncological health-care providers and involvement of male reproductive


specialists should be included in the management of infertility in male patients with cancer Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn


more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS


OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS FERTILITY PRESERVATION IN BOYS FACING


GONADOTOXIC CANCER THERAPY Article 19 October 2021 HUMAN IN VITRO SPERMATOGENESIS AS A REGENERATIVE THERAPY — WHERE DO WE STAND? Article 07 February 2023 OVARIAN CRYOPRESERVATION WITH


RAPAMYCIN IMPROVES FERTILITY RESTORATION IN A MURINE ORTHOTOPIC TRANSPLANTATION MODEL Article Open access 19 March 2025 REFERENCES * Living beyond cancer: finding a new balance.


_President's Cancer Panel 2003–2004 Annual Report 17_ [online], (2013). * Lee, S. J. _ et al_. American Society of Clinical Oncology recommendations on fertility preservation in cancer


patients. _J. Clin. Oncol._ 24, 2917–2931 (2006). Article  PubMed  Google Scholar  * Jemal, A. _ et al_. Global cancer statistics. _CA Cancer J. Clin._ 61, 69–90 (2011). Article  PubMed 


Google Scholar  * Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. _CA Cancer J. Clin._ 63, 11–30 (2013). Article  PubMed  Google Scholar  * Bleyer, A. Young adult


oncology: the patients and their survival challenges. _CA Cancer J. Clin._ 57, 242–255 (2007). Article  PubMed  Google Scholar  * American Cancer Society. _Cancer Facts and Figures 2012_


[online], (2013). * Tschudin, S. & Bitzer, J. Psychological aspects of fertility preservation in men and women affected by cancer and other life-threatening diseases. _Hum. Reprod.


Update_ 15, 587–597 (2009). Article  PubMed  Google Scholar  * Schover, L. R., Brey, K., Lichtin, A., Lipshultz, L. I. & Jeha, S. Knowledge and experience regarding cancer, infertility,


and sperm banking in younger male survivors. _J. Clin. Oncol._ 20, 1880–1889 (2002). Article  PubMed  Google Scholar  * Rieker, P. P., Fitzgerald, E. M. & Kalish, L. A. Adaptive


behavioral responses to potential infertility among survivors of testis cancer. _J. Clin. Oncol._ 8, 347–355 (1990). Article  CAS  PubMed  Google Scholar  * Saito, K., Suzuki, K., Iwasaki,


A., Yumura, Y. & Kubota, Y. Sperm cryopreservation before cancer chemotherapy helps in the emotional battle against cancer. _Cancer_ 104, 521–524 (2005). Article  PubMed  Google Scholar


  * Wallace, W. H. & Thomson, A. B. Preservation of fertility in children treated for cancer. _Arch. Dis. Child._ 88, 493–496 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Nieman, C. L. _ et al_. Fertility preservation and adolescent cancer patients: lessons from adult survivors of childhood cancer and their parents. _Cancer Treat. Res._ 138, 201–217


(2007). Article  PubMed  PubMed Central  Google Scholar  * Peate, M. _ et al_. It's now or never: fertility-related knowledge, decision-making preferences, and treatment intentions in


young women with breast cancer--an Australian fertility decision aid collaborative group study. _J. Clin. Oncol._ 29, 1670–1677 (2011). Article  PubMed  Google Scholar  * Anderson, R. A. _


et al_. Do doctors discuss fertility issues before they treat young patients with cancer? _Hum. Reprod._ 23, 2246–2251 (2008). Article  PubMed  Google Scholar  * Green, D. M. _ et al_.


Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. _J. Clin. Oncol._ 28, 332–339 (2010). Article  PubMed  Google Scholar  * Thomson, A. B. _


et al_. Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. _Lancet_ 360, 361–367 (2002). Article  CAS  PubMed  Google Scholar  * Lass, A. _


et al_. A programme of semen cryopreservation for patients with malignant disease in a tertiary infertility centre: lessons from 8 years' experience. _Hum. Reprod._ 13, 3256–3261


(1998). Article  CAS  PubMed  Google Scholar  * Chung, K. _ et al_. Sperm cryopreservation for male patients with cancer: an epidemiological analysis at the University of Pennsylvania. _Eur.


J. Obstet. Gynecol. Reprod. Biol._ 113 (Suppl. 1), S7–S11 (2004). Article  PubMed  Google Scholar  * Pietzak, E. J. _ et al_. Histology of testicular biopsy specimens obtained for


cryopreservation and future re-implantation as a fertility-preserving technique. Presented at the 2012 American Academy of Pediatrics National Conference in New Orleans. * Agarwal, A. &


Allamaneni, S. S. Disruption of spermatogenesis by the cancer disease process. _J. Natl Cancer Inst. Monogr._ 2005, 9–12 (2005). Article  Google Scholar  * Paduch, D. A. Testicular cancer


and male infertility. _Curr. Opin. Urol._ 16, 419–427 (2006). Article  PubMed  Google Scholar  * Hall, E. & Burt, V. K. Male fertility: psychiatric considerations. _Fertil. Steril._ 97,


434–439 (2012). Article  PubMed  Google Scholar  * Pereira, M. L. & Garcia e Costa, F. The blood-testis barrier as a target of some chemotherapeutic agents. _Chemotherapy_ 53, 446–448


(2007). Article  CAS  PubMed  Google Scholar  * Bucci, L. R. & Meistrich, M. L. Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant


lethal mutations. _Mutat. Res._ 176, 259–268 (1987). Article  CAS  PubMed  Google Scholar  * Ginsberg, J. P. New advances in fertility preservation for pediatric cancer patients. _Curr.


Opin. Pediatr._ 23, 9–13 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * van der Kaaij, M. A., van Echten-Arends, J., Simons, A. H. & Kluin-Nelemans, H. C. Fertility


preservation after chemotherapy for Hodgkin lymphoma. _Hematol. Oncol._ 28, 168–179 (2010). Article  PubMed  Google Scholar  * Mackie, E. J., Radford, M. & Shalet, S. M. Gonadal function


following chemotherapy for childhood Hodgkin's disease. _Med. Pediatr. Oncol._ 27, 74–78 (1996). Article  CAS  PubMed  Google Scholar  * DeSantis, M., Albrecht, W., Holtl, W. &


Pont, J. Impact of cytotoxic treatment on long-term fertility in patients with germ-cell cancer. _Int. J. Cancer_ 83, 864–865 (1999). Article  CAS  PubMed  Google Scholar  * Colpi, G. M.,


Contalbi, G. F., Nerva, F., Sagone, P. & Piediferro, G. Testicular function following chemo-radiotherapy. _Eur. J. Obstet. Gynecol. Reprod. Biol._ 113 (Suppl. 1), S2–S6 (2004). Article 


CAS  PubMed  Google Scholar  * Rowley, M. J., Leach, D. R., Warner, G. A. & Heller, C. G. Effect of graded doses of ionizing radiation on the human testis. _Radiat. Res._ 59, 665–678


(1974). Article  CAS  PubMed  Google Scholar  * Centola, G. M., Keller, J. W., Henzler, M. & Rubin, P. Effect of low-dose testicular irradiation on sperm count and fertility in patients


with testicular seminoma. _J. Androl._ 15, 608–613 (1994). CAS  PubMed  Google Scholar  * Speiser, B., Rubin, P. & Casarett, G. Aspermia following lower truncal irradiation in


Hodgkin's disease. _Cancer_ 32, 692–698 (1973). Article  CAS  PubMed  Google Scholar  * Budgell, G. J., Cowan, R. A. & Hounsell, A. R. Prediction of scattered dose to the testes in


abdominopelvic radiotherapy. _Clin. Oncol. (R. Coll. Radiol.)_ 13, 120–125 (2001). CAS  Google Scholar  * Brenner, D. J. & Hall, E. J. Computed tomography—an increasing source of


radiation exposure. _N. Engl. J. Med._ 357, 2277–2284 (2007). Article  CAS  PubMed  Google Scholar  * Feldschuh, J., Brassel, J., Durso, N. & Levine, A. Successful sperm storage for 28


years. _Fertil. Steril._ 84, 1017 (2005). Article  PubMed  Google Scholar  * Hourvitz, A. _ et al_. Intracytoplasmic sperm injection (ICSI) using cryopreserved sperm from men with malignant


neoplasm yields high pregnancy rates. _Fertil. Steril._ 90, 557–563 (2008). Article  PubMed  Google Scholar  * Fossa, S. D. & Magelssen, H. Fertility and reproduction after chemotherapy


of adult cancer patients: malignant lymphoma and testicular cancer. _Ann. Oncol._ 15 (Suppl. 4), iv259–iv265 (2004). PubMed  Google Scholar  * Sunkara, S. K. _ et al_. Association between


the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. _Hum. Reprod._ 26, 1768–1774 (2011). Article  PubMed  Google Scholar  * O'Connell, M.,


McClure, N. & Lewis, S. E. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. _Hum. Reprod._ 17, 704–709 (2002). Article  CAS  PubMed  Google


Scholar  * Pacey, A. A. Fertility issues in survivors from adolescent cancers. _Cancer Treat. Rev._ 33, 646–655 (2007). Article  CAS  PubMed  Google Scholar  * Schmiegelow, M. L. _ et al_.


Penile vibratory stimulation and electroejaculation before anticancer therapy in two pubertal boys. _J. Pediatr. Hematol. Oncol._ 20, 429–430 (1998). Article  CAS  PubMed  Google Scholar  *


Sabanegh, E. _Male Infertility—Problems and Solutions_ (ed. Klein, E. A.) (Humana Press, New York, 2011). Book  Google Scholar  * Schlegel, P. N. Testicular sperm extraction: microdissection


improves sperm yield with minimal tissue excision. _Hum. Reprod._ 14, 131–135 (1999). Article  CAS  PubMed  Google Scholar  * Hsiao, W. _ et al_. Successful treatment of postchemotherapy


azoospermia with microsurgical testicular sperm extraction: the Weill Cornell experience. _J. Clin. Oncol._ 29, 1607–1611 (2011). Article  PubMed  Google Scholar  * Schrader, M. _ et al_.


“Onco-tese”: testicular sperm extraction in azoospermic cancer patients before chemotherapy-new guidelines? _Urology_ 61, 421–425 (2003). Article  CAS  PubMed  Google Scholar  * Katz, D. J.,


Matsushita, K., Bennett, N. & Mulhall, J. P. Outcomes of fertility preservation strategies in male teenagers with cancer [abstract 1985]. _J. Urol._ 187 (Suppl.), e801 (2012). Google


Scholar  * Binsaleh, S., Sircar, K. & Chan, P. T. Feasibility of simultaneous testicular microdissection for sperm retrieval and ipsilateral testicular tumor resection in azoospermic


men. _J. Androl._ 25, 867–871 (2004). Article  PubMed  Google Scholar  * Kalsi, J. _ et al_. Analysis of the outcome of intracytoplasmic sperm injection using fresh or frozen sperm. _BJU


Int._ 107, 1124–1128 (2011). Article  PubMed  Google Scholar  * Nicopoullos, J. D. _ et al_. Use of surgical sperm retrieval in azoospermic men: a meta-analysis. _Fertil. Steril._ 82,


691–701 (2004). Article  PubMed  Google Scholar  * Ulug, U., Bener, F., Karagenc, L., Ciray, N. & Bahceci, M. Outcomes in couples undergoing ICSI: comparison between fresh and


frozen-thawed surgically retrieved spermatozoa. _Int. J. Androl._ 28, 343–349 (2005). Article  PubMed  Google Scholar  * Bieri, S., Rouzaud, M. & Miralbell, R. Seminoma of the testis: is


scrotal shielding necessary when radiotherapy is limited to the para-aortic nodes? _Radiother. Oncol._ 50, 349–353 (1999). Article  CAS  PubMed  Google Scholar  * Harris, S. J. &


Buchanan, R. B. Irradiation of the scrotum: what some men need MOST: the Manual Orchid Shielding Technique. _Clin. Oncol. (R. Coll. Radiol.)_ 8, 254–256 (1996). Article  CAS  Google Scholar


  * Fraass, B. A., Kinsella, T. J., Harrington, F. S. & Glatstein, E. Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield. _Int. J.


Radiat. Oncol. Biol. Phys._ 11, 609–615 (1985). Article  CAS  PubMed  Google Scholar  * Ishiguro, H. _ et al_. Gonadal shielding to irradiation is effective in protecting testicular growth


and function in long-term survivors of bone marrow transplantation during childhood or adolescence. _Bone Marrow Transplant._ 39, 483–490 (2007). Article  CAS  PubMed  Google Scholar  *


Bazzi, W. M. _ et al_. Partial orchiectomy and testis intratubular germ cell neoplasia: world literature review. _Urol. Ann._ 3, 115–118 (2011). Article  PubMed  PubMed Central  Google


Scholar  * Lawrentschuk, N., Zuniga, A., Grabowksi, A. C., Rendon, R. A. & Jewett, M. A. Partial orchiectomy for presumed malignancy in patients with a solitary testis due to a prior


germ cell tumor: a large North American experience. _J. Urol._ 185, 508–513 (2011). Article  PubMed  Google Scholar  * Toren, P. J. _ et al_. Small incidentally discovered testicular masses


in infertile men—is active surveillance the new standard of care? _J. Urol._ 183, 1373–1377 (2010). Article  PubMed  Google Scholar  * Wyns, C., Curaba, M., Vanabelle, B., Van Langendonckt,


A. & Donnez, J. Options for fertility preservation in prepubertal boys. _Hum. Reprod. Update_ 16, 312–328 (2010). Article  PubMed  Google Scholar  * Shetty, G. & Meistrich, M. L.


Hormonal approaches to preservation and restoration of male fertility after cancer treatment. _J. Natl Cancer Inst. Monogr._ 2005, 36–39 (2005). Article  CAS  Google Scholar  * Meistrich, M.


L. & Shetty, G. Inhibition of spermatogonial differentiation by testosterone. _J. Androl._ 24, 135–148 (2003). Article  CAS  PubMed  Google Scholar  * Morris, I. D. Protection against


cytotoxic-induced testis damage—experimental approaches. _Eur. Urol._ 23, 143–147 (1993). Article  CAS  PubMed  Google Scholar  * Manabe, F., Takeshima, H. & Akaza, H. Protecting


spermatogenesis from damage induced by doxorubicin using the luteinizing hormone-releasing hormone agonist leuprorelin: an image analysis study of a rat experimental model. _Cancer_ 79,


1014–1021 (1997). Article  CAS  PubMed  Google Scholar  * Kangasniemi, M., Wilson, G., Parchuri, N., Huhtaniemi, I. & Meistrich, M. L. Rapid protection of rat spermatogenic stem cells


against procarbazine by treatment with a gonadotropin-releasing hormone antagonist (Nal-Glu) and an antiandrogen (flutamide). _Endocrinology_ 136, 2881–2888 (1995). Article  CAS  PubMed 


Google Scholar  * Brennemann, W., Brensing, K. A., Leipner, N., Boldt, I. & Klingmuller, D. Attempted protection of spermatogenesis from irradiation in patients with seminoma by


D-Tryptophan-6 luteinizing hormone releasing hormone. _Clin. Investig._ 72, 838–842 (1994). Article  CAS  PubMed  Google Scholar  * Fossa, S. D., Klepp, O. & Norman, N. Lack of gonadal


protection by medroxyprogesterone acetate-induced transient medical castration during chemotherapy for testicular cancer. _Br. J. Urol._ 62, 449–453 (1988). Article  CAS  PubMed  Google


Scholar  * Johnson, D. H. _ et al_. Effect of a luteinizing hormone releasing hormone agonist given during combination chemotherapy on posttherapy fertility in male patients with lymphoma:


preliminary observations. _Blood_ 65, 832–836 (1985). CAS  PubMed  Google Scholar  * Redman, J. & Bajorunas, D. in _Workshop on Psychosexual and Reproductive Issues Affecting Patients


with Cancer_ 90–94 (American Cancer Society, New York, 1987). Google Scholar  * Waxman, J. Preserving fertility in Hodgkin's disease. _Baillieres Clin. Haematol._ 1, 185–190 (1987).


Article  CAS  PubMed  Google Scholar  * Kelnar, C. J. _ et al_. Testicular changes during infantile 'quiescence' in the marmoset and their gonadotrophin dependence: a model for


investigating susceptibility of the prepubertal human testis to cancer therapy? _Hum. Reprod._ 17, 1367–1378 (2002). Article  CAS  PubMed  Google Scholar  * Ogawa, T., Dobrinski, I.,


Avarbock, M. R. & Brinster, R. L. Leuprolide, a gonadotropin-releasing hormone agonist, enhances colonization after spermatogonial transplantation into mouse testes. _Tissue Cell_ 30,


583–588 (1998). Article  CAS  PubMed  Google Scholar  * Kanter, M., Topcu-Tarladacalisir, Y. & Parlar, S. Antiapoptotic effect of L-carnitine on testicular irradiation in rats. _J. Mol.


Histol._ 41, 121–128 (2010). Article  CAS  PubMed  Google Scholar  * Okada, F. K., Stumpp, T. & Miraglia, S. M. Carnitine reduces testicular damage in rats treated with etoposide in the


prepubertal phase. _Cell Tissue Res._ 337, 269–280 (2009). Article  CAS  PubMed  Google Scholar  * Carmely, A. _ et al_. Protective effect of the immunomodulator AS101 against


cyclophosphamide-induced testicular damage in mice. _Hum. Reprod._ 24, 1322–1329 (2009). Article  CAS  PubMed  Google Scholar  * Lirdi, L. C., Stumpp, T., Sasso-Cerri, E. & Miraglia, S.


M. Amifostine protective effect on cisplatin-treated rat testis. _Anat. Rec. (Hoboken)_ 291, 797–808 (2008). Article  CAS  Google Scholar  * Brook, P. F., Radford, J. A., Shalet, S. M.,


Joyce, A. D. & Gosden, R. G. Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation. _Fertil. Steril._ 75, 269–274 (2001). Article  CAS


  PubMed  Google Scholar  * Wyns, C., Van Langendonckt, A., Wese, F. X., Donnez, J. & Curaba, M. Long-term spermatogonial survival in cryopreserved and xenografted immature human


testicular tissue. _Hum. Reprod._ 23, 2402–2414 (2008). Article  PubMed  Google Scholar  * Ginsberg, J. P. _ et al_. An experimental protocol for fertility preservation in prepubertal boys


recently diagnosed with cancer: a report of acceptability and safety. _Hum. Reprod._ 25, 37–41 (2010). Article  CAS  PubMed  Google Scholar  * Sato, T. _ et al_. _In vitro_ production of


functional sperm in cultured neonatal mouse testes. _Nature_ 471, 504–507 (2011). Article  CAS  PubMed  Google Scholar  * Keros, V. _ et al_. Methods of cryopreservation of testicular tissue


with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. _Hum. Reprod._ 22, 1384–1395 (2007). Article  CAS  PubMed  Google Scholar  * de Rooij, D. G. The


spermatogonial stem cell niche. _Microsc. Res. Tech._ 72, 580–585 (2009). Article  CAS  PubMed  Google Scholar  * Curaba, M., Poels, J., van Langendonckt, A., Donnez, J. & Wyns, C. Can


prepubertal human testicular tissue be cryopreserved by vitrification? _Fertil. Steril._ 95, 2123.e9–2123.e12 (2011). Google Scholar  * Poels, J., Van Langendonckt, A., Dehoux, J. P.,


Donnez, J. & Wyns, C. Vitrification of non-human primate immature testicular tissue allows maintenance of proliferating spermatogonial cells after xenografting to recipient mice.


_Theriogenology_ 77, 1008–1013 (2012). Article  CAS  PubMed  Google Scholar  * Brinster, R. L. Male germline stem cells: from mice to men. _Science_ 316, 404–405 (2007). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Trefil, P. _ et al_. Restoration of spermatogenesis after transplantation of c-Kit positive testicular cells in the fowl. _Theriogenology_ 74, 1670–1676


(2010). Article  CAS  PubMed  Google Scholar  * Brinster, R. L. & Zimmermann, J. W. Spermatogenesis following male germ-cell transplantation. _Proc. Natl Acad. Sci. USA_ 91, 11298–11302


(1994). Article  CAS  PubMed  PubMed Central  Google Scholar  * Honaramooz, A. _ et al_. Fertility and germline transmission of donor haplotype following germ cell transplantation in


immunocompetent goats. _Biol. Reprod._ 69, 1260–1264 (2003). Article  CAS  PubMed  Google Scholar  * Schlatt, S., Foppiani, L., Rolf, C., Weinbauer, G. F. & Nieschlag, E. Germ cell


transplantation into X-irradiated monkey testes. _Hum. Reprod._ 17, 55–62 (2002). Article  CAS  PubMed  Google Scholar  * Schlatt, S. _ et al_. Germ cell transfer into rat, bovine, monkey


and human testes. _Hum. Reprod._ 14, 144–150 (1999). Article  CAS  PubMed  Google Scholar  * Radford, J., Shalet, S. & Lieberman, B. Fertility after treatment for cancer. Questions


remain over ways of preserving ovarian and testicular tissue. _BMJ_ 319, 935–936 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chuma, S. _ et al_. Spermatogenesis from


epiblast and primordial germ cells following transplantation into postnatal mouse testis. _Development_ 132, 117–122 (2005). Article  CAS  PubMed  Google Scholar  * Jahnukainen, K. _ et al_.


Testicular recovery after irradiation differs in prepubertal and pubertal non-human primates, and can be enhanced by autologous germ cell transplantation. _Hum. Reprod._ 26, 1945–1954


(2011). Article  PubMed  PubMed Central  Google Scholar  * Ogawa, T., Arechaga, J. M., Avarbock, M. R. & Brinster, R. L. Transplantation of testis germinal cells into mouse seminiferous


tubules. _Int. J. Dev. Biol._ 41, 111–122 (1997). CAS  PubMed  Google Scholar  * Schlatt, S., von Schonfeldt, V. & Nieschlag, E. Germ cell transplantation in the male: animal studies


with a human perspective. _Hum. Fertil. (Camb.)_ 2, 143–148 (1999). Article  Google Scholar  * Ohta, H. & Wakayama, T. Generation of normal progeny by intracytoplasmic sperm injection


following grafting of testicular tissue from cloned mice that died postnatally. _Biol. Reprod._ 73, 390–395 (2005). Article  CAS  PubMed  Google Scholar  * Shinohara, T. _ et al_. Birth of


offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. _Hum. Reprod._ 17, 3039–3045 (2002). Article  CAS  PubMed  Google Scholar  *


Honaramooz, A. _ et al_. Sperm from neonatal mammalian testes grafted in mice. _Nature_ 418, 778–781 (2002). Article  CAS  PubMed  Google Scholar  * Wu, X. _ et al_. Prepubertal human


spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules. _Proc. Natl Acad. Sci. USA_ 106, 21672–21677 (2009). Article  PubMed  PubMed


Central  Google Scholar  * Goossens, E., Geens, M., De Block, G. & Tournaye, H. Spermatogonial survival in long-term human prepubertal xenografts. _Fertil. Steril._ 90, 2019–2022 (2008).


Article  PubMed  Google Scholar  * Nagano, M., Patrizio, P. & Brinster, R. L. Long-term survival of human spermatogonial stem cells in mouse testes. _Fertil. Steril._ 78, 1225–1233


(2002). Article  PubMed  Google Scholar  * Kanatsu-Shinohara, M. _ et al_. Long-term culture of male germline stem cells from hamster testes. _Biol. Reprod._ 78, 611–617 (2008). Article  CAS


  PubMed  Google Scholar  * Aponte, P. M. _ et al_. Propagation of bovine spermatogonial stem cells _in vitro_. _Reproduction_ 136, 543–557 (2008). Article  CAS  PubMed  Google Scholar  *


Cremades, N., Sousa, M., Bernabeu, R. & Barros, A. Developmental potential of elongating and elongated spermatids obtained after in-vitro maturation of isolated round spermatids. _Hum.


Reprod._ 16, 1938–1944 (2001). Article  CAS  PubMed  Google Scholar  * Sousa, M., Cremades, N., Alves, C., Silva, J. & Barros, A. Developmental potential of human spermatogenic cells


co-cultured with Sertoli cells. _Hum. Reprod._ 17, 161–172 (2002). Article  PubMed  Google Scholar  * Sa, R. _ et al_. Cytological and expression studies and quantitative analysis of the


temporal and stage-specific effects of follicle-stimulating hormone and testosterone during cocultures of the normal human seminiferous epithelium. _Biol. Reprod._ 79, 962–975 (2008).


Article  CAS  PubMed  Google Scholar  * Tesarik, J., Guido, M., Mendoza, C. & Greco, E. Human spermatogenesis _in vitro_: respective effects of follicle-stimulating hormone and


testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. _J. Clin. Endocrinol. Metab._ 83, 4467–4473 (1998). Article  CAS  PubMed  Google Scholar  * Aslam, I. & Fishel, S.


Short-term in-vitro culture and cryopreservation of spermatogenic cells used for human in-vitro conception. _Hum. Reprod._ 13, 634–638 (1998). Article  CAS  PubMed  Google Scholar  *


Sadri-Ardekani, H. _ et al_. Propagation of human spermatogonial stem cells _in vitro_. _JAMA_ 302, 2127–2134 (2009). Article  CAS  PubMed  Google Scholar  * Sadri-Ardekani, H., Akhondi, M.


A., van der Veen, F., Repping, S. & van Pelt, A. M. _In vitro_ propagation of human prepubertal spermatogonial stem cells. _JAMA_ 305, 2416–2418 (2011). Article  CAS  PubMed  Google


Scholar  * Zhu, Y. _ et al_. Generation of male germ cells from induced pluripotent stem cells (iPS cells): an _in vitro_ and _in vivo_ study. _Asian J. Androl._ 14, 574–579 (2012). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Yang, S. _ et al_. Derivation of male germ cells from induced pluripotent stem cells _in vitro_ and in reconstituted seminiferous tubules.


_Cell Prolif._ 45, 91–100 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Knoepfler, P. S. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine.


_Stem Cells_ 27, 1050–1056 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marion, R. M. _ et al_. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell


genomic integrity. _Nature_ 460, 1149–1153 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced


pluripotent stem cells. _Nature_ 448, 313–317 (2007). Article  CAS  PubMed  Google Scholar  * Zhou, H. _ et al_. Generation of induced pluripotent stem cells using recombinant proteins.


_Cell Stem Cell_ 4, 381–384 (2009). Article  CAS  PubMed  Google Scholar  * Shi, Y. _ et al_. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with


small-molecule compounds. _Cell Stem Cell_ 3, 568–574 (2008). Article  CAS  PubMed  Google Scholar  * Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of


mouse induced pluripotent stem cells without viral vectors. _Science_ 322, 949–953 (2008). Article  CAS  PubMed  Google Scholar  * Patel, R. P. _ et al_. Testicular microlithiasis and


antisperm antibodies following testicular biopsy in boys with cryptorchidism. _J. Urol._ 174, 2008–2010 (2005). Article  PubMed  Google Scholar  * Wyns, C. _ et al_. Management of fertility


preservation in prepubertal patients: 5 years' experience at the Catholic University of Louvain. _Hum. Reprod._ 26, 737–747 (2011). Article  CAS  PubMed  Google Scholar  * Franck, P. _


et al_. Testicular relapse after 13 years of complete remission of acute lymphoblastic leukemia. _Urol. Int._ 60, 239–241 (1998). Article  CAS  PubMed  Google Scholar  * Quaranta, B. P.,


Halperin, E. C., Kurtzberg, J., Clough, R. & Martin, P. L. The incidence of testicular recurrence in boys with acute leukemia treated with total body and testicular irradiation and stem


cell transplantation. _Cancer_ 101, 845–850 (2004). Article  PubMed  Google Scholar  * Fujita, K. _ et al_. Isolation of germ cells from leukemia and lymphoma cells in a human _in vitro_


model: potential clinical application for restoring human fertility after anticancer therapy. _Cancer Res._ 66, 11166–11171 (2006). Article  CAS  PubMed  Google Scholar  * Geens, M. _ et


al_. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. _Hum. Reprod._ 22,


733–742 (2007). Article  CAS  PubMed  Google Scholar  * Hou, M. _ et al_. Decontamination of leukemic cells and enrichment of germ cells from testicular samples from rats with Roser's


T-cell leukemia by flow cytometric sorting. _Reproduction_ 134, 767–779 (2007). Article  CAS  PubMed  Google Scholar  * Sato, T. _ et al_. _In vitro_ production of fertile sperm from murine


spermatogonial stem cell lines. _Nat. Commun._ 2, 472 (2011). Article  CAS  PubMed  Google Scholar  * Boneva, R. S. & Folks, T. M. Xenotransplantation and risks of zoonotic infections.


_Ann. Med._ 36, 504–517 (2004). Article  PubMed  Google Scholar  * Fortunato, A. & Tosti, E. The impact of _in vitro_ fertilization on health of the children: an update. _Eur. J. Obstet.


Gynecol. Reprod. Biol._ 154, 125–129 (2011). Article  PubMed  Google Scholar  * Goossens, E., Frederickx, V., de Block, G., van Steirteghem, A. & Tournaye, H. Evaluation of _in vivo_


conception after testicular stem cell transplantation in a mouse model shows altered post-implantation development. _Hum. Reprod._ 21, 2057–2060 (2006). Article  PubMed  Google Scholar  *


Barton, S. E. _ et al_. Population-based study of attitudes toward posthumous reproduction. _Fertil. Steril._ 98, 735.e5–740.e5 (2012). Article  Google Scholar  * Ethics Committee of the


American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. _Fertil. Steril._ 83, 1622–1628 (2005). * Schover, L. R., Brey, K., Lichtin, A.,


Lipshultz, L. I. & Jeha, S. Oncologists' attitudes and practices regarding banking sperm before cancer treatment. _J. Clin. Oncol._ 20, 1890–1897 (2002). Article  PubMed  Google


Scholar  * Schaefer, F., Marr, J., Seidel, C., Tilgen, W. & Scharer, K. Assessment of gonadal maturation by evaluation of spermaturia. _Arch. Dis. Child._ 65, 1205–1207 (1990). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Rutter, M. Normal psychosexual development. _J. Child. Psychol. Psychiatry_ 11, 259–283 (1971). Article  Google Scholar  * Kinsey, A. C.,


Pomeroy, W. R. & Martin, C. E. Sexual behavior in the human male. 1948. _Am. J. Public Health._ 93, 894–898 (2003). Article  PubMed  PubMed Central  Google Scholar  * Hagenas, I. _ et


al_. Clinical and biochemical correlates of successful semen collection for cryopreservation from 12-18-year-old patients: a single-center study of 86 adolescents. _Hum. Reprod._ 25,


2031–2038 (2010). Article  PubMed  Google Scholar  * Bahadur, G. _ et al_. Semen quality and cryopreservation in adolescent cancer patients. _Hum. Reprod._ 17, 3157–3161 (2002). Article  CAS


  PubMed  Google Scholar  * Kreuser, E. D., Hetzel, W. D., Hautmann, R. & Pfeiffer, E. F. Reproductive toxicity with and without LHRHA administration during adjuvant chemotherapy in


patients with germ cell tumors. _Horm. Metab. Res._ 22, 494–498 (1990). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS Supported by The Sidney Kimmel Center for


Prostate and Urologic Cancers. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Surgery, Male Sexual and Reproductive Medicine Program, Memorial Sloan-Kettering Cancer Center,


Urology Service, 1275 York Avenue, New York, 10065, NY, USA Darren J. Katz & John P. Mulhall * Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York,


10065, NY, USA Darren R. Feldman * The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 34th Street and Civic Center Boulevard, Philadelphia,


19104-4399, PA, USA Thomas F. Kolon Authors * Darren J. Katz View author publications You can also search for this author inPubMed Google Scholar * Thomas F. Kolon View author publications


You can also search for this author inPubMed Google Scholar * Darren R. Feldman View author publications You can also search for this author inPubMed Google Scholar * John P. Mulhall View


author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors researched data for the article and contributed to the discussion of content. D. J.


Katz, T. F. Kolon and J. P. Mulhall wrote the article and reviewed the manuscript before submission. CORRESPONDING AUTHOR Correspondence to John P. Mulhall. ETHICS DECLARATIONS COMPETING


INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Katz, D., Kolon, T., Feldman, D. _et al._


Fertility preservation strategies for male patients with cancer. _Nat Rev Urol_ 10, 463–472 (2013). https://doi.org/10.1038/nrurol.2013.145 Download citation * Published: 09 July 2013 *


Issue Date: August 2013 * DOI: https://doi.org/10.1038/nrurol.2013.145 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative