Engineering redox-active electrochemically mediated carbon dioxide capture systems

Engineering redox-active electrochemically mediated carbon dioxide capture systems


Play all audios:


ABSTRACT With ever-increasing atmospheric carbon dioxide concentrations and commitments to limit global temperatures to less than 1.5 °C above pre-industrial levels, the need for versatile,


low-cost carbon dioxide capture technologies is paramount. Electrochemically mediated carbon dioxide separation systems promise low energetics, modular scalability and ease of


implementation, with direct integration to renewable energy for net-negative carbon dioxide operations. For these systems to be cost-competitive, key factors around their operation,


stability and scaling need to be addressed. Energy penalties associated with redox-active species transport, gas transport and bubble formation limit the volumetric productivity and scaling


potential due to their cost and footprint. Here we highlight the importance of engineering approaches towards enhancing the performance of redox-active electrochemically mediated carbon


dioxide capture systems to enable their widespread implementation. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ELECTROCHEMICAL METHODS FOR CARBON DIOXIDE SEPARATIONS Article 08


September 2022 NON-AQUEOUS ALKOXIDE-MEDIATED ELECTROCHEMICAL CARBON CAPTURE Article 16 August 2024 CONTINUOUS DECOUPLED REDOX ELECTROCHEMICAL CO2 CAPTURE Article Open access 30 December 2024


REFERENCES * IPCC _Climate Change 2021_: _The Physical Science Basis_ (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021). * Halliday, C. & Hatton, T. A. Sorbents for the


capture of CO2 and other acid gases: a review. _Ind. Eng. Chem. Res._ 60, 9313–9346 (2021). Article  CAS  Google Scholar  * Zhu, P. et al. Continuous carbon capture in an electrochemical


solid-electrolyte reactor - Supporting Information. _Nature_ 618, 959–966 (2023). Article  CAS  PubMed  Google Scholar  * Jiang, W. et al. Electrochemically regenerated amine for CO2 capture


driven by a proton-coupled electron transfer reaction. _Ind. Eng. Chem. Res._ 61, 13578–13588 (2022). Article  CAS  Google Scholar  * Liu, Y., Lucas, É., Sullivan, I., Li, X. & Xiang,


C. Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture. _iScience_ 25, 105153 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. _ACS Catal._ 10, 13058–13074 (2020). Article  CAS  Google Scholar  *


Kang, J. S., Kim, S. & Hatton, T. A. Redox-responsive sorbents and mediators for electrochemically based CO2 capture. _Curr. Opin. Green Sustain. Chem._ 31, 100504 (2021). Article  CAS 


Google Scholar  * Gurkan, B. et al. Perspective and challenges in electrochemical approaches for reactive CO2 separations. _iScience_ 24, 103422 (2021). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Zito, A. M. et al. Electrochemical carbon dioxide capture and concentration. _Chem. Rev._ 123, 8069–8098 (2023). Article  CAS  PubMed  Google Scholar  * Barlow, J. M. et


al. Molecular design of redox carriers for electrochemical CO2 capture and concentration. _Chem. Soc. Rev._ 51, 8415–8433 (2022). Article  CAS  PubMed  Google Scholar  * Sullivan, B. P.,


Krist. K. & Guard, H. E. (eds) _Electrochemical and Electrocatalytic Reactions of Carbon Dioxide_ (Elsevier, 1993). * Barlow, J. M. & Yang, J. Y. Oxygen-stable electrochemical CO2


capture and concentration with quinones using alcohol additives. _J. Am. Chem. Soc._ 144, 14161–14169 (2022). Article  CAS  PubMed  Google Scholar  * Van Daele, S. et al. How flue gas


impurities affect the electrochemical reduction of CO2 to CO and formate. _Appl. Catal. B Environ._ 341, 123345 (2024). Article  Google Scholar  * Gurkan, B., Simeon, F. & Hatton, T. A.


Quinone reduction in ionic liquids for electrochemical CO2 separation. _ACS Sustainable Chem. Eng._ 3, 1394–1405 (2015). Article  CAS  Google Scholar  * Diederichsen, K. M., DeWitt, S. J. A.


& Hatton, T. A. Electrochemically facilitated transport of CO2 between gas diffusion electrodes in flat and hollow fiber geometries. _ACS ES&T Eng._ 3, 1001–1012 (2023). Article 


CAS  Google Scholar  * Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. _Energy Environ. Sci._ 12, 3530–3547 (2019). Article  CAS  Google Scholar 


* Hemmatifar, A., Kang, J. S., Ozbek, N., Tan, K. J. & Hatton, T. A. Electrochemically mediated direct CO2 capture by a stackable bipolar cell. _ChemSusChem_ 15, e202102533 (2022).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, Y. et al. Electrochemically mediated gating membrane with dynamically controllable gas transport. _Sci. Adv._ 6, 22–24 (2020).


Article  Google Scholar  * Shaw, R. A. & Hatton, T. A. Electrochemical CO2 capture thermodynamics. _Int. J. Greenh. Gas Control_ 95, 102878 (2020). Article  CAS  Google Scholar  *


Clarke, L. E., Leonard, M. E., Hatton, T. A. & Brushett, F. R. Thermodynamic modeling of CO2 separation systems with soluble, redox-active capture species. _Ind. Eng. Chem. Res._ 61,


10531–10546 (2022). Article  CAS  Google Scholar  * Diederichsen, K. M. et al. Electrochemical methods for carbon dioxide separations. _Nat. Rev. Methods Prim._ 2, 2354–2374 (2022). Google


Scholar  * Wang, M., Hariharan, S., Shaw, R. A. & Hatton, T. A. Energetics of electrochemically mediated amine regeneration process for flue gas CO2 capture. _Int. J. Greenh. Gas


Control_ 82, 48–58 (2019). Article  CAS  Google Scholar  * Wang, M. & Hatton, T. A. Flue gas CO2 capture via electrochemically mediated amine regeneration: desorption unit design and


analysis. _Ind. Eng. Chem. Res._ 59, 10120–10129 (2020). Article  CAS  Google Scholar  * Wang, M., Shaw, R., Gencer, E. & Hatton, T. A. Technoeconomic analysis of the electrochemically


mediated amine regeneration CO2 capture process. _Ind. Eng. Chem. Res._ 59, 14085–14095 (2020). Article  CAS  Google Scholar  * Xu, Y. et al. Assessing the kinetics of quinone-CO2 adduct


formation for electrochemically mediated carbon capture. _ACS Sustain. Chem. Eng._ 11, 11333–11341 (2023). Article  CAS  Google Scholar  * Gurkan, B., Simeon, F. & Hatton, T. A. Quinone


reduction in ionic liquids for electrochemical CO2 separation - supporting information. _ACS Sustain. Chem. Eng._ 3, 1394–1405 (2015). Article  CAS  Google Scholar  * Wang, M. et al. Flue


gas CO2 capture via electrochemically mediated amine regeneration: system design and performance. _Appl. Energy_ 255, 113879 (2019). Article  CAS  Google Scholar  * Diederichsen, K. M., Liu,


Y., Ozbek, N., Seo, H. & Hatton, T. A. Toward solvent-free continuous-flow electrochemically mediated carbon capture with high-concentration liquid quinone chemistry. _Joule_ 6, 221–239


(2022). Article  CAS  Google Scholar  * Rahimi, M. et al. Carbon dioxide capture using an electrochemically driven proton concentration process. _Cell Rep. Phys. Sci._ 1, 100033 (2020).


Article  Google Scholar  * Rahimi, M., Catalini, G., Puccini, M. & Hatton, T. A. Bench-scale demonstration of CO2 capture with an electrochemically driven proton concentration process.


_RSC Adv._ 10, 16832–16843 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Seo, H., Rahimi, M. & Hatton, T. A. Electrochemical carbon dioxide capture and release with a


redox-active amine. _J. Am. Chem. Soc._ 144, 2164–2170 (2022). Article  CAS  PubMed  Google Scholar  * Seo, H. & Hatton, T. A. Electrochemical direct air capture of CO2 using neutral red


as reversible redox-active material. _Nat. Commun._ 14, 313 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jin, S., Wu, M., Gordon, R. G., Aziz, M. J. & Kwabi, D. G. pH


swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer. _Energy Environ. Sci._ 13, 3706–3722 (2020). Article  CAS  Google Scholar  * Jin, S., Wu, M.,


Jing, Y., Gordon, R. G. & Aziz, M. J. Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing. _Nat. Commun._ 13, 2140 (2022). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Leitz, F. B. & Marinčić, L. Enhanced mass transfer in electrochemical cells using turbulence promoters. _J. Appl. Electrochem._ 7, 473–484


(1977). Article  CAS  Google Scholar  * Ke, X. et al. Rechargeable redox flow batteries: flow fields, stacks and design considerations. _Chem. Soc. Rev._ 47, 8721–8743 (2018). Article  CAS 


PubMed  Google Scholar  * Quentmeier, M., Schmid, B., Tempel, H., Kungl, H. & Eichel, R. A. Toward a stackable CO2-to-CO electrolyzer cell design─impact of media flow optimization. _ACS


Sustain. Chem. Eng._ 11, 679–688 (2023). Article  CAS  Google Scholar  * Pérez-Gallent, E. et al. Overcoming mass transport limitations in electrochemical reactors with a pulsating flow


electrolyzer. _Ind. Eng. Chem. Res._ 59, 5648–5656 (2020). Article  Google Scholar  * Pei, S., You, S. & Zhang, J. Application of pulsed electrochemistry to enhanced water


decontamination. _ACS ES&T Eng._ 1, 1502–1508 (2021). Article  CAS  Google Scholar  * Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables


stability. _ACS Energy Lett._ 6, 809–815 (2021). Article  CAS  Google Scholar  * Jeon, H. S. et al. Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed


electroreduction. _J. Am. Chem. Soc._ 143, 7578–7587 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Compton, R. G., Eklund, J. C., Page, S. D., Mason, T. J. & Walton, D.


J. Voltammetry in the presence of ultrasound: mass transport effects. _J. Appl. Electrochem._ 26, 775–784 (1996). Article  CAS  Google Scholar  * Xie, X. et al. Liquid-in-liquid printing of


3D and mechanically tunable conductive hydrogels. _Nat. Commun._ 14, 4289 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, Y. H. et al. Controlled synthesis of


metal-organic frameworks in scalable open-porous contactor for maximizing carbon capture efficiency. _JACS Au_ 1, 1198–1207 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Lee, W. H. et al. Sorbent-coated carbon fibers for direct air capture using electrically driven temperature swing adsorption. _Joule_ 7, 1241–1259 (2023). Article  CAS  Google Scholar  *


Singh, S., Stechel, E. B. & Buttry, D. A. Transient modeling of electrochemically assisted CO2 capture and release. _J. Electroanal. Chem._ 799, 156–166 (2017). Article  CAS  Google


Scholar  * Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M. & Fernández Rivas, D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors.


_Joule_ 4, 555–579 (2020). Article  CAS  Google Scholar  * He, Y. et al. Strategies for bubble removal in electrochemical systems. _Energy Rev._ 2, 100015 (2023). Article  Google Scholar  *


Leonard, M. E. et al. Editors’ Choice—Flooded by success: on the role of electrode wettability in CO2 electrolyzers that generate liquid products. _J. Electrochem. Soc._ 167, 124521 (2020).


Article  CAS  Google Scholar  * Lake, J. R., Soto, Á. M. & Varanasi, K. K. Impact of bubbles on electrochemically active surface area of microtextured gas-evolving electrodes. _Langmuir_


38, 3276–3283 (2022). Article  CAS  PubMed  Google Scholar  * Rahimi, M., Zucchelli, F., Puccini, M. & Hatton, T. A. Improved CO2 capture performance of electrochemically mediated amine


regeneration processes with ionic surfactant additives. _ACS Appl. Energy Mater._ 3, 10823–10830 (2020). Article  CAS  Google Scholar  * Gendel, Y., Roth, H., Rommerskirchen, A., David, O.


& Wessling, M. A microtubular all CNT gas diffusion electrode. _Electrochem. Commun._ 46, 44–47 (2014). Article  CAS  Google Scholar  * Hatton, T. A., Shaw, R. A., Wang, M. &


Voskian, S. Methods and systems for removing CO2 from a feed gas. US patent US11446604B2 (2019). * Rahimi, M. et al. An electrochemically mediated amine regeneration process with a mixed


absorbent for postcombustion CO2 capture. _Environ. Sci. Technol._ 54, 8999–9007 (2020). Article  CAS  PubMed  Google Scholar  * Wang, M., Herzog, H. J. & Hatton, T. A. CO2 capture using


electrochemically mediated amine regeneration. _Ind. Eng. Chem. Res._ 59, 7087–7096 (2020). Article  CAS  Google Scholar  * Stern, M. C. & Hatton, T. A. Bench-scale demonstration of CO2


capture with electrochemically-mediated amine regeneration. _RSC Adv._ 4, 5906–5914 (2014). Article  CAS  Google Scholar  * Sabatino, F. et al. Evaluation of a direct air capture process


combining wet scrubbing and bipolar membrane electrodialysis. _Ind. Eng. Chem. Res._ 59, 7007–7020 (2020). Article  CAS  Google Scholar  * Orella, M. J., Brown, S. M., Leonard, M. E.,


Román-Leshkov, Y. & Brushett, F. R. A general technoeconomic model for evaluating emerging electrolytic processes. _Energy Technol._ 8, 1900994 (2020). Article  Google Scholar  * Zhang,


J. et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. _Nat. Commun._ 14, 1298 (2023). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. _Nat. Sustain._ 4, 911–919 (2021).


Article  Google Scholar  * Reyes, A. et al. Managing hydration at the cathode enables efficient CO2 electrolysis at commercially relevant current densities. _ACS Energy Lett._ 5, 1612–1618


(2020). Article  CAS  Google Scholar  * Verma, S., Kim, B., Jhong, H. R. M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction


of CO2. _ChemSusChem_ 9, 1972–1979 (2016). Article  CAS  PubMed  Google Scholar  * Kohl, A. L. & Nielsen, R. B. _Gas Purification_ (Gulf Publishing Company, 1997). * Rochelle, G. T.


Amine scrubbing for CO2 capture. _Science_ 325, 1652–1655 (2009). Article  CAS  PubMed  Google Scholar  * Merkel, T. C., Lin, H., Wei, X. & Baker, R. Power plant post-combustion carbon


dioxide capture: an opportunity for membranes. _J. Memb. Sci._ 359, 126–139 (2010). Article  CAS  Google Scholar  * Wu, Y. et al. A submillimeter bundled microtubular flow battery cell with


ultrahigh volumetric power density. _Proc. Natl Acad. Sci. USA_ 120, e2213528120 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Diederichsen, K. M. & Hatton, T. A.


Nondimensional analysis of a hollow fiber membrane contactor for direct air capture. _Ind. Eng. Chem. Res._ 61, 11964–11976 (2022). Article  CAS  Google Scholar  Download references AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Michael Massen-Hane, Kyle M. Diederichsen & T. Alan


Hatton Authors * Michael Massen-Hane View author publications You can also search for this author inPubMed Google Scholar * Kyle M. Diederichsen View author publications You can also search


for this author inPubMed Google Scholar * T. Alan Hatton View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.M.-H., K.M.D. and T.A.H.


contributed to conceptualization, writing of the original draft, and review and editing of the manuscript. CORRESPONDING AUTHOR Correspondence to T. Alan Hatton. ETHICS DECLARATIONS


COMPETING INTERESTS T.A.H. is a co-founder and Scientific Advisory Board member of Verdox, Inc. PEER REVIEW PEER REVIEW INFORMATION _Nature Chemical Engineering_ thanks Klaus Lackner and


Chang-Ha Lee for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published


maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing


agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement


and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Massen-Hane, M., Diederichsen, K.M. & Hatton, T.A. Engineering redox-active electrochemically mediated


carbon dioxide capture systems. _Nat Chem Eng_ 1, 35–44 (2024). https://doi.org/10.1038/s44286-023-00003-3 Download citation * Received: 19 August 2023 * Accepted: 20 November 2023 *


Published: 11 January 2024 * Issue Date: January 2024 * DOI: https://doi.org/10.1038/s44286-023-00003-3 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative